### Refine

#### Year of publication

- 1999 (12) (remove)

Algorithmic ideal theory
(1999)

Algebraic geometers have used Gröbner bases as the main computational tool for many years, either to prove a theorem or to disprove a conjecture or just to experiment with examples in order to obtain a feeling about the structure of an algebraic variety. Non-trivial mathematical problems usually lead to non-trivial Gröbner basis computations, which is the reason why several improvements and efficient implementations have been provided by algebraic geometers (for example, the systems CoCoA, Macaulay and SINGULAR). The present paper starts with an introduction to some concepts of algebraic geometry which should be understood by people with (almost) no knowledge in this field. In the second chapter we introduce standard bases (generalization of Gröbner bases to non-well-orderings), which are needed for applications to local algebraic geometry (singularity theory), and a method for computing syzygies and free resolutions. In the third chapter several algorithms for primary decomposition of polynomial ideals are presented, together with a discussion of improvements and preferable choices. We also describe a newly invented algorithm for computing the normalization of a reduced affine ring. The last chapter gives an elementary introduction to singularity theory and then describes algorithms, using standard bases, to compute infinitesimal deformations and obstructions, which are basic for the deformation theory of isolated singularities. It is impossible to list all papers where Gröbner basis have been used in local and global algebraic geometry, and even more impossible to give an overview about these contributions. We have, therefore, included only a few references to papers which contain interesting applications and which are not mentioned in this tutorial paper. The interested reader will find many more in the other contributions of this volume and in the literature cited there.