### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (647) (remove)

#### Language

- English (647) (remove)

#### Keywords

- Visualisierung (13)
- finite element method (9)
- Finite-Elemente-Methode (7)
- Visualization (7)
- Algebraische Geometrie (6)
- Numerische Strömungssimulation (6)
- Computergraphik (5)
- Finanzmathematik (5)
- Mobilfunk (5)
- Optimization (5)

#### Faculty / Organisational entity

- Fachbereich Mathematik (223)
- Fachbereich Informatik (147)
- Fachbereich Maschinenbau und Verfahrenstechnik (98)
- Fachbereich Chemie (59)
- Fachbereich Elektrotechnik und Informationstechnik (47)
- Fachbereich Biologie (29)
- Fachbereich Sozialwissenschaften (17)
- Fachbereich Wirtschaftswissenschaften (10)
- Fachbereich Physik (6)
- Fachbereich ARUBI (5)

Destructive diseases of the lung like lung cancer or fibrosis are still often lethal. Also in case of fibrosis in the liver, the only possible cure is transplantation.
In this thesis, we investigate 3D micro computed synchrotron radiation (SR\( \mu \)CT) images of capillary blood vessels in mouse lungs and livers. The specimen show so-called compensatory lung growth as well as different states of pulmonary and hepatic fibrosis.
During compensatory lung growth, after resecting part of the lung, the remaining part compensates for this loss by extending into the empty space. This process is accompanied by an active vessel growing.
In general, the human lung can not compensate for such a loss. Thus, understanding this process in mice is important to improve treatment options in case of diseases like lung cancer.
In case of fibrosis, the formation of scars within the organ's tissue forces the capillary vessels to grow to ensure blood supply.
Thus, the process of fibrosis as well as compensatory lung growth can be accessed by considering the capillary architecture.
As preparation of 2D microscopic images is faster, easier, and cheaper compared to SR\( \mu \)CT images, they currently form the basis of medical investigation. Yet, characteristics like direction and shape of objects can only properly be analyzed using 3D imaging techniques. Hence, analyzing SR\( \mu \)CT data provides valuable additional information.
For the fibrotic specimen, we apply image analysis methods well-known from material science. We measure the vessel diameter using the granulometry distribution function and describe the inter-vessel distance by the spherical contact distribution. Moreover, we estimate the directional distribution of the capillary structure. All features turn out to be useful to characterize fibrosis based on the deformation of capillary vessels.
It is already known that the most efficient mechanism of vessel growing forms small torus-shaped holes within the capillary structure, so-called intussusceptive pillars. Analyzing their location and number strongly contributes to the characterization of vessel growing. Hence, for all three applications, this is of great interest. This thesis provides the first algorithm to detect intussusceptive pillars in SR\( \mu \)CT images. After segmentation of raw image data, our algorithm works automatically and allows for a quantitative evaluation of a large amount of data.
The analysis of SR\( \mu \)CT data using our pillar algorithm as well as the granulometry, spherical contact distribution, and directional analysis extends the current state-of-the-art in medical studies. Although it is not possible to replace certain 3D features by 2D features without losing information, our results could be used to examine 2D features approximating the 3D findings reasonably well.

The various uses of fiber-reinforced composites, for example in the enclosures of planes, boats and cars, generates the demand for a detailed analysis of these materials. The final goal is to optimize fibrous materials by the means of “virtual material design”. New fibrous materials are virtually created as realizations of a stochastic model and evaluated with physical simulations. In that way, materials can be optimized for specific use cases, without constructing expensive prototypes or performing mechanical experiments. In order to design a practically fabricable material, the stochastic model is first adapted to an existing material and then slightly modified. The virtual reconstruction of the existing material requires a precise knowledge of the geometry of its microstructure. The first part of this thesis describes a fiber quantification method by the means of local measurements of the fiber radius and orientation. The combination of a sparse chord length transform and inertia moments leads to an efficient and precise new algorithm. It outperforms existing approaches with the possibility to treat different fiber radii within one sample, with high precision in continuous space and comparably fast computing time. This local quantification method can be directly applied on gray value images by adapting the directional distance transforms on gray values. In this work, several approaches of this kind are developed and evaluated. Further characterization of the fiber system requires a segmentation of each single fiber. Using basic morphological operators with specific structuring elements, it is possible to derive a probability for each pixel describing if the pixel belongs to a fiber core in a region without overlapping fibers. Tracking high probabilities leads to a partly reconstruction of the fiber cores in non crossing regions. These core parts are then reconnected over critical regions, if they fulfill certain conditions ensuring the affiliation to the same fiber. In the second part of this work, we develop a new stochastic model for dense systems of non overlapping fibers with a controllable level of bending. Existing approaches in the literature have at least one weakness in either achieving high volume fractions, producing non overlapping fibers, or controlling the bending or the orientation distribution. This gap can be bridged by our stochastic model, which operates in two steps. Firstly, a random walk with the multivariate von Mises-Fisher orientation distribution defines bent fibers. Secondly, a force-biased packing approach arranges them in a non overlapping configuration. Furthermore, we provide the estimation of all parameters needed for the fitting of this model to a real microstructure. Finally, we simulate the macroscopic behavior of different microstructures to derive their mechanical and thermal properties. This part is mostly supported by existing software and serves as a summary of physical simulation applied to random fiber systems. The application on a glass fiber reinforced polymer proves the quality of the reconstruction by our stochastic model, as the effective properties match for both the real microstructure and the realizations of the fitted model. This thesis includes all steps to successfully perform virtual material design on various data sets. With novel and efficient algorithms it contributes to the science of analysis and modeling of fiber reinforced materials.

A Consistent Large Eddy Approach for Lattice Boltzmann Methods and its Application to Complex Flows
(2015)

Lattice Boltzmann Methods have shown to be promising tools for solving fluid flow problems. This is related to the advantages of these methods, which are among others, the simplicity in handling complex geometries and the high efficiency in calculating transient flows. Lattice Boltzmann Methods are mesoscopic methods, based on discrete particle dynamics. This is in contrast to conventional Computational Fluid Dynamics methods, which are based on the solution of the continuum equations. Calculations of turbulent flows in engineering depend in general on modeling, since resolving of all turbulent scales is and will be in near future far beyond the computational possibilities. One of the most auspicious modeling approaches is the large eddy simulation, in which the large, inhomogeneous turbulence structures are directly computed and the smaller, more homogeneous structures are modeled.
In this thesis, a consistent large eddy approach for the Lattice Boltzmann Method is introduced. This large eddy model includes, besides a subgrid scale model, appropriate boundary conditions for wall resolved and wall modeled calculations. It also provides conditions for turbulent domain inlets. For the case of wall modeled simulations, a two layer wall model is derived in the Lattice Boltzmann context. Turbulent inlet conditions are achieved by means of a synthetic turbulence technique within the Lattice Boltzmann Method.
The proposed approach is implemented in the Lattice Boltzmann based CFD package SAM-Lattice, which has been created in the course of this work. SAM-Lattice is feasible of the calculation of incompressible or weakly compressible, isothermal flows of engineering interest in complex three dimensional domains. Special design targets of SAM-Lattice are high automatization and high performance.
Validation of the suggested large eddy Lattice Boltzmann scheme is performed for pump intake flows, which have not yet been treated by LBM. Even though, this numerical method is very suitable for this kind of vortical flows in complicated domains. In general, applications of LBM to hydrodynamic engineering problems are rare. The results of the pump intake validation cases reveal that the proposed numerical approach is able to represent qualitatively and quantitatively the very complex flows in the intakes. The findings provided in this thesis can serve as the basis for a broader application of LBM in hydrodynamic engineering problems.

The growing computational power enables the establishment of the Population Balance Equation (PBE)
to model the steady state and dynamic behavior of multiphase flow unit operations. Accordingly, the twophase
flow
behavior inside liquid-liquid extraction equipment is characterized by different factors. These
factors include: interactions among droplets (breakage and coalescence), different time scales due to the
size distribution of the dispersed phase, and micro time scales of the interphase diffusional mass transfer
process. As a result of this, the general PBE has no well known analytical solution and therefore robust
numerical solution methods with low computational cost are highly admired.
In this work, the Sectional Quadrature Method of Moments (SQMOM) (Attarakih, M. M., Drumm, C.,
Bart, H.-J. (2009). Solution of the population balance equation using the Sectional Quadrature Method of
Moments (SQMOM). Chem. Eng. Sci. 64, 742-752) is extended to take into account the continuous flow
systems in spatial domain. In this regard, the SQMOM is extended to solve the spatially distributed
nonhomogeneous bivariate PBE to model the hydrodynamics and physical/reactive mass transfer
behavior of liquid-liquid extraction equipment. Based on the extended SQMOM, two different steady
state and dynamic simulation algorithms for hydrodynamics and mass transfer behavior of liquid-liquid
extraction equipment are developed and efficiently implemented. At the steady state modeling level, a
Spatially-Mixed SQMOM (SM-SQMOM) algorithm is developed and successfully implemented in a onedimensional
physical spatial domain. The integral spatial numerical flux is closed using the mean mass
droplet diameter based on the One Primary and One Secondary Particle Method (OPOSPM which is the
simplest case of the SQMOM). On the other hand the hydrodynamics integral source terms are closed
using the analytical Two-Equal Weight Quadrature (TEqWQ). To avoid the numerical solution of the
droplet rise velocity, an analytical solution based on the algebraic velocity model is derived for the
particular case of unit velocity exponent appearing in the droplet swarm model. In addition to this, the
source term due to mass transport is closed using OPOSPM. The resulting system of ordinary differential
equations with respect to space is solved using the MATLAB adaptive Runge–Kutta method (ODE45). At
the dynamic modeling level, the SQMOM is extended to a one-dimensional physical spatial domain and
resolved using the finite volume method. To close the mathematical model, the required quadrature nodes
and weights are calculated using the analytical solution based on the Two Unequal Weights Quadrature
(TUEWQ) formula. By applying the finite volume method to the spatial domain, a semi-discreet ordinary
differential equation system is obtained and solved. Both steady state and dynamic algorithms are
extensively validated at analytical, numerical, and experimental levels. At the numerical level, the
predictions of both algorithms are validated using the extended fixed pivot technique as implemented in
PPBLab software (Attarakih, M., Alzyod, S., Abu-Khader, M., Bart, H.-J. (2012). PPBLAB: A new
multivariate population balance environment for particulate system modeling and simulation. Procedia
Eng. 42, pp. 144-562). At the experimental validation level, the extended SQMOM is successfully used
to model the steady state hydrodynamics and physical and reactive mass transfer behavior of agitated
liquid-liquid extraction columns under different operating conditions. In this regard, both models are
found efficient and able to follow liquid extraction column behavior during column scale-up, where three
column diameters were investigated (DN32, DN80, and DN150). To shed more light on the local
interactions among the contacted phases, a reduced coupled PBE and CFD framework is used to model
the hydrodynamic behavior of pulsed sieve plate columns. In this regard, OPOSPM is utilized and
implemented in FLUENT 18.2 commercial software as a special case of the SQMOM. The dropletdroplet
interactions
(breakage
and
coalescence)
are
taken
into
account
using
OPOSPM,
while
the
required
information
about
the
velocity
field
and
energy
dissipation
is
calculated
by
the
CFD
model.
In
addition
to
this,
the proposed coupled OPOSPM-CFD framework is extended to include the mass transfer. The
proposed framework is numerically tested and the results are compared with the published experimental
data. The required breakage and coalescence parameters to perform the 2D-CFD simulation are estimated
using PPBLab software, where a 1D-CFD simulation using a multi-sectional gird is performed. A very
good agreement is obtained at the experimental and the numerical validation levels.

A prime motivation for using XML to directly represent pieces of information is the ability of supporting ad-hoc or 'schema-later' settings. In such scenarios, modeling data under loose data constraints is essential. Of course, the flexibility of XML comes at a price: the absence of a rigid, regular, and homogeneous structure makes many aspects of data management more challenging. Such malleable data formats can also lead to severe information quality problems, because the risk of storing inconsistent and incorrect data is greatly increased. A prominent example of such problems is the appearance of the so-called fuzzy duplicates, i.e., multiple and non-identical representations of a real-world entity. Similarity joins correlating XML document fragments that are similar can be used as core operators to support the identification of fuzzy duplicates. However, similarity assessment is especially difficult on XML datasets because structure, besides textual information, may exhibit variations in document fragments representing the same real-world entity. Moreover, similarity computation is substantially more expensive for tree-structured objects and, thus, is a serious performance concern. This thesis describes the design and implementation of an effective, flexible, and high-performance XML-based similarity join framework. As main contributions, we present novel structure-conscious similarity functions for XML trees - either considering XML structure in isolation or combined with textual information -, mechanisms to support the selection of relevant information from XML trees and organization of this information into a suitable format for similarity calculation, and efficient algorithms for large-scale identification of similar, set-represented objects. Finally, we validate the applicability of our techniques by integrating our framework into a native XML database management system; in this context we address several issues around the integration of similarity operations into traditional database architectures.

This thesis presents a novel, generic framework for information segmentation in document images.
A document image contains different types of information, for instance, text (machine printed/handwritten), graphics, signatures, and stamps.
It is necessary to segment information in documents so that to process such segmented information only when required in automatic document processing workflows.
The main contribution of this thesis is the conceptualization and implementation of an information segmentation framework that is based on part-based features.
The generic nature of the presented framework makes it applicable to a variety of documents (technical drawings, magazines, administrative, scientific, and academic documents) digitized using different methods (scanners, RGB cameras, and hyper-spectral imaging (HSI) devices).
A highlight of the presented framework is that it does not require large training sets, rather a few training samples (for instance, four pages) lead to high performance, i.e., better than previously existing methods.
In addition, the presented framework is simple and can be adapted quickly to new problem domains.
This thesis is divided into three major parts on the basis of document digitization method (scanned, hyper-spectral imaging, and camera captured) used.
In the area of scanned document images, three specific contributions have been realized.
The first of them is in the domain of signature segmentation in administrative documents.
In some workflows, it is very important to check the document authenticity before processing the actual content.
This can be done based on the available seal of authenticity, e.g., signatures.
However, signature verification systems expect pre-segmented signature image, while signatures are usually a part of document.
To use signature verification systems on document images, it is necessary to first segment signatures in documents.
This thesis shows that the presented framework can be used to segment signatures in administrative documents.
The system based on the presented framework is tested on a publicly available dataset where it outperforms the state-of-the-art methods and successfully segmented all signatures, while less than half of the found signatures are false positives.
This shows that it can be applied for practical use.
The second contribution in the area of scanned document images is segmentation of stamps in administrative documents.
A stamp also serves as a seal for documents authenticity.
However, the location of stamp on the document can be more arbitrary than a signature depending on the person sealing the document.
This thesis shows that a system based on our generic framework is able to extract stamps of any arbitrary shape and color.
The evaluation of the presented system on a publicly available dataset shows that it is also able to segment black stamps (that were not addressed in the past) with a recall and precision of 83% and 73%, respectively.
%Furthermore, to segment colored stamps, this thesis presents a novel feature set which is based on intensity gradient, is able to extract unseen, colored, arbitrary shaped, textual as well as graphical stamps, and outperforms the state-of-the-art methods.
The third contribution in the scanned document images is in the domain of information segmentation in technical drawings (architectural floorplans, maps, circuit diagrams, etc.) containing usually a large amount of graphics and comparatively less textual components. Further, as in technical drawings, text is overlapping with graphics.
Thus, automatic analysis of technical drawings uses text/graphics segmentation as a pre-processing step.
This thesis presents a method based on our generic information segmentation framework that is able to detect the text, which is touching graphical components in architectural floorplans and maps.
Evaluation of the method on a publicly available dataset of architectural floorplans shows that it is able to extract almost all touching text components with precision and recall of 71% and 95%, respectively.
This means that almost all of the touching text components are successfully extracted.
In the area of hyper-spectral document images, two contributions have been realized.
Unlike normal three channels RGB images, hyper-spectral images usually have multiple channels that range from ultraviolet to infrared regions including the visible region.
First, this thesis presents a novel automatic method for signature segmentation from hyper-spectral document images (240 spectral bands between 400 - 900 nm).
The presented method is based on a part-based key point detection technique, which does not use any structural information, but relies only on the spectral response of the document regardless of ink color and intensity.
The presented method is capable of segmenting (overlapping and non-overlapping) signatures from varying backgrounds like, printed text, tables, stamps, logos, etc.
Importantly, the presented method can extract signature pixels and not just the bounding boxes.
This is substantial when signatures are overlapping with text and/or other objects in image. Second, this thesis presents a new dataset comprising of 300 documents scanned using a high-resolution hyper-spectral scanner. Evaluation of the presented signature segmentation method on this hyper-spectral dataset shows that it is able to extract signature pixels with the precision and recall of 100% and 79%, respectively.
Further contributions have been made in the area of camera captured document images. A major problem in the development of Optical Character Recognition (OCR) systems for camera captured document images is the lack of labeled camera captured document images datasets. In the first place, this thesis presents a novel, generic, method for automatic ground truth generation/labeling of document images. The presented method builds large-scale (i.e., millions of images) datasets of labeled camera captured / scanned documents without any human intervention. The method is generic and can be used for automatic ground truth generation of (scanned and/or camera captured) documents in any language, e.g., English, Russian, Arabic, Urdu. The evaluation of the presented method, on two different datasets in English and Russian, shows that 99.98% of the images are correctly labeled in every case.
Another important contribution in the area of camera captured document images is the compilation of a large dataset comprising 1 million word images (10 million character images), captured in a real camera-based acquisition environment, along with the word and character level ground truth. The dataset can be used for training as well as testing of character recognition systems for camera-captured documents. Various benchmark tests are performed to analyze the behavior of different open source OCR systems on camera captured document images. Evaluation results show that the existing OCRs, which already get very high accuracies on scanned documents, fail on camera captured document images.
Using the presented camera-captured dataset, a novel character recognition system is developed which is based on a variant of recurrent neural networks, i.e., Long Short Term Memory (LSTM) that outperforms all of the existing OCR engines on camera captured document images with an accuracy of more than 95%.
Finally, this thesis provides details on various tasks that have been performed in the area closely related to information segmentation. This includes automatic analysis and sketch based retrieval of architectural floor plan images, a novel scheme for online signature verification, and a part-based approach for signature verification. With these contributions, it has been shown that part-based methods can be successfully applied to document image analysis.

For many years real-time task models have focused the timing constraints on execution windows defined by earliest start times and deadlines for feasibility.
However, the utility of some application may vary among scenarios which yield correct behavior, and maximizing this utility improves the resource utilization.
For example, target sensitive applications have a target point where execution results in maximized utility, and an execution window for feasibility.
Execution around this point and within the execution window is allowed, albeit at lower utility.
The intensity of the utility decay accounts for the importance of the application.
Examples of such applications include multimedia and control; multimedia application are very popular nowadays and control applications are present in every automated system.
In this thesis, we present a novel real-time task model which provides for easy abstractions to express the timing constraints of target sensitive RT applications: the gravitational task model.
This model uses a simple gravity pendulum (or bob pendulum) system as a visualization model for trade-offs among target sensitive RT applications.
We consider jobs as objects in a pendulum system, and the target points as the central point.
Then, the equilibrium state of the physical problem is equivalent to the best compromise among jobs with conflicting targets.
Analogies with well-known systems are helpful to fill in the gap between application requirements and theoretical abstractions used in task models.
For instance, the so-called nature algorithms use key elements of physical processes to form the basis of an optimization algorithm.
Examples include the knapsack problem, traveling salesman problem, ant colony optimization, and simulated annealing.
We also present a few scheduling algorithms designed for the gravitational task model which fulfill the requirements for on-line adaptivity.
The scheduling of target sensitive RT applications must account for timing constraints, and the trade-off among tasks with conflicting targets.
Our proposed scheduling algorithms use the equilibrium state concept to order the execution sequence of jobs, and compute the deviation of jobs from their target points for increased system utility.
The execution sequence of jobs in the schedule has a significant impact on the equilibrium of jobs, and dominates the complexity of the problem --- the optimum solution is NP-hard.
We show the efficacy of our approach through simulations results and 3 target sensitive RT applications enhanced with the gravitational task model.

Numerical Godeaux surfaces are minimal surfaces of general type with the smallest possible numerical invariants. It is known that the torsion group of a numerical Godeaux surface is cyclic of order \(m\leq 5\). A full classification has been given for the cases \(m=3,4,5\) by the work of Reid and Miyaoka. In each case, the corresponding moduli space is 8-dimensional and irreducible.
There exist explicit examples of numerical Godeaux surfaces for the orders \(m=1,2\), but a complete classification for these surfaces is still missing.
In this thesis we present a construction method for numerical Godeaux surfaces which is based on homological algebra and computer algebra and which arises from an experimental approach by Schreyer. The main idea is to consider the canonical ring \(R(X)\) of a numerical Godeaux surface \(X\) as a module over some graded polynomial ring \(S\). The ring \(S\) is chosen so that \(R(X)\) is finitely generated as an \(S\)-module and a Gorenstein \(S\)-algebra of codimension 3. We prove that the canonical ring of any numerical Godeaux surface, considered as an \(S\)-module, admits a minimal free resolution whose middle map is alternating. Moreover, we show that a partial converse of this statement is true under some additional conditions.
Afterwards we use these results to construct (canonical rings of) numerical Godeaux surfaces. Hereby, we restrict our study to surfaces whose bicanonical system has no fixed component but 4 distinct base points, in the following referred to as marked numerical Godeaux surfaces.
The particular interest of this thesis lies on marked numerical Godeaux surfaces whose torsion group is trivial. For these surfaces we study the fibration of genus 4 over \(\mathbb{P}^1\) induced by the bicanonical system. Catanese and Pignatelli showed that the general fibre is non-hyperelliptic and that the number \(\tilde{h}\) of hyperelliptic fibres is bounded by 3. The two explicit constructions of numerical Godeaux surfaces with a trivial torsion group due to Barlow and Craighero-Gattazzo, respectively, satisfy \(\tilde{h} = 2\).
With the method from this thesis, we construct an 8-dimensional family of numerical Godeaux surfaces with a trivial torsion group and whose general element satisfy \(\tilde{h}=0\).
Furthermore, we establish a criterion for the existence of hyperelliptic fibres in terms of a minimal free resolution of \(R(X)\). Using this criterion, we verify experimentally the
existence of a numerical Godeaux surface with \(\tilde{h}=1\).

Embedded systems have become ubiquitous in everyday life, and especially in the automotive industry. New applications challenge their design by introducing a new class of problems that are based on a detailed analysis of the environmental situation. Situation analysis systems rely on models and algorithms of the domain of computational geometry. The basic model is usually an Euclidean plane, which contains polygons to represent the objects of the environment. Usual implementations of computational geometry algorithms cannot be directly used for safety-critical systems. First, a strict analysis of their correctness is indispensable and second, nonfunctional requirements with respect to the limited resources must be considered. This thesis proposes a layered approach to a polygon-processing system. On top of rational numbers, a geometry kernel is formalised at first. Subsequently, geometric primitives form a second layer of abstraction that is used for plane sweep and polygon algorithms. These layers do not only divide the whole system into manageable parts but make it possible to model problems and reason about them at the appropriate level of abstraction. This structure is used for the verification as well as the implementation of the developed polygon-processing library.

In the filling process of a car tank, the formation of foam plays an unwanted role, as it may prevent the tank from being completely filled or at least delay the filling. Therefore it is of interest to optimize the geometry of the tank using numerical simulation in such a way that the influence of the foam is minimized. In this dissertation, we analyze the behaviour of the foam mathematically on the mezoscopic scale, that is for single lamellae. The most important goals are on the one hand to gain a deeper understanding of the interaction of the relevant physical effects, on the other hand to obtain a model for the simulation of the decay of a lamella which can be integrated in a global foam model. In the first part of this work, we give a short introduction into the physical properties of foam and find that the Marangoni effect is the main cause for its stability. We then develop a mathematical model for the simulation of the dynamical behaviour of a lamella based on an asymptotic analysis using the special geometry of the lamella. The result is a system of nonlinear partial differential equations (PDE) of third order in two spatial and one time dimension. In the second part, we analyze this system mathematically and prove an existence and uniqueness result for a simplified case. For some special parameter domains the system can be further simplified, and in some cases explicit solutions can be derived. In the last part of the dissertation, we solve the system using a finite element approach and discuss the results in detail.

The detection and characterisation of undesired lead structures on shaft surfaces is a concern in production and quality control of rotary shaft lip-type sealing systems. The potential lead structures are generally divided into macro and micro lead based on their characteristics and formation. Macro lead measurement methods exist and are widely applied. This work describes a method to characterise micro lead on ground shaft surfaces. Micro lead is known as the deviation of main orientation of the ground micro texture from circumferential direction. Assessing the orientation of microscopic structures with arc minute accuracy with regard to circumferential direction requires exact knowledge of both the shaft’s orientation and the direction of surface texture. The shaft’s circumferential direction is found by calibration. Measuring systems and calibration procedures capable of calibrating shaft axis orientation with high accuracy and low uncertainty are described. The measuring systems employ areal-topographic measuring instruments suited for evaluating texture orientation. A dedicated evaluation scheme for texture orientation is based on the Radon transform of these topographies and parametrised for the application. Combining the calibration of circumferential direction with the evaluation of texture orientation the method enables the measurement of micro lead on ground shaft surfaces.

1,3-Diynes are frequently found as an important structural motif in natural products, pharmaceuticals and bioactive compounds, electronic and optical materials and supramolecular molecules. Copper and palladium complexes are widely used to prepare 1,3-diynes by homocoupling of terminal alkynes; albeit the potential of nickel complexes towards the same is essentially unexplored. Although a detailed study on the reported nickel-acetylene chemistry has not been carried out, a generalized mechanism featuring a nickel(II)/nickel(0) catalytic cycle has been proposed. In the present work, a detailed mechanistic aspect of the nickel-mediated homocoupling reaction of terminal alkynes is investigated through the isolation and/or characterization of key intermediates from both the stoichiometric and the catalytic reactions. A nickel(II) complex [Ni(L-N4Me2)(MeCN)2](ClO4)2 (1) containing a tetradentate N,N′-dimethyl-2,11-diaza[3.3](2,6)pyridinophane (L-N4Me2) as ligand was used as catalyst for homocoupling of terminal alkynes by employing oxygen as oxidant at room temperature. A series of dinuclear nickel(I) complexes bridged by a 1,3-diyne ligand have been isolated from stoichiometric reaction between [Ni(L-N4Me2)(MeCN)2](ClO4)2 (1) and lithium acetylides. The dinuclear nickel(I)-diyne complexes [{Ni(L-N4Me2)}2(RC4R)](ClO4)2 (2) were well characterized by X-ray crystal structures, various spectroscopic methods, SQUID and DFT calculation. The complexes not only represent as a key intermediate in aforesaid catalytic reaction, but also describe the first structurally characterized dinuclear nickel(I)-diyne complexes. In addition, radical trapping and low temperature UV-Vis-NIR experiments in the formation of the dinuclear nickel(I)-diyne confirm that the reactions occurring during the reduction of nickel(II) to nickel(I) and C-C bond formation of 1,3-diyne follow non-radical concerted mechanism. Furthermore, spectroscopic investigation on the reactivity of the dinuclear nickel(I)-diyne complex towards molecular oxygen confirmed the formation of a mononuclear nickel(I)-diyne species [Ni(L-N4Me2)(RC4R)]+ (4) and a mononuclear nickel(III)-peroxo species [Ni(L-N4Me2)(O2)]+ (5) which were converted to free 1,3-diyne and an unstable dinuclear nickel(II) species [{Ni(L-N4Me2)}2(O2)]2+ (6). A mononuclear nickel(I)-alkyne complex [Ni(L-N4Me2)(PhC2Ph)](ClO4).MeOH (3) and the mononuclear nickel(III)-peroxo species [Ni(L-N4Me2)(O2)]+ (5) were isolated/generated and characterized to confirm the formulation of aforementioned mononuclear nickel(I)-diyne and mononuclear nickel(III)-peroxo species. Spectroscopic experiments on the catalytic reaction mixture also confirm the presence of aforesaid intermediates. Results of both stoichiometric and catalytic reactions suggested an intriguing mechanism involving nickel(II)/nickel(I)/nickel(III) oxidation states in contrast to the reported nickel(II)/nickel(0) catalytic cycle. These findings are expected to open a new paradigm towards nickel-catalyzed organic transformations.

Nowadays, accounting, charging and billing users' network resource consumption are commonly used for the purpose of facilitating reasonable network usage, controlling congestion, allocating cost, gaining revenue, etc. In traditional IP traffic accounting systems, IP addresses are used to identify the corresponding consumers of the network resources. However, there are some situations in which IP addresses cannot be used to identify users uniquely, for example, in multi-user systems. In these cases, network resource consumption can only be ascribed to the owners of these hosts instead of corresponding real users who have consumed the network resources. Therefore, accurate accountability in these systems is practically impossible. This is a flaw of the traditional IP address based IP traffic accounting technique. This dissertation proposes a user based IP traffic accounting model which can facilitate collecting network resource usage information on the basis of users. With user based IP traffic accounting, IP traffic can be distinguished not only by IP addresses but also by users. In this dissertation, three different schemes, which can achieve the user based IP traffic accounting mechanism, are discussed in detail. The inband scheme utilizes the IP header to convey the user information of the corresponding IP packet. The Accounting Agent residing in the measured host intercepts IP packets passing through it. Then it identifies the users of these IP packets and inserts user information into the IP packets. With this mechanism, a meter located in a key position of the network can intercept the IP packets tagged with user information, extract not only statistic information, but also IP addresses and user information from the IP packets to generate accounting records with user information. The out-of-band scheme is a contrast scheme to the in-band scheme. It also uses an Accounting Agent to intercept IP packets and identify the users of IP traffic. However, the user information is transferred through a separated channel, which is different from the corresponding IP packets' transmission. The Multi-IP scheme provides a different solution for identifying users of IP traffic. It assigns each user in a measured host a unique IP address. Through that, an IP address can be used to identify a user uniquely without ambiguity. This way, traditional IP address based accounting techniques can be applied to achieve the goal of user based IP traffic accounting. In this dissertation, a user based IP traffic accounting prototype system developed according to the out-of-band scheme is also introduced. The application of user based IP traffic accounting model in the distributed computing environment is also discussed.

The present situation of control engineering in the context of automated production can be described as a tension field between its desired outcome and its actual consideration. On the one hand, the share of control engineering compared to the other engineering domains has significantly increased within the last decades due to rising automation degrees of production processes and equipment. On the other hand, the control engineering domain is still underrepresented within the production engineering process. Another limiting factor constitutes a lack of methods and tools to decrease the amount of software engineering efforts and to permit the development of innovative automation applications that ideally support the business requirements.
This thesis addresses this challenging situation by means of the development of a new control engineering methodology. The foundation is built by concepts from computer science to promote structuring and abstraction mechanisms for the software development. In this context, the key sources for this thesis are the paradigm of Service-oriented Architecture and concepts from Model-driven Engineering. To mold these concepts into an integrated engineering procedure, ideas from Systems Engineering are applied. The overall objective is to develop an engineering methodology to improve the efficiency of control engineering by a higher adaptability of control software and decreased programming efforts by reuse.

A Multi-Phase Flow Model Incorporated with Population Balance Equation in a Meshfree Framework
(2011)

This study deals with the numerical solution of a meshfree coupled model of Computational Fluid Dynamics (CFD) and Population Balance Equation (PBE) for liquid-liquid extraction columns. In modeling the coupled hydrodynamics and mass transfer in liquid extraction columns one encounters multidimensional population balance equation that could not be fully resolved numerically within a reasonable time necessary for steady state or dynamic simulations. For this reason, there is an obvious need for a new liquid extraction model that captures all the essential physical phenomena and still tractable from computational point of view. This thesis discusses a new model which focuses on discretization of the external (spatial) and internal coordinates such that the computational time is drastically reduced. For the internal coordinates, the concept of the multi-primary particle method; as a special case of the Sectional Quadrature Method of Moments (SQMOM) is used to represent the droplet internal properties. This model is capable of conserving the most important integral properties of the distribution; namely: the total number, solute and volume concentrations and reduces the computational time when compared to the classical finite difference methods, which require many grid points to conserve the desired physical quantities. On the other hand, due to the discrete nature of the dispersed phase, a meshfree Lagrangian particle method is used to discretize the spatial domain (extraction column height) using the Finite Pointset Method (FPM). This method avoids the extremely difficult convective term discretization using the classical finite volume methods, which require a lot of grid points to capture the moving fronts propagating along column height.

A Multi-Sensor Intelligent Assistance System for Driver Status Monitoring and Intention Prediction
(2017)

Advanced sensing systems, sophisticated algorithms, and increasing computational resources continuously enhance the advanced driver assistance systems (ADAS). To date, despite that some vehicle based approaches to driver fatigue/drowsiness detection have been realized and deployed, objectively and reliably detecting the fatigue/drowsiness state of driver without compromising driving experience still remains challenging. In general, the choice of input sensorial information is limited in the state-of-the-art work. On the other hand, smart and safe driving, as representative future trends in the automotive industry worldwide, increasingly demands the new dimensional human-vehicle interactions, as well as the associated behavioral and bioinformatical data perception of driver. Thus, the goal of this research work is to investigate the employment of general and custom 3D-CMOS sensing concepts for the driver status monitoring, and to explore the improvement by merging/fusing this information with other salient customized information sources for gaining robustness/reliability. This thesis presents an effective multi-sensor approach with novel features to driver status monitoring and intention prediction aimed at drowsiness detection based on a multi-sensor intelligent assistance system -- DeCaDrive, which is implemented on an integrated soft-computing system with multi-sensing interfaces in a simulated driving environment. Utilizing active illumination, the IR depth camera of the realized system can provide rich facial and body features in 3D in a non-intrusive manner. In addition, steering angle sensor, pulse rate sensor, and embedded impedance spectroscopy sensor are incorporated to aid in the detection/prediction of driver's state and intention. A holistic design methodology for ADAS encompassing both driver- and vehicle-based approaches to driver assistance is discussed in the thesis as well. Multi-sensor data fusion and hierarchical SVM techniques are used in DeCaDrive to facilitate the classification of driver drowsiness levels based on which a warning can be issued in order to prevent possible traffic accidents. The realized DeCaDrive system achieves up to 99.66% classification accuracy on the defined drowsiness levels, and exhibits promising features such as head/eye tracking, blink detection, gaze estimation that can be utilized in human-vehicle interactions. However, the driver's state of "microsleep" can hardly be reflected in the sensor features of the implemented system. General improvements on the sensitivity of sensory components and on the system computation power are required to address this issue. Possible new features and development considerations for DeCaDrive are discussed as well in the thesis aiming to gain market acceptance in the future.

The simulation of cutting process challenges established methods due to large deformations and topological changes. In this work a particle finite element method (PFEM) is presented, which combines the benefits of discrete modeling techniques and methods based on continuum mechanics. A crucial part of the PFEM is the detection of the boundary of a set of particles. The impact of this boundary detection method on the structural integrity is examined and a relation of the key parameter of the method to the eigenvalues of strain tensors is elaborated. The influence of important process parameters on the cutting force is studied and a comparison to an empirical relation is presented.

The dissertation is concerned with the numerical solution of Fokker-Planck equations in high dimensions arising in the study of dynamics of polymeric liquids. Traditional methods based on tensor product structure are not applicable in high dimensions for the number of nodes required to yield a fixed accuracy increases exponentially with the dimension; a phenomenon often referred to as the curse of dimension. Particle methods or finite point set methods are known to break the curse of dimension. The Monte Carlo method (MCM) applied to such problems are 1/sqrt(N) accurate, where N is the cardinality of the point set considered, independent of the dimension. Deterministic version of the Monte Carlo method called the quasi Monte Carlo method (QMC) are quite effective in integration problems and accuracy of the order of 1/N can be achieved, up to a logarithmic factor. However, such a replacement cannot be carried over to particle simulations due to the correlation among the quasi-random points. The method proposed by Lecot (C.Lecot and F.E.Khettabi, Quasi-Monte Carlo simulation of diffusion, Journal of Complexity, 15 (1999), pp.342-359) is the only known QMC approach, but it not only leads to large particle numbers but also the proven order of convergence is 1/N^(2s) in dimension s. We modify the method presented there, in such a way that the new method works with reasonable particle numbers even in high dimensions and has better order of convergence. Though the provable order of convergence is 1/sqrt(N), the results show less variance and thus the proposed method still slightly outperforms standard MCM.

This thesis is concerned with a phase field model for martensitic transformations in metastable austenitic steels. Within the phase field approach an order parameter is introduced to indicate whether the present phase is austenite or martensite. The evolving microstructure is described by the evolution of the order parameter, which is assumed to follow the time-dependent Ginzburg-Landau equation. The elastic phase field model is enhanced in two different ways to take further phenomena into account. First, dislocation movement is considered by a crystal plasticity setting. Second, the elastic model for martensitic transformations is combined with a phase field model for fracture. Finite element simulations are used to study the single effects separately which contribute to the microstructure formation.

In this thesis, we investigate a statistical model for precipitation time series recorded at a single site. The sequence of observations consists of rainfall amounts aggregated over time periods of fixed duration. As the properties of this sequence depend strongly on the length of the observation intervals, we follow the approach of Rodriguez-Iturbe et. al. [1] and use an underlying model for rainfall intensity in continuous time. In this idealized representation, rainfall occurs in clusters of rectangular cells, and each observations is treated as the sum of cell contributions during a given time period. Unlike the previous work, we use a multivariate lognormal distribution for the temporal structure of the cells and clusters. After formulating the model, we develop a Markov-Chain Monte-Carlo algorithm for fitting it to a given data set. A particular problem we have to deal with is the need to estimate the unobserved intensity process alongside the parameter of interest. The performance of the algorithm is tested on artificial data sets generated from the model. [1] I. Rodriguez-Iturbe, D. R. Cox, and Valerie Isham. Some models for rainfall based on stochastic point processes. Proc. R. Soc. Lond. A, 410:269-288, 1987.

The main goal of this work is to model size effects, as they occur in materials with an intrinsic microstructure at the consideration of specimens that are not by orders larger than this microstructure. The micromorphic continuum theory as a generalized continuum theory is well suited to account for the occuring size effects. Thereby additional degrees of freedoms capture the independent deformations of these microstructures, while they provide additional balance equation. In this thesis, the deformational and configurational mechanics of the micromorphic continuum is exploited in a finite-deformation setting. A constitutive and numerical framework is developed, in which also the material-force method is advanced. Furthermore the multiscale modelling of thin material layers with a heterogeneous substructure is of interest. To this end, a computational homogenization framework is developed, which allows to obtain the constitutive relation between traction and separation based on the properties of the underlying micromorphic mesostructure numerically in a nested solution scheme. Within the context of micromorphic continuum mechanics, concepts of both gradient and micromorphic plasticity are developed by systematically varying key ingredients of the respective formulations.

The interest of the exploration of new hydrocarbon fields as well as deep geothermal reservoirs is permanently growing. The analysis of seismic data specific for such exploration projects is very complex and requires the deep knowledge in geology, geophysics, petrology, etc from interpreters, as well as the ability of advanced tools that are able to recover some particular properties. There again the existing wavelet techniques have a huge success in signal processing, data compression, noise reduction, etc. They enable to break complicate functions into many simple pieces at different scales and positions that makes detection and interpretation of local events significantly easier.
In this thesis mathematical methods and tools are presented which are applicable to the seismic data postprocessing in regions with non-smooth boundaries. We provide wavelet techniques that relate to the solutions of the Helmholtz equation. As application we are interested in seismic data analysis. A similar idea to construct wavelet functions from the limit and jump relations of the layer potentials was first suggested by Freeden and his Geomathematics Group.
The particular difficulty in such approaches is the formulation of limit and
jump relations for surfaces used in seismic data processing, i.e., non-smooth
surfaces in various topologies (for example, uniform and
quadratic). The essential idea is to replace the concept of parallel surfaces known for a smooth regular surface by certain appropriate substitutes for non-smooth surfaces.
By using the jump and limit relations formulated for regular surfaces, Helmholtz wavelets can be introduced that recursively approximate functions on surfaces with edges and corners. The exceptional point is that the construction of wavelets allows the efficient implementation in form of
a tree algorithm for the fast numerical computation of functions on the boundary.
In order to demonstrate the
applicability of the Helmholtz FWT, we study a seismic image obtained by the reverse time migration which is based on a finite-difference implementation. In fact, regarding the requirements of such migration algorithms in filtering and denoising the wavelet decomposition is successfully applied to this image for the attenuation of low-frequency
artifacts and noise. Essential feature is the space localization property of
Helmholtz wavelets which numerically enables to discuss the velocity field in
pointwise dependence. Moreover, the multiscale analysis leads us to reveal additional geological information from optical features.

The present thesis describes the development and validation of a viscosity adaption method for the numerical simulation of non-Newtonian fluids on the basis of the Lattice Boltzmann Method (LBM), as well as the development and verification of the related software bundle SAM-Lattice.
By now, Lattice Boltzmann Methods are established as an alternative approach to classical computational fluid dynamics
methods. The LBM has been shown to be an accurate and efficient tool for the numerical simulation of weakly compressible or incompressible fluids. Fields of application reach from turbulent simulations through thermal problems to acoustic calculations among others. The transient nature of the method and the need for a regular grid based, non body conformal discretization makes the LBM ideally suitable for simulations involving complex solids. Such geometries are common, for instance, in the food processing industry, where fluids are mixed by static mixers or agitators. Those fluid flows are often laminar and non-Newtonian.
This work is motivated by the immense practical use of the Lattice Boltzmann Method, which is limited due to stability issues. The stability of the method is mainly influenced by the discretization and the viscosity of the fluid. Thus, simulations of non-Newtonian fluids, whose kinematic viscosity depend on the shear rate, are problematic. Several authors have shown that the LBM is capable of simulating those fluids. However, the vast majority of the simulations in the literature are carried out for simple geometries and/or moderate shear rates, where the LBM is still stable. Special care has to be taken for practical non-Newtonian Lattice Boltzmann simulations in order to keep them stable. A straightforward way is to truncate the modeled viscosity range by numerical stability criteria. This is an effective approach, but from the physical point of view the viscosity bounds are chosen arbitrarily. Moreover, these bounds depend on and vary with the grid and time step size and, therefore, with the simulation Mach number, which is freely chosen at the start of the simulation. Consequently, the modeled viscosity range may not fit to the actual range of the physical problem, because the correct simulation Mach number is unknown a priori. A way around is, to perform precursor simulations on a fixed grid to determine a possible time step size and simulation Mach number, respectively. These precursor simulations can be time consuming and expensive, especially for complex cases and a number of operating points. This makes the LBM unattractive for use in practical simulations of non-Newtonian fluids.
The essential novelty of the method, developed in the course of this thesis, is that the numerically modeled viscosity range is consistently adapted to the actual physically exhibited viscosity range through change of the simulation time step and the simulation Mach number, respectively, while the simulation is running. The algorithm is robust, independent of the Mach number the simulation was started with, and applicable for stationary flows as well as transient flows. The method for the viscosity adaption will be referred to as the "viscosity adaption method (VAM)" and the combination with LBM leads to the "viscosity adaptive LBM (VALBM)".
Besides the introduction of the VALBM, a goal of this thesis is to offer assistance in the spirit of a theory guide to students and assistant researchers concerning the theory of the Lattice Boltzmann Method and its implementation in SAM-Lattice. In Chapter 2, the mathematical foundation of the LBM is given and the route from the BGK approximation of the Boltzmann equation to the Lattice Boltzmann (BGK) equation is delineated in detail.
The derivation is restricted to isothermal flows only. Restrictions of the method, such as low Mach number flows are highlighted and the accuracy of the method is discussed.
SAM-Lattice is a C++ software bundle developed by the author and his colleague Dipl.-Ing. Andreas Schneider. It is a highly automated package for the simulation of isothermal flows of incompressible or weakly compressible fluids in 3D on the basis of the Lattice Boltzmann Method. By the time of writing of this thesis, SAM-Lattice comprises 5 components. The main components are the highly automated lattice generator SamGenerator and the Lattice Boltzmann solver SamSolver. Postprocessing is done with ParaSam, which is our extension of the
open source visualization software ParaView. Additionally, domain decomposition for MPI
parallelism is done by SamDecomposer, which makes use of the graph partitioning library MeTiS. Finally, all mentioned components can be controlled through a user friendly GUI (SamLattice) implemented by the author using QT, including features to visually track output data.
In Chapter 3, some fundamental aspects on the implementation of the main components, including the corresponding flow charts will be discussed. Actual details on the implementation are given in the comprehensive programmers guides to SamGenerator and SamSolver.
In order to ensure the functionality of the implementation of SamSolver, the solver is verified in Chapter 4 for Stokes's First Problem, the suddenly accelerated plate, and for Stokes's Second Problem, the oscillating plate, both for Newtonian fluids. Non-Newtonian fluids are modeled in SamSolver with the power-law model according to Ostwald de Waele. The implementation for non-Newtonian fluids is verified for the Hagen-Poiseuille channel flow in conjunction with a convergence analysis of the method. At the same time, the local grid refinement as it is implemented in SamSolver, is verified. Finally, the verification of higher order boundary conditions is done for the 3D Hagen-Poiseuille pipe flow for both Newtonian and non-Newtonian fluids.
In Chapter 5, the theory of the viscosity adaption method is introduced. For the adaption process, a target collision frequency or target simulation Mach number must be chosen and the distributions must be rescaled according to the modified time step size. A convenient choice is one of the stability bounds. The time step size for the adaption step is deduced from the target collision frequency \(\Omega_t\) and the currently minimal or maximal shear rate in the system, while obeying auxiliary conditions for the simulation Mach number. The adaption is done in the collision step of the Lattice Boltzmann algorithm. We use the transformation matrices of the MRT model to map from distribution space to moment space and vice versa. The actual scaling of the distributions is conducted on the back mapping, because we use the transformation matrix on the basis of the new adaption time step size. It follows an additional rescaling of the non-equilibrium part of the distributions, because of the form of the definition for the discrete stress tensor in the LBM context. For that reason it is clear, that the VAM is applicable for the SRT model as well as the MRT model, where there is virtually no extra cost in the latter case. Also, in Chapter 5, the multi level treatment will be discussed.
Depending on the target collision frequency and the target Mach number, the VAM can be used to optimally use the viscosity range that can be modeled within the stability bounds or it can be used to drastically accelerate the simulation. This is shown in Chapter 6. The viscosity adaptive LBM is verified in the stationary case for the Hagen-Poiseuille channel flow and in the transient case for the Wormersley flow, i.e., the pulsatile 3D Hagen-Poiseuille pipe flow. Although, the VAM is used here for fluids that can be modeled with the power-law approach, the implementation of the VALBM is straightforward for other non-Newtonian models, e.g., the Carreau-Yasuda or Cross model. In the same chapter, the VALBM is validated for the case of a propeller viscosimeter developed at the chair SAM. To this end, the experimental data of the torque on the impeller of three shear thinning non-Newtonian liquids serve for the validation. The VALBM shows excellent agreement with experimental data for all of the investigated fluids and in every operating point. For reasons of comparison, a series of standard LBM simulations is carried out with different simulation Mach numbers, which partly show errors of several hundred percent. Moreover, in Chapter 7, a sensitivity analysis on the parameters used within the VAM is conducted for the simulation of the propeller viscosimeter.
Finally, the accuracy of non-Newtonian Lattice Boltzmann simulations with the SRT and the MRT model is analyzed in detail. Previous work for Newtonian fluids indicate that depending on the numerical value of the collision frequency \(\Omega\), additional artificial viscosity is introduced due to the finite difference scheme, which negatively influences the accuracy. For the non-Newtonian case, an error estimate in the form of a functional is derived on the basis of a series expansion of the Lattice Boltzmann equation. This functional can be solved analytically for the case of the Hagen-Poiseuille channel flow of non-Newtonian fluids. The estimation of the error minimum is excellent in regions where the \(\Omega\) error is the dominant source of error as opposed to the compressibility error.
Result of this dissertation is a verified and validated software bundle on the basis of the viscosity adaptive Lattice Boltzmann Method. The work restricts itself on the simulation of isothermal, laminar flows with small Mach numbers. As further research goals, the testing of the VALBM with minimal error estimate and the investigation of the VALBM in the case of turbulent flows is suggested.

This dissertation is intended to transport the theory of Serre functors into the context of A-infinity-categories. We begin with an introduction to multicategories and closed multicategories, which form a framework in which the theory of A-infinity-categories is developed. We prove that (unital) A-infinity-categories constitute a closed symmetric multicategory. We define the notion of A-infinity-bimodule similarly to Tradler and show that it is equivalent to an A-infinity-functor of two arguments which takes values in the differential graded category of complexes of k-modules, where k is a commutative ground ring. Serre A-infinity-functors are defined via A-infinity-bimodules following ideas of Kontsevich and Soibelman. We prove that a unital closed under shifts A-infinity-category over a field admits a Serre A-infinity-functor if and only if its homotopy category admits an ordinary Serre functor. The proof uses categories and Serre functors enriched in the homotopy category of complexes of k-modules. Another important ingredient is an A-infinity-version of the Yoneda Lemma.

Computer-based simulation and visualization of acoustics of a virtual scene can aid during the design process of concert halls, lecture rooms, theaters, or living rooms. Because, not only the visual aspect of the room is important, but also its acoustics. In factory floors noise reduction is important since noise is hazardous to health. Despite the obvious dissimilarity between our aural and visual senses, many techniques required for the visualization of photo-realistic images and for the auralization of acoustic environments are quite similar. Both applications can be served by geometric methods such as particle- and ray tracing if we neglect a number of less important effects. By means of the simulation of room acoustics we want to predict the acoustic properties of a virtual model. For auralization, a pulse response filter needs to be assembled for each pair of source and listener positions. The convolution of this filter with an anechoic source signal provides the signal received at the listener position. Hence, the pulse response filter must contain all reverberations (echos) of a unit pulse, including their frequency decompositions due to absorption at different surface materials. For the room acoustic simulation a method named phonon tracing, since it is based on particles, is developed. The approach computes the energy or pressure decomposition for each particle (phonon) sent out from a sound source and uses this in a second pass (phonon collection) to construct the response filters for different listeners. This step can be performed in different precision levels. During the tracing step particle paths and additional information are stored in a so called phonon map. Using this map several sound visualization approaches were developed. From the visualization, the effect of different materials on the spectral energy / pressure distribution can be observed. The first few reflections already show whether certain frequency bands are rapidly absorbed. The absorbing materials can be identified and replaced in the virtual model, improving the overall acoustic quality of the simulated room. Furthermore an insight into the pressure / energy received at the listener position is possible. The phonon tracing algorithm as well as several sound visualization approaches are integrated into a common system utilizing Virtual Reality technologies in order to facilitate the immersion into the virtual scene. The system is a prototype developed within a project at the University of Kaiserslautern and is still a subject of further improvements. It consists of a stereoscopic back-projection system for visual rendering as well as professional audio equipment for auralization purposes.

Three dimensional (3d) point data is used in industry for measurement and reverse engineering. Precise point data is usually acquired with triangulating laser scanners or high precision structured light scanners. Lower precision point data is acquired by real-time structured light devices or by stereo matching with multiple cameras. The basic principle of all these methods is the so-called triangulation of 3d coordinates from two dimensional (2d) camera images.
This dissertation contributes a method for multi-camera stereo matching that uses a system of four synchronized cameras. A GPU based stereo matching method is presented to achieve a high quality reconstruction at interactive frame rates. Good depth resolution is achieved by allowing large disparities between the images. A multi level approach on the GPU allows a fast processing of these large disparities. In reverse engineering, hand-held laser scanners are used for the scanning of complex shaped objects. The operator of the scanner can scan complex regions slower, multiple times, or from multiple angles to achieve a higher point density. Traditionally, computer aided design (CAD) geometry is reconstructed in a separate step after the scanning. Errors or missing parts in the scan prevent a successful reconstruction. The contribution of this dissertation is an on-line algorithm that allows the reconstruction during the scanning of an object. Scanned points are added to the reconstruction and improve it on-line. The operator can detect the areas in the scan where the reconstruction needs additional data.
First, the point data is thinned out using an octree based data structure. Local normals and principal curvatures are estimated for the reduced set of points. These local geometric values are used for segmentation using a region growing approach. Implicit quadrics are fitted to these segments. The canonical form of the quadrics provides the parameters of basic geometric primitives.
An improved approach uses so called accumulated means of local geometric properties to perform segmentation and primitive reconstruction in a single step. Local geometric values can be added and removed on-line to these means to get a stable estimate over a complete segment. By estimating the shape of the segment it is decided which local areas are added to a segment. An accumulated score estimates the probability for a segment to belong to a certain type of geometric primitive. A boundary around the segment is reconstructed using a growing algorithm that ensures that the boundary is closed and avoids self intersections.

At present the standardization of third generation (3G) mobile radio systems is the subject of worldwide research activities. These systems will cope with the market demand for high data rate services and the system requirement for exibility concerning the offered services and the transmission qualities. However, there will be de ciencies with respect to high capacity, if 3G mobile radio systems exclusively use single antennas. Very promising technique developed for increasing the capacity of 3G mobile radio systems the application is adaptive antennas. In this thesis, the benefits of using adaptive antennas are investigated for 3G mobile radio systems based on Time Division CDMA (TD-CDMA), which forms part of the European 3G mobile radio air interface standard adopted by the ETSI, and is intensively studied within the standardization activities towards a worldwide 3G air interface standard directed by the 3GPP (3rd Generation Partnership Project). One of the most important issues related to adaptive antennas is the analysis of the benefits of using adaptive antennas compared to single antennas. In this thesis, these bene ts are explained theoretically and illustrated by computer simulation results for both data detection, which is performed according to the joint detection principle, and channel estimation, which is applied according to the Steiner estimator, in the TD-CDMA uplink. The theoretical explanations are based on well-known solved mathematical problems. The simulation results illustrating the benefits of adaptive antennas are produced by employing a novel simulation concept, which offers a considerable reduction of the simulation time and complexity, as well as increased exibility concerning the use of different system parameters, compared to the existing simulation concepts for TD-CDMA. Furthermore, three novel techniques are presented which can be used in systems with adaptive antennas for additionally improving the system performance compared to single antennas. These techniques concern the problems of code-channel mismatch, of user separation in the spatial domain, and of intercell interference, which, as it is shown in the thesis, play a critical role on the performance of TD-CDMA with adaptive antennas. Finally, a novel approach for illustrating the performance differences between the uplink and downlink of TD-CDMA based mobile radio systems in a straightforward manner is presented. Since a cellular mobile radio system with adaptive antennas is considered, the ultimate goal is the investigation of the overall system efficiency rather than the efficiency of a single link. In this thesis, the efficiency of TD-CDMA is evaluated through its spectrum efficiency and capacity, which are two closely related performance measures for cellular mobile radio systems. Compared to the use of single antennas, the use of adaptive antennas allows impressive improvements of both spectrum efficiency and capacity. Depending on the mobile radio channel model and the user velocity, improvement factors range from six to 10.7 for the spectrum efficiency, and from 6.7 to 12.6 for the spectrum capacity of TD-CDMA. Thus, adaptive antennas constitute a promising technique for capacity increase of future mobile communications systems.

Adaptive Extraction and Representation of Geometric Structures from Unorganized 3D Point Sets
(2009)

The primary emphasis of this thesis concerns the extraction and representation of intrinsic properties of three-dimensional (3D) unorganized point clouds. The points establishing a point cloud as it mainly emerges from LiDaR (Light Detection and Ranging) scan devices or by reconstruction from two-dimensional (2D) image series represent discrete samples of real world objects. Depending on the type of scenery the data is generated from the resulting point cloud may exhibit a variety of different structures. Especially, in the case of environmental LiDaR scans the complexity of the corresponding point clouds is relatively high. Hence, finding new techniques allowing the efficient extraction and representation of the underlying structural entities becomes an important research issue of recent interest. This thesis introduces new methods regarding the extraction and visualization of structural features like surfaces and curves (e.g. ridge-lines, creases) from 3D (environmental) point clouds. One main part concerns the extraction of curve-like features from environmental point data sets. It provides a new method supporting a stable feature extraction by incorporating a probability-based point classification scheme that characterizes individual points regarding their affiliation to surface-, curve- and volume-like structures. Another part is concerned with the surface reconstruction from (environmental) point clouds exhibiting objects that are more or less complex. A new method providing multi-resolutional surface representations from regular point clouds is discussed. Following the applied principles of this approach a volumetric surface reconstruction method based on the proposed classification scheme is introduced. It allows the reconstruction of surfaces from highly unstructured and noisy point data sets. Furthermore, contributions in the field of reconstructing 3D point clouds from 2D image series are provided. In addition, a discussion concerning the most important properties of (environmental) point clouds with respect to feature extraction is presented.

Real-time systems are systems that have to react correctly to stimuli from the environment within given timing constraints.
Today, real-time systems are employed everywhere in industry, not only in safety-critical systems but also in, e.g., communication, entertainment, and multimedia systems.
With the advent of multicore platforms, new challenges on the efficient exploitation of real-time systems have arisen:
First, there is the need for effective scheduling algorithms that feature low overheads to improve the use of the computational resources of real-time systems.
The goal of these algorithms is to ensure timely execution of tasks, i.e., to provide runtime guarantees.
Additionally, many systems require their scheduling algorithm to flexibly react to unforeseen events.
Second, the inherent parallelism of multicore systems leads to contention for shared hardware resources and complicates system analysis.
At any time, multiple applications run with varying resource requirements and compete for the scarce resources of the system.
As a result, there is a need for an adaptive resource management.
Achieving and implementing an effective and efficient resource management is a challenging task.
The main goal of resource management is to guarantee a minimum resource availability to real-time applications.
A further goal is to fulfill global optimization objectives, e.g., maximization of the global system performance, or the user perceived quality of service.
In this thesis, we derive methods based on the slot shifting algorithm.
Slot shifting provides flexible scheduling of time-constrained applications and can react to unforeseen events in time-triggered systems.
For this reason, we aim at designing slot shifting based algorithms targeted for multicore systems to tackle the aforementioned challenges.
The main contribution of this thesis is to present two global slot shifting algorithms targeted for multicore systems.
Additionally, we extend slot shifting algorithms to improve their runtime behavior, or to handle non-preemptive firm aperiodic tasks.
In a variety of experiments, the effectiveness and efficiency of the algorithms are evaluated and confirmed.
Finally, the thesis presents an implementation of a slot-shifting-based logic into a resource management framework for multicore systems.
Thus, the thesis closes the circle and successfully bridges the gap between real-time scheduling theory and real-world implementations.
We prove applicability of the slot shifting algorithm to effectively and efficiently perform adaptive resource management on multicore systems.

In recent years the field of polymer tribology experienced a tremendous development
leading to an increased demand for highly sophisticated in-situ measurement methods.
Therefore, advanced measurement techniques were developed and established
in this study. Innovative approaches based on dynamic thermocouple, resistive electrical
conductivity, and confocal distance measurement methods were developed in
order to in-situ characterize both the temperature at sliding interfaces and real contact
area, and furthermore the thickness of transfer films. Although dynamic thermocouple
and real contact area measurement techniques were already used in similar
applications for metallic sliding pairs, comprehensive modifications were necessary to
meet the specific demands and characteristics of polymers and composites since
they have significantly different thermal conductivities and contact kinematics. By using
tribologically optimized PEEK compounds as reference a new measurement and
calculation model for the dynamic thermocouple method was set up. This method
allows the determination of hot spot temperatures for PEEK compounds, and it was
found that they can reach up to 1000 °C in case of short carbon fibers present in the
polymer. With regard to the non-isotropic characteristics of the polymer compound,
the contact situation between short carbon fibers and steel counterbody could be
successfully monitored by applying a resistive measurement method for the real contact
area determination. Temperature compensation approaches were investigated
for the transfer film layer thickness determination, resulting in in-situ measurements
with a resolution of ~0.1 μm. In addition to a successful implementation of the measurement
systems, failure mechanism processes were clarified for the PEEK compound
used. For the first time in polymer tribology the behavior of the most interesting
system parameters could be monitored simultaneously under increasing load
conditions. It showed an increasing friction coefficient, wear rate, transfer film layer
thickness, and specimen overall temperature when frictional energy exceeded the
thermal transport capabilities of the specimen. In contrast, the real contact area between
short carbon fibers and steel decreased due to the separation effect caused by
the transfer film layer. Since the sliding contact was more and more matrix dominated,
the hot spot temperatures on the fibers dropped, too. The results of this failure
mechanism investigation already demonstrate the opportunities which the new
measurement techniques provide for a deeper understanding of tribological processes,
enabling improvements in material composition and application design.

If gradient based derivative algorithms are used to improve industrial products by reducing their target functions, the derivatives need to be exact.
The last percent of possible improvement, like the efficiency of a turbine, can only be gained if the derivatives are consistent with the solution process that is used in the simulation software.
It is problematic that the development of the simulation software is an ongoing process which leads to the use of approximated derivatives.
If a derivative computation is implemented manually, it will be inconsistent after some time if it is not updated.
This thesis presents a generalized approach which differentiates the whole simulation software with Algorithmic Differentiation (AD), and guarantees a correct and consistent derivative computation after each change to the software.
For this purpose, the variable tagging technique is developed.
The technique checks at run-time if all dependencies, which are used by the derivative algorithms, are correct.
Since it is also necessary to check the correctness of the implementation, a theorem is developed which describes how AD derivatives can be compared.
This theorem is used to develop further methods that can detect and correct errors.
All methods are designed such that they can be applied in real world applications and are used within industrial configurations.
The process described above yields consistent and correct derivatives but the efficiency can still be improved.
This is done by deriving new derivative algorithms.
A fixed-point iterator approach, with a consistent derivation, yields all state of the art algorithms and produces two new algorithms.
These two new algorithms include all implementation details and therefore they produce consistent derivative results.
For detecting hot spots in the application, the state of the art techniques are presented and extended.
The data management is changed such that the performance of the software is affected only marginally when quantities, like the number of input and output variables or the memory consumption, are computed for the detection.
The hot spots can be treated with techniques like checkpointing or preaccumulation.
How these techniques change the time and memory consumption is analyzed and it is shown how they need to be used in selected AD tools.
As a last step, the used AD tools are analyzed in more detail.
The major implementation strategies for operator overloading AD tools are presented and implementation improvements for existing AD tools are discussed.\
The discussion focuses on a minimal memory consumption and makes it possible to compare AD tools on a theoretical level.
The new AD tool CoDiPack is based on these findings and its design and concepts are presented.
The improvements and findings in this thesis make it possible, that an automatic, consistent and correct derivative is generated in an efficient way for industrial applications.

Automated theorem proving is a search problem and, by its undecidability, a very difficult one. The challenge in the development of a practically successful prover is the mapping of the extensively developed theory into a program that runs efficiently on a computer. Starting from a level-based system model for automated theorem provers, in this work we present different techniques that are important for the development of powerful equational theorem provers. The contributions can be divided into three areas: Architecture. We present a novel prover architecture that is based on a set-based compression scheme. With moderate additional computational costs we achieve a substantial reduction of the memory requirements. Further wins are architectural clarity, the easy provision of proof objects, and a new way to parallelize a prover which shows respectable speed-ups in practice. The compact representation paves the way to new applications of automated equational provers in the area of verification systems. Algorithms. To improve the speed of a prover we need efficient solutions for the most time-consuming sub-tasks. We demonstrate improvements of several orders of magnitude for two of the most widely used term orderings, LPO and KBO. Other important contributions are a novel generic unsatisfiability test for ordering constraints and, based on that, a sufficient ground reducibility criterion with an excellent cost-benefit ratio. Redundancy avoidance. The notion of redundancy is of central importance to justify simplifying inferences which are used to prune the search space. In our experience with unfailing completion, the usual notion of redundancy is not strong enough. In the presence of associativity and commutativity, the provers often get stuck enumerating equations that are permutations of each other. By extending and refining the proof ordering, many more equations can be shown redundant. Furthermore, our refinement of the unfailing completion approach allows us to use redundant equations for simplification without the need to consider them for generating inferences. We describe the efficient implementation of several redundancy criteria and experimentally investigate their influence on the proof search. The combination of these techniques results in a considerable improvement of the practical performance of a prover, which we demonstrate with extensive experiments for the automated theorem prover Waldmeister. The progress achieved allows the prover to solve problems that were previously out of reach. This considerably enhances the potential of the prover and opens up the way for new applications.

Stochastic Network Calculus (SNC) emerged from two branches in the late 90s:
the theory of effective bandwidths and its predecessor the Deterministic Network
Calculus (DNC). As such SNC’s goal is to analyze queueing networks and support
their design and control.
In contrast to queueing theory, which strives for similar goals, SNC uses in-
equalities to circumvent complex situations, such as stochastic dependencies or
non-Poisson arrivals. Leaving the objective to compute exact distributions behind,
SNC derives stochastic performance bounds. Such a bound would, for example,
guarantee a system’s maximal queue length that is violated by a known small prob-
ability only.
This work includes several contributions towards the theory of SNC. They are
sorted into four main contributions:
(1) The first chapters give a self-contained introduction to deterministic net-
work calculus and its two branches of stochastic extensions. The focus lies on the
notion of network operations. They allow to derive the performance bounds and
simplifying complex scenarios.
(2) The author created the first open-source tool to automate the steps of cal-
culating and optimizing MGF-based performance bounds. The tool automatically
calculates end-to-end performance bounds, via a symbolic approach. In a second
step, this solution is numerically optimized. A modular design allows the user to
implement their own functions, like traffic models or analysis methods.
(3) The problem of the initial modeling step is addressed with the development
of a statistical network calculus. In many applications the properties of included
elements are mostly unknown. To that end, assumptions about the underlying
processes are made and backed by measurement-based statistical methods. This
thesis presents a way to integrate possible modeling errors into the bounds of SNC.
As a byproduct a dynamic view on the system is obtained that allows SNC to adapt
to non-stationarities.
(4) Probabilistic bounds are fundamentally different from deterministic bounds:
While deterministic bounds hold for all times of the analyzed system, this is not
true for probabilistic bounds. Stochastic bounds, although still valid for every time
t, only hold for one time instance at once. Sample path bounds are only achieved by
using Boole’s inequality. This thesis presents an alternative method, by adapting
the theory of extreme values.
(5) A long standing problem of SNC is the construction of stochastic bounds
for a window flow controller. The corresponding problem for DNC had been solved
over a decade ago, but remained an open problem for SNC. This thesis presents
two methods for a successful application of SNC to the window flow controller.

The recently established technologies in the areas of distributed measurement and intelligent
information processing systems, e.g., Cyber Physical Systems (CPS), Ambient
Intelligence/Ambient Assisted Living systems (AmI/AAL), the Internet of Things
(IoT), and Industry 4.0 have increased the demand for the development of intelligent
integrated multi-sensory systems as to serve rapid growing markets [1, 2]. These increase
the significance of complex measurement systems, that incorporate numerous advanced
methodological implementations including electronics circuit, signal processing,
and multi-sensory information fusion. In particular, in multi-sensory cognition applications,
to design such systems, the skill-required tasks, e.g., method selection, parameterization,
model analysis, and processing chain construction are elaborated with immense
effort, which conventionally are done manually by the expert designer. Moreover, the
strong technological competition imposes even more complicated design problems with
multiple constraints, e.g., cost, speed, power consumption,
exibility, and reliability.
Thus, the conventional human expert based design approach may not be able to cope
with the increasing demand in numbers, complexity, and diversity. To alleviate the issue,
the design automation approach has been the topic for numerous research works [3-14]
and has been commercialized to several products [15-18]. Additionally, the dynamic
adaptation of intelligent multi-sensor systems is the potential solution for developing
dependable and robust systems. Intrinsic evolution approach and self-x properties [19],
which include self-monitoring, -calibrating/trimming, and -healing/repairing, are among
the best candidates for the issue. Motivated from the ongoing research trends and based
on the background of our research work [12, 13] among the pioneers in this topic, the
research work of the thesis contributes to the design automation of intelligent integrated
multi-sensor systems.
In this research work, the Design Automation for Intelligent COgnitive system with self-
X properties, the DAICOX, architecture is presented with the aim of tackling the design
effort and to providing high quality and robust solutions for multi-sensor intelligent
systems. Therefore, the DAICOX architecture is conceived with the defined goals as
listed below.
Perform front to back complete processing chain design with automated method
selection and parameterization,
Provide a rich choice of pattern recognition methods to the design method pool,
Associate design information via interactive user interface and visualization along
with intuitive visual programming,
Deliver high quality solutions outperforming conventional approaches by using
multi-objective optimization,
Gain the adaptability, reliability and robustness of designed solutions with self-x
properties,
Derived from the goals, several scientific methodological developments and implementations,
particularly in the areas of pattern recognition and computational intelligence,
will be pursued as part of the DAICOX architecture in the research work of this thesis.
The method pool is aimed to contain a rich choice of methods and algorithms covering
data acquisition and sensor configuration, signal processing and feature computation,
dimensionality reduction, and classification. These methods will be selected and parameterized
automatically by the DAICOX design optimization to construct a multi-sensory
cognition processing chain. A collection of non-parametric feature quality assessment
functions for the purpose of Dimensionality Reduction (DR) process will be presented.
In addition, to standard DR methods, the variations of feature selection method, in
particular, feature weighting will be proposed. Three different classification categories
shall be incorporated in the method pool. Hierarchical classification approach will be
proposed and developed to serve as a multi-sensor fusion architecture at the decision
level. Beside multi-class classification, one-class classification methods, e.g., One-Class
SVM and NOVCLASS will be presented to extend functionality of the solutions, in particular,
anomaly and novelty detection. DAICOX is conceived to effectively handle the
problem of method selection and parameter setting for a particular application yielding
high performance solutions. The processing chain construction tasks will be carried
out by meta-heuristic optimization methods, e.g., Genetic Algorithms (GA) and Particle
Swarm Optimization (PSO), with multi-objective optimization approach and model
analysis for robust solutions. In addition, to the automated system design mechanisms,
DAICOX will facilitate the design tasks with intuitive visual programming and various
options of visualization. Design database concept of DAICOX is aimed to allow the
reusability and extensibility of the designed solutions gained from previous knowledge.
Thus, the cooperative design of machine and knowledge from the design expert can also
be utilized for obtaining fully enhanced solutions. In particular, the integration of self-x
properties as well as intrinsic optimization into the system is proposed to gain enduring
reliability and robustness. Hence, DAICOX will allow the inclusion of dynamically
reconfigurable hardware instances to the designed solutions in order to realize intrinsic
optimization and self-x properties.
As a result from the research work in this thesis, a comprehensive intelligent multisensor
system design architecture with automated method selection, parameterization,
and model analysis is developed with compliance to open-source multi-platform software.It is integrated with an intuitive design environment, which includes visual programming
concept and design information visualizations. Thus, the design effort is minimized as
investigated in three case studies of different application background, e.g., food analysis
(LoX), driving assistance (DeCaDrive), and magnetic localization. Moreover, DAICOX
achieved better quality of the solutions compared to the manual approach in all cases,
where the classification rate was increased by 5.4%, 0.06%, and 11.4% in the LoX,
DeCaDrive, and magnetic localization case, respectively. The design time was reduced
by 81.87% compared to the conventional approach by using DAICOX in the LoX case
study. At the current state of development, a number of novel contributions of the thesis
are outlined below.
Automated processing chain construction and parameterization for the design of
signal processing and feature computation.
Novel dimensionality reduction methods, e.g., GA and PSO based feature selection
and feature weighting with multi-objective feature quality assessment.
A modification of non-parametric compactness measure for feature space quality
assessment.
Decision level sensor fusion architecture based on proposed hierarchical classification
approach using, i.e., H-SVM.
A collection of one-class classification methods and a novel variation, i.e.,
NOVCLASS-R.
Automated design toolboxes supporting front to back design with automated
model selection and information visualization.
In this research work, due to the complexity of the task, neither all of the identified goals
have been comprehensively reached yet nor has the complete architecture definition been
fully implemented. Based on the currently implemented tools and frameworks, ongoing
development of DAICOX is pursuing towards the complete architecture. The potential
future improvements are the extension of method pool with a richer choice of methods
and algorithms, processing chain breeding via graph based evolution approach, incorporation
of intrinsic optimization, and the integration of self-x properties. According to
these features, DAICOX will improve its aptness in designing advanced systems to serve
the increasingly growing technologies of distributed intelligent measurement systems, in
particular, CPS and Industrie 4.0.

Advantage of Filtering for Portfolio Optimization in Financial Markets with Partial Information
(2016)

In a financial market we consider three types of investors trading with a finite
time horizon with access to a bank account as well as multliple stocks: the
fully informed investor, the partially informed investor whose only source of
information are the stock prices and an investor who does not use this infor-
mation. The drift is modeled either as following linear Gaussian dynamics
or as being a continuous time Markov chain with finite state space. The
optimization problem is to maximize expected utility of terminal wealth.
The case of partial information is based on the use of filtering techniques.
Conditions to ensure boundedness of the expected value of the filters are
developed, in the Markov case also for positivity. For the Markov modulated
drift, boundedness of the expected value of the filter relates strongly to port-
folio optimization: effects are studied and quantified. The derivation of an
equivalent, less dimensional market is presented next. It is a type of Mutual
Fund Theorem that is shown here.
Gains and losses eminating from the use of filtering are then discussed in
detail for different market parameters: For infrequent trading we find that
both filters need to comply with the boundedness conditions to be an advan-
tage for the investor. Losses are minimal in case the filters are advantageous.
At an increasing number of stocks, again boundedness conditions need to be
met. Losses in this case depend strongly on the added stocks. The relation
of boundedness and portfolio optimization in the Markov model leads here to
increasing losses for the investor if the boundedness condition is to hold for
all numbers of stocks. In the Markov case, the losses for different numbers
of states are negligible in case more states are assumed then were originally
present. Assuming less states leads to high losses. Again for the Markov
model, a simplification of the complex optimal trading strategy for power
utility in the partial information setting is shown to cause only minor losses.
If the market parameters are such that shortselling and borrowing constraints
are in effect, these constraints may lead to big losses depending on how much
effect the constraints have. They can though also be an advantage for the
investor in case the expected value of the filters does not meet the conditions
for boundedness.
All results are implemented and illustrated with the corresponding numerical
findings.

This thesis contains the mathematical treatment of a special class of analog microelectronic circuits called translinear circuits. The goal is to provide foundations of a new coherent synthesis approach for this class of circuits. The mathematical methods of the suggested synthesis approach come from graph theory, combinatorics, and from algebraic geometry, in particular symbolic methods from computer algebra. Translinear circuits form a very special class of analog circuits, because they rely on nonlinear device models, but still allow a very structured approach to network analysis and synthesis. Thus, translinear circuits play the role of a bridge between the "unknown space" of nonlinear circuit theory and the very well exploited domain of linear circuit theory. The nonlinear equations describing the behavior of translinear circuits possess a strong algebraic structure that is nonetheless flexible enough for a wide range of nonlinear functionality. Furthermore, translinear circuits offer several technical advantages like high functional density, low supply voltage and insensitivity to temperature. This unique profile is the reason that several authors consider translinear networks as the key to systematic synthesis methods for nonlinear circuits. The thesis proposes the usage of a computer-generated catalog of translinear network topologies as a synthesis tool. The idea to compile such a catalog has grown from the observation that on the one hand, the topology of a translinear network must satisfy strong constraints which severely limit the number of "admissible" topologies, in particular for networks with few transistors, and on the other hand, the topology of a translinear network already fixes its essential behavior, at least for static networks, because the so-called translinear principle requires the continuous parameters of all transistors to be the same. Even though the admissible topologies are heavily restricted, it is a highly nontrivial task to compile such a catalog. Combinatorial techniques have been adapted to undertake this task. In a catalog of translinear network topologies, prototype network equations can be stored along with each topology. When a circuit with a specified behavior is to be designed, one can search the catalog for a network whose equations can be matched with the desired behavior. In this context, two algebraic problems arise: To set up a meaningful equation for a network in the catalog, an elimination of variables must be performed, and to test whether a prototype equation from the catalog and a specified equation of desired behavior can be "matched", a complex system of polynomial equations must be solved, where the solutions are restricted to a finite set of integers. Sophisticated algorithms from computer algebra are applied in both cases to perform the symbolic computations. All mentioned algorithms have been implemented using C++, Singular, and Mathematica, and are successfully applied to actual design problems of humidity sensor circuitry at Analog Microelectronics GmbH, Mainz. As result of the research conducted, an exhaustive catalog of all static formal translinear networks with at most eight transistors is available. The application for the humidity sensor system proves the applicability of the developed synthesis approach. The details and implementations of the algorithms are worked out only for static networks, but can easily be adopted for dynamic networks as well. While the implementation of the combinatorial algorithms is stand-alone software written "from scratch" in C++, the implementation of the algebraic algorithms, namely the symbolic treatment of the network equations and the match finding, heavily rely on the sophisticated Gröbner basis engine of Singular and thus on more than a decade of experience contained in a special-purpose computer algebra system. It should be pointed out that the thesis contains the new observation that the translinear loop equations of a translinear network are precisely represented by the toric ideal of the network's translinear digraph. Altogether, this thesis confirms and strengthenes the key role of translinear circuits as systematically designable nonlinear circuits.

In the first part of this thesis we study algorithmic aspects of tropical intersection theory. We analyse how divisors and intersection products on tropical cycles can actually be computed using polyhedral geometry. The main focus is the study of moduli spaces, where the underlying combinatorics of the varieties involved allow a much more efficient way of computing certain tropical cycles. The algorithms discussed here have been implemented in an extension for polymake, a software for polyhedral computations.
In the second part we apply the algorithmic toolkit developed in the first part to the study of tropical double Hurwitz cycles. Hurwitz cycles are a higher-dimensional generalization of Hurwitz numbers, which count covers of \(\mathbb{P}^1\) by smooth curves of a given genus with a certain fixed ramification behaviour. Double Hurwitz numbers provide a strong connection between various mathematical disciplines, including algebraic geometry, representation theory and combinatorics. The tropical cycles have a rather complex combinatorial nature, so it is very difficult to study them purely "by hand". Being able to compute examples has been very helpful
in coming up with theoretical results. Our main result states that all marked and unmarked Hurwitz cycles are connected in codimension one and that for a generic choice of simple ramification points the marked cycle is a multiple of an irreducible cycle. In addition we provide computational examples to show that this is the strongest possible statement.

This thesis builds a bridge between singularity theory and computer algebra. To an isolated hypersurface singularity one can associate a regular meromorphic connection, the Gauß-Manin connection, containing a lattice, the Brieskorn lattice. The leading terms of the Brieskorn lattice with respect to the weight and V-filtration of the Gauß-Manin connection define the spectral pairs. They correspond to the Hodge numbers of the mixed Hodge structure on the cohomology of the Milnor fibre and belong to the finest known invariants of isolated hypersurface singularities. The differential structure of the Brieskorn lattice can be described by two complex endomorphisms A0 and A1 containing even more information than the spectral pairs. In this thesis, an algorithmic approach to the Brieskorn lattice in the Gauß-Manin connection is presented. It leads to algorithms to compute the complex monodromy, the spectral pairs, and the differential structure of the Brieskorn lattice. These algorithms are implemented in the computer algebra system Singular.

In modern algebraic geometry solutions of polynomial equations are studied from a qualitative point of view using highly sophisticated tools such as cohomology, \(D\)-modules and Hodge structures. The latter have been unified in Saito’s far-reaching theory of mixed Hodge modules, that has shown striking applications including vanishing theorems for cohomology. A mixed Hodge module can be seen as a special type of filtered \(D\)-module, which is an algebraic counterpart of a system of linear differential equations. We present the first algorithmic approach to Saito’s theory. To this end, we develop a Gröbner basis theory for a new class of algebras generalizing PBW-algebras.
The category of mixed Hodge modules satisfies Grothendieck’s six-functor formalism. In part these functors rely on an additional natural filtration, the so-called \(V\)-filtration. A key result of this thesis is an algorithm to compute the \(V\)-filtration in the filtered setting. We derive from this algorithm methods for the computation of (extraordinary) direct image functors under open embeddings of complements of pure codimension one subvarieties. As side results we show
how to compute vanishing and nearby cycle functors and a quasi-inverse of Kashiwara’s equivalence for mixed Hodge modules.
Describing these functors in terms of local coordinates and taking local sections, we reduce the corresponding computations to algorithms over certain bifiltered algebras. It leads us to introduce the class of so-called PBW-reduction-algebras, a generalization of the class of PBW-algebras. We establish a comprehensive Gröbner basis framework for this generalization representing the involved filtrations by weight vectors.

Software is becoming increasingly concurrent: parallelization, decentralization, and reactivity necessitate asynchronous programming in which processes communicate by posting messages/tasks to others’ message/task buffers. Asynchronous programming has been widely used to build fast servers and routers, embedded systems and sensor networks, and is the basis of Web programming using Javascript. Languages such as Erlang and Scala have adopted asynchronous programming as a fundamental concept with which highly scalable and highly reliable distributed systems are built.
Asynchronous programs are challenging to implement correctly: the loose coupling between asynchronously executed tasks makes the control and data dependencies difficult to follow. Even subtle design and programming mistakes on the programs have the capability to introduce erroneous or divergent behaviors. As asynchronous programs are typically written to provide a reliable, high-performance infrastructure, there is a critical need for analysis techniques to guarantee their correctness.
In this dissertation, I provide scalable verification and testing tools to make asyn- chronous programs more reliable. I show that the combination of counter abstraction and partial order reduction is an effective approach for the verification of asynchronous systems by presenting PROVKEEPER and KUAI, two scalable verifiers for two types of asynchronous systems. I also provide a theoretical result that proves a counter-abstraction based algorithm called expand-enlarge-check, is an asymptotically optimal algorithm for the coverability problem of branching vector addition systems as which many asynchronous programs can be modeled. In addition, I present BBS and LLSPLAT, two testing tools for asynchronous programs that efficiently uncover many subtle memory violation bugs.

In the first part of the thesis we develop the theory of standard bases in free modules over (localized) polynomial rings. Given that linear equations are solvable in the coefficients of the polynomials, we introduce an algorithm to compute standard bases with respect to arbitrary (module) monomial orderings. Moreover, we take special care to principal ideal rings, allowing zero divisors. For these rings we design modified algorithms which are new and much faster than the general ones. These algorithms were motivated by current limitations in formal verification of microelectronic System-on-Chip designs. We show that our novel approach using computational algebra is able to overcome these limitations in important classes of applications coming from industrial challenges.
The second part is based on research in collaboration with Jason Morton, Bernd Sturmfels and Anne Shiu. We devise a general method to describe and compute a certain class of rank tests motivated by statistics. The class of rank tests may loosely be described as being based on computing the number of linear extensions to given partial orders. In order to apply these tests to actual data we developed two algorithms and used our implementations to apply the methodology to gene expression data created at the Stowers Institute for Medical Research. The dataset is concerned with the development of the vertebra. Our rankings proved valuable to the biologists.

This thesis, whose subject is located in the field of algorithmic commutative algebra and algebraic geometry, consists of three parts.
The first part is devoted to parallelization, a technique which allows us to take advantage of the computational power of modern multicore processors. First, we present parallel algorithms for the normalization of a reduced affine algebra A over a perfect field. Starting from the algorithm of Greuel, Laplagne, and Seelisch, we propose two approaches. For the local-to-global approach, we stratify the singular locus Sing(A) of A, compute the normalization locally at each stratum and finally reconstruct the normalization of A from the local results. For the second approach, we apply modular methods to both the global and the local-to-global normalization algorithm.
Second, we propose a parallel version of the algorithm of Gianni, Trager, and Zacharias for primary decomposition. For the parallelization of this algorithm, we use modular methods for the computationally hardest steps, such as for the computation of the associated prime ideals in the zero-dimensional case and for the standard bases computations. We then apply an innovative fast method to verify that the result is indeed a primary decomposition of the input ideal. This allows us to skip the verification step at each of the intermediate modular computations.
The proposed parallel algorithms are implemented in the open-source computer algebra system SINGULAR. The implementation is based on SINGULAR's new parallel framework which has been developed as part of this thesis and which is specifically designed for applications in mathematical research.
In the second part, we propose new algorithms for the computation of syzygies, based on an in-depth analysis of Schreyer's algorithm. Here, the main ideas are that we may leave out so-called "lower order terms" which do not contribute to the result of the algorithm, that we do not need to order the terms of certain module elements which occur at intermediate steps, and that some partial results can be cached and reused.
Finally, the third part deals with the algorithmic classification of singularities over the real numbers. First, we present a real version of the Splitting Lemma and, based on the classification theorems of Arnold, algorithms for the classification of the simple real singularities. In addition to the algorithms, we also provide insights into how real and complex singularities are related geometrically. Second, we explicitly describe the structure of the equivalence classes of the unimodal real singularities of corank 2. We prove that the equivalences are given by automorphisms of a certain shape. Based on this theorem, we explain in detail how the structure of the equivalence classes can be computed using SINGULAR and present the results in concise form. The probably most surprising outcome is that the real singularity type \(J_{10}^-\) is actually redundant.

In this dissertation, we discuss how to price American-style options. Our aim is to study and improve the regression-based Monte Carlo methods. In order to have good benchmarks to compare with them, we also study the tree methods.
In the second chapter, we investigate the tree methods specifically. We do research firstly within the Black-Scholes model and then within the Heston model. In the Black-Scholes model, based on Müller's work, we illustrate how to price one dimensional and multidimensional American options, American Asian options, American lookback options, American barrier options and so on. In the Heston model, based on Sayer's research, we implement his algorithm to price one dimensional American options. In this way, we have good benchmarks of various American-style options and put them all in the appendix.
In the third chapter, we focus on the regression-based Monte Carlo methods theoretically and numerically. Firstly, we introduce two variations, the so called "Tsitsiklis-Roy method" and the "Longstaff-Schwartz method". Secondly, we illustrate the approximation of American option by its Bermudan counterpart. Thirdly we explain the source of low bias and high bias. Fourthly we compare these two methods using in-the-money paths and all paths. Fifthly, we examine the effect using different number and form of basis functions. Finally, we study the Andersen-Broadie method and present the lower and upper bounds.
In the fourth chapter, we study two machine learning techniques to improve the regression part of the Monte Carlo methods: Gaussian kernel method and kernel-based support vector machine. In order to choose a proper smooth parameter, we compare fixed bandwidth, global optimum and suboptimum from a finite set. We also point out that scaling the training data to [0,1] can avoid numerical difficulty. When out-of-sample paths of stock prices are simulated, the kernel method is robust and even performs better in several cases than the Tsitsiklis-Roy method and the Longstaff-Schwartz method. The support vector machine can keep on improving the kernel method and needs less representations of old stock prices during prediction of option continuation value for a new stock price.
In the fifth chapter, we switch to the hardware (FGPA) implementation of the Longstaff-Schwartz method and propose novel reversion formulas for the stock price and volatility within the Black-Scholes and Heston models. The test for this formula within the Black-Scholes model shows that the storage of data is reduced and also the corresponding energy consumption.

Nowadays one of the major objectives in geosciences is the determination of the gravitational field of our planet, the Earth. A precise knowledge of this quantity is not just interesting on its own but it is indeed a key point for a vast number of applications. The important question is how to obtain a good model for the gravitational field on a global scale. The only applicable solution - both in costs and data coverage - is the usage of satellite data. We concentrate on highly precise measurements which will be obtained by GOCE (Gravity Field and Steady State Ocean Circulation Explorer, launch expected 2006). This satellite has a gradiometer onboard which returns the second derivatives of the gravitational potential. Mathematically seen we have to deal with several obstacles. The first one is that the noise in the different components of these second derivatives differs over several orders of magnitude, i.e. a straightforward solution of this outer boundary value problem will not work properly. Furthermore we are not interested in the data at satellite height but we want to know the field at the Earth's surface, thus we need a regularization (downward-continuation) of the data. These two problems are tackled in the thesis and are now described briefly. Split Operators: We have to solve an outer boundary value problem at the height of the satellite track. Classically one can handle first order side conditions which are not tangential to the surface and second derivatives pointing in the radial direction employing integral and pseudo differential equation methods. We present a different approach: We classify all first and purely second order operators which fulfill that a harmonic function stays harmonic under their application. This task is done by using modern algebraic methods for solving systems of partial differential equations symbolically. Now we can look at the problem with oblique side conditions as if we had ordinary i.e. non-derived side conditions. The only additional work which has to be done is an inversion of the differential operator, i.e. integration. In particular we are capable to deal with derivatives which are tangential to the boundary. Auto-Regularization: The second obstacle is finding a proper regularization procedure. This is complicated by the fact that we are facing stochastic rather than deterministic noise. The main question is how to find an optimal regularization parameter which is impossible without any additional knowledge. However we could show that with a very limited number of additional information, which are obtainable also in practice, we can regularize in an asymptotically optimal way. In particular we showed that the knowledge of two input data sets allows an order optimal regularization procedure even under the hard conditions of Gaussian white noise and an exponentially ill-posed problem. A last but rather simple task is combining data from different derivatives which can be done by a weighted least squares approach using the information we obtained out of the regularization procedure. A practical application to the downward-continuation problem for simulated gravitational data is shown.

Wireless Sensor Networks (WSN) are dynamically-arranged networks typically composed of a large number of arbitrarily-distributed sensor nodes with computing capabilities contributing to –at least– one common application. The main characteristic of these networks is that of being functionally constrained due to a scarce availability of resources and strong dependence on uncontrollable environmental factors. These conditions introduce severe restrictions on the applicability of classic real-time methods aiming at guaranteeing time-bounded communications. Existing real-time solutions tend to apply concepts that were originally not conceived for sensor networks, idealizing realistic application scenarios and overlooking at important design limitations. This results in a number of misleading practices contributing to approaches of restricted validity in real-world scenarios. Amending the confrontation between WSNs and real-time objectives starts with a review of the basic fundamentals of existing approaches. In doing so, this thesis presents an alternative approach based on a generalized timeliness notion suitable to the particularities of WSNs. The new conceptual notion allows the definition of feasible real-time objectives opening a new scope of possibilities not constrained to idealized systems. The core of this thesis is based on the definition and application of Quality of Service (QoS) trade-offs between timeliness and other significant QoS metrics. The analysis of local and global trade-offs provides a step-by-step methodology identifying the correlations between these quality metrics. This association enables the definition of alternative trade-off configurations (set points) influencing the quality performance of the network at selected instants of time. With the basic grounds established, the above concepts are embedded in a simple routing protocol constituting a proof of concept for the validity of the presented analysis. Extensive evaluations under realistic scenarios are driven on simulation environments as well as real testbeds, validating the consistency of this approach.

Open distributed systems are a class of distributed systems where (i) only partial information about the environment, in which they are running, is present, (ii) new resources may become available at runtime, and (iii) a subsystem may become aware of other subsystems after some interaction. Modeling and implementing such systems correctly is a complex task due to the openness and the dynamicity aspects. One way to ensure that the resulting systems behave correctly is to utilize formal verification.
Formal verification requires an adequate semantic model of the implementation, a specification of the desired behavior, and a reasoning technique. The actor model is a semantic model that captures the challenging aspects of open distributed systems by utilizing actors as universal primitives to represent system entities and allowing them to create new actors and to communicate by sending directed messages as reply to received messages. To enable compositional reasoning, where the reasoning task is reduced to independent verification of the system parts, semantic entities at a higher level of abstraction than actors are needed.
This thesis proposes an automaton model and combines sound reasoning techniques to compositionally verify implementations of open actor systems. Based on I/O automata, the model allows automata to be created dynamically and captures dynamic changes in communication patterns. Each automaton represents either an actor or a group of actors. The specification of the desired behavior is given constructively as an automaton. As the basis for compositionality, we formalize a component notion based on the static structure of the implementation instead of the dynamic entities (the actors) occurring in the system execution. The reasoning proceeds in two stages. The first stage establishes the connection between the automata representing single actors and their implementation description by means of weakest liberal preconditions. The second stage employs this result as the basis for verifying whether a component specification is satisfied. The verification is done by building a simulation relation from the automaton representing the implementation to the component's automaton. Finally, we validate the compositional verification approach through a number of examples by proving correctness of their actor implementations with respect to system specifications.

An efficient multiscale approach is established in order to compute the macroscopic response of nonlinear composites. The micro problem is rewritten in an integral form of the Lippmann-Schwinger type and solved efficiently by Fast Fourier Transforms. Using realistic microstructure models complex nonlinear effects are reproduced and validated with measured data of fiber reinforced plastics. The micro problem is integrated in a Finite Element framework which is used to solve the macroscale. The scale coupling technique and a consistent numerical algorithm is established. The method provides an efficient way to determine the macroscopic response considering arbitrary microstructures, constitutive behaviors and loading conditions.

Optical Character Recognition (OCR) system plays an important role in digitization of data acquired as images from a variety of sources. Although the area is very well explored for Latin languages, some of the languages based on Arabic cursive script are not yet explored. It is due to many factors: Most importantly are the unavailability of proper data sets and complexities posed by cursive scripts. The Pashto language is one of such languages which needs considerable exploration towards OCR. In order to develop such an OCR system, this thesis provides a pioneering study that explores deep learning for the Pashto language in the field of OCR.
The Pashto language is spoken by more than $50$ million people across the world, and it is an active medium both for oral as well as written communication. It is associated with rich literary heritage and contains huge written collection. These written materials present contents of simple to complex nature, and layouts from hand-scribed to printed text. The Pashto language presents mainly two types of complexities (i) generic w.r.t. cursive script, (ii) specific w.r.t. Pashto language. Generic complexities are cursiveness, context dependency, and breaker character anomalies, as well as space anomalies. Pashto specific complexities are variations in shape for a single character and shape similarity for some of the additional Pashto characters. Existing research in the area of Arabic OCR did not lead to an end-to-end solution for the mentioned complexities and therefore could not be generalized to build a sophisticated OCR system for Pashto.
The contribution of this thesis spans in three levels, conceptual level, data level, and practical level. In the conceptual level, we have deeply explored the Pashto language and identified those characters, which are responsible for the challenges mentioned above. In the data level, a comprehensive dataset is introduced containing real images of hand-scribed contents. The dataset is manually transcribed and has the most frequent layout patterns associated with the Pashto language. The practical level contribution provides a bridge, in the form of a complete Pashto OCR system, and connects the outcomes of the conceptual and data levels contributions. The practical contribution comprises of skew detection, text-line segmentation, feature extraction, classification, and post-processing. The OCR module is more strengthened by using deep learning paradigm to recognize Pashto cursive script by the framework of Recursive Neural Networks (RNN). Proposed Pashto text recognition is based on Long Short-Term Memory Network (LSTM) and realizes a character recognition rate of $90.78\%$ on Pashto real hand-scribed images. All these contributions are integrated into an application to provide a flexible and generic End-to-End Pashto OCR system.
The impact of this thesis is not only specific to the Pashto language, but it is also beneficial to other cursive languages like Arabic, Urdu, and Persian e.t.c. The main reason is the Pashto character set, which is a superset of Arabic, Persian, and Urdu languages. Therefore, the conceptual contribution of this thesis provides insight and proposes solutions to almost all generic complexities associated with Arabic, Persian, and Urdu languages. For example, an anomaly caused by breaker characters is deeply analyzed, which is shared among 70 languages, mainly use Arabic script. This thesis presents a solution to this issue and is equally beneficial to almost all Arabic like languages.
The scope of this thesis has two important aspects. First, a social impact, i.e., how a society may benefit from it. The main advantages are to bring the historical and almost vanished document to life and to ensure the opportunities to explore, analyze, translate, share, and understand the contents of Pashto language globally. Second, the advancement and exploration of the technical aspects. Because, this thesis empirically explores the recognition and challenges which are solely related to the Pashto language, both regarding character-set and the materials which present such complexities. Furthermore, the conceptual and practical background of this thesis regarding complexities of Pashto language is very beneficial regarding OCR for other cursive languages.

The main theme of this thesis is the interplay between algebraic and tropical intersection
theory, especially in the context of enumerative geometry. We begin by exploiting
well-known results about tropicalizations of subvarieties of algebraic tori to give a
simple proof of Nishinou and Siebert’s correspondence theorem for rational curves
through given points in toric varieties. Afterwards, we extend this correspondence
by additionally allowing intersections with psi-classes. We do this by constructing
a tropicalization map for cycle classes on toroidal embeddings. It maps algebraic
cycle classes to elements of the Chow group of the cone complex of the toroidal
embedding, that is to weighted polyhedral complexes, which are balanced with respect
to an appropriate map to a vector space, modulo a naturally defined equivalence relation.
We then show that tropicalization respects basic intersection-theoretic operations like
intersections with boundary divisors and apply this to the appropriate moduli spaces
to obtain our correspondence theorem.
Trying to apply similar methods in higher genera inevitably confronts us with moduli
spaces which are not toroidal. This motivates the last part of this thesis, where we
construct tropicalizations of cycles on fine logarithmic schemes. The logarithmic point of
view also motivates our interpretation of tropical intersection theory as the dualization
of the intersection theory of Kato fans. This duality gives a new perspective on the
tropicalization map; namely, as the dualization of a pull-back via the characteristic
morphism of a logarithmic scheme.

A popular model for the locations of fibres or grains in composite materials
is the inhomogeneous Poisson process in dimension 3. Its local intensity function
may be estimated non-parametrically by local smoothing, e.g. by kernel
estimates. They crucially depend on the choice of bandwidths as tuning parameters
controlling the smoothness of the resulting function estimate. In this
thesis, we propose a fast algorithm for learning suitable global and local bandwidths
from the data. It is well-known, that intensity estimation is closely
related to probability density estimation. As a by-product of our study, we
show that the difference is asymptotically negligible regarding the choice of
good bandwidths, and, hence, we focus on density estimation.
There are quite a number of data-driven bandwidth selection methods for
kernel density estimates. cross-validation is a popular one and frequently proposed
to estimate the optimal bandwidth. However, if the sample size is very
large, it becomes computational expensive. In material science, in particular,
it is very common to have several thousand up to several million points.
Another type of bandwidth selection is a solve-the-equation plug-in approach
which involves replacing the unknown quantities in the asymptotically optimal
bandwidth formula by their estimates.
In this thesis, we develop such an iterative fast plug-in algorithm for estimating
the optimal global and local bandwidth for density and intensity estimation with a focus on 2- and 3-dimensional data. It is based on a detailed
asymptotics of the estimators of the intensity function and of its second
derivatives and integrals of second derivatives which appear in the formulae
for asymptotically optimal bandwidths. These asymptotics are utilised to determine
the exact number of iteration steps and some tuning parameters. For
both global and local case, fewer than 10 iterations suffice. Simulation studies
show that the estimated intensity by local bandwidth can better indicate
the variation of local intensity than that by global bandwidth. Finally, the
algorithm is applied to two real data sets from test bodies of fibre-reinforced
high-performance concrete, clearly showing some inhomogeneity of the fibre
intensity.

The cytosolic Fe65 adaptor protein family, consisting of Fe65, Fe65L1 and Fe65L2 is involved in many intracellular signaling pathways linking via its three interaction domains a continuously growing list of proteins by facilitating functional interactions. One of the most important binding partners of Fe65 family proteins is the amyloid precursor protein (APP), which plays an important role in Alzheimer Disease.
To gain deeper insights in the function of the ubiquitously expressed Fe65 and the brain enriched Fe65L1, the goal of my study was I) to analyze their putative synaptic function in vivo, II) to examine structural analysis focusing on a putative dimeric complex of Fe65, III) to consider the involvement of Fe65 in mediating LRP1 and APP intracellular trafficking in murine hippocampal neurons. By utilizing several behavioral analyses of Fe65 KO, Fe65L1 KO and Fe65/Fe65L1 DKO mice I could demonstrate that the Fe65 protein family is essential for learning and memory as well as grip strength and locomotor activity. Furthermore, immunohistological as well as protein biochemical analysis revealed that the Fe65 protein family is important for neuromuscular junction formation in the peripheral nervous system, which involves binding of APP and acting downstream of the APP signaling pathway. Via Co-immunoprecipitation analysis I could verify that Fe65 is capable to form dimers ex vivo, which exclusively occur in the cytosol and upon APP expression are shifted to membrane compartments forming trimeric complexes. The influence of the loss of Fe65 and/or Fe65L1 on APP and/or LRP1 transport characteristics in axons could not be verified, possibly conditioned by the compensatory effect of Fe65L2. However, I could demonstrate that LRP1 affects the APP transport independently of Fe65 by shifting APP into slower types of vesicles leading to changed processing and endocytosis of APP.
The outcome of my thesis advanced our understanding of the Fe65 protein family, especially its interplay with APP physiological function in synapse formation and synaptic plasticity.

The present thesis is concerned with the simulation of the loading behaviour of both hybrid lightweight structures and piezoelectric mesostructures, with a special focus on solid interfaces on the meso scale. Furthermore, an analytical review on bifurcation modes of continuum-interface problems is included. The inelastic interface behaviour is characterised by elastoplastic, viscous, damaging and fatigue-motivated models. For related numerical computations, the Finite Element Method is applied. In this context, so-called interface elements play an important role. The simulation results are reflected by numerous examples which are partially correlated to experimental data.

Various physical phenomenons with sudden transients that results into structrual changes can be modeled via
switched nonlinear differential algebraic equations (DAEs) of the type
\[
E_{\sigma}\dot{x}=A_{\sigma}x+f_{\sigma}+g_{\sigma}(x). \tag{DAE}
\]
where \(E_p,A_p \in \mathbb{R}^{n\times n}, x\mapsto g_p(x),\) is a mapping, \(p \in \{1,\cdots,P\}, P\in \mathbb{N}
f \in \mathbb{R} \rightarrow \mathbb{R}^n , \sigma: \mathbb{R} \rightarrow \{1,\cdots, P\}\).
Two related common tasks are:
Task 1: Investigate if above (DAE) has a solution and if it is unique.
Task 2: Find a connection among a solution of above (DAE) and solutions of related
partial differential equations.
In the linear case \(g(x) \equiv 0\) the task 1 has been tackeled already in a
distributional solution framework.
A main goal of the dissertation is to give contribution to task 1 for the
nonlinear case \(g(x) \not \equiv 0\) ; also contributions to the task 2 are given for
switched nonlinear DAEs arising while modeling sudden transients in water
distribution networks. In addition, this thesis contains the following further
contributions:
The notion of structured switched nonlinear DAEs has been introduced,
allowing also non regular distributions as solutions. This extend a previous
framework that allowed only piecewise smooth functions as solutions. Further six mild conditions were given to ensure existence and uniqueness of the solution within the space of piecewise smooth distribution. The main
condition, namely the regularity of the matrix pair \((E,A)\), is interpreted geometrically for those switched nonlinear DAEs arising from water network graphs.
Another contribution is the introduction of these switched nonlinear DAEs
as a simplication of the PDE model used classically for modeling water networks. Finally, with the support of numerical simulations of the PDE model it has been illustrated that this switched nonlinear DAE model is a good approximation for the PDE model in case of a small compressibility coefficient.

The development of autonomous mobile robots is a major topic of current research. As those robots must be able to react to changing environments and avoid collisions also with moving obstacles, the fulfilment of safety requirements is an important aspect. Behaviour-based systems (BBS) have proven to meet several of the properties required for these kindsof robots, such as reactivity, extensibility and re-usability of individual components. BBS consist of a number of behavioural components that individually realise simple tasks. Their interconnection allows to achieve complex robot behaviour, which implies that correct
connections are crucial. The resulting networks can get very large making them difficult to verify. This dissertation presents a novel concept for the analysis and verification of complex autonomous robot systems controlled by behaviour-based software architectures with special focus on the integration of environmental aspects into the processes.
Several analysis techniques have been investigated and adapted to the special requirements of BBS. These include a structural analysis, which is used to find constraint violations and faults in the network layout. Fault tree analysis is applied to identify root causes of hazards and the relationship of system events. For this, a technique to map the behaviour-based control network to the structure of a fault tree has been developed. Testing and data analysis are used for the detection of failures and their root causes. Here, a new concept that identifies patterns in data recorded during test runs has been introduced.
All of these methods cannot guarantee failure-free and safe robot behaviour and can never prove the absence of failures. Therefore, model checking as formal verification technique that proves a property to be correct for the given system, has been chosen to complement the set of analysis techniques. A novel concept for the integration of environmental influences into the model checking process is proposed. Environmental situations and the sensor processing chain are represented as synchronised automata similar to the modelling of the behavioural network. Tools supporting the whole verification process including the creation of formal queries in its environment have been developed.
During the verification of large behavioural networks, the scalability of the model checking approach appears as a big problem. Several approaches that deal with this problem have been investigated and the selection of slicing and abstraction methods has been justified. A concept for the application of these methods is provided, that reduces the behavioural network to the relevant parts before the actual verification process.
All techniques have been applied to the behaviour-based control system of the autonomous outdoor robot RAVON. Its complex network with more than 400 components allows for demonstrating the soundness of the presented concepts. The set of diﬀerent techniques provides a fundamental basis for a comprehensive analysis and verification of BBS acting in changing environments.

This thesis is concerned with different null-models that are used in network analysis. Whenever it is of interest whether a real-world graph is exceptional regarding a particular measure, graphs from a null-model can be used to compare the real-world graph to. By analyzing an appropriate null-model, a researcher may find whether the results of the measure on the real-world graph is exceptional or not.
Deciding which null-model to use is hard and sometimes the difference between the null-models is not even considered. In this thesis, there are several results presented: First, based on simple global measures, undirected graphs are analyzed. The results for these measures indicates that it is not important which null-model is used, thus, the fastest algorithm of a null-model may be used. Next, local measures are investigated. The fastest algorithm proves to be the most complicated to analyze. The model includes multigraphs which do not meet the conditions of all the measures, thus, the measures themselves have to be altered to take care of multigraphs as well. After careful consideration, the conditions are met and the analysis shows, that the fastest is not always the best.
The same applies for directed graphs, as is shown in the last part. There, another more complex measure on graphs is introduced. I continue testing the applicability of several null-models; in the end, a set of equations proves to be fast and good enough as long as conditions regarding the degree sequence are met.

Tire-soil interaction is important for the performance of off-road vehicles and the soil compaction in the agricultural field. With an analytical model, which is integrated in multibody-simulation software, and a Finite Element model, the forces and moments generated on the tire-soil contact patch were studied to analyze the tire performance. Simulations with these two models for different tire operating conditions were performed to evaluate the mechanical behaviors of an excavator tire. For the FE model validation a single wheel tester connected to an excavator arm was designed. Field tests were carried out to examine the tire vertical stiffness, the contact pressure on the tire – hard ground interface, the longitudinal/vertical force and the compaction of the sandy clay from the test field under specified operating conditions. The simulation and experimental results were compared to evaluate the model quality. The Magic Formula was used to fit the curves of longitudinal and lateral forces. A simplified tire-soil interaction model based on the fitted Magic Formula could be established and further applied to the simulation of vehicle-soil interaction.

Analyzing Centrality Indices in Complex Networks: an Approach Using Fuzzy Aggregation Operators
(2018)

The identification of entities that play an important role in a system is one of the fundamental analyses being performed in network studies. This topic is mainly related to centrality indices, which quantify node centrality with respect to several properties in the represented network. The nodes identified in such an analysis are called central nodes. Although centrality indices are very useful for these analyses, there exist several challenges regarding which one fits best
for a network. In addition, if the usage of only one index for determining central
nodes leads to under- or overestimation of the importance of nodes and is
insufficient for finding important nodes, then the question is how multiple indices
can be used in conjunction in such an evaluation. Thus, in this thesis an approach is proposed that includes multiple indices of nodes, each indicating
an aspect of importance, in the respective evaluation and where all the aspects of a node’s centrality are analyzed in an explorative manner. To achieve this
aim, the proposed idea uses fuzzy operators, including a parameter for generating different types of aggregations over multiple indices. In addition, several preprocessing methods for normalization of those values are proposed and discussed. We investigate whether the choice of different decisions regarding the
aggregation of the values changes the ranking of the nodes or not. It is revealed that (1) there are nodes that remain stable among the top-ranking nodes, which
makes them the most central nodes, and there are nodes that remain stable
among the bottom-ranking nodes, which makes them the least central nodes; and (2) there are nodes that show high sensitivity to the choice of normalization
methods and/or aggregations. We explain both cases and the reasons why the nodes’ rankings are stable or sensitive to the corresponding choices in various networks, such as social networks, communication networks, and air transportation networks.

Image restoration and enhancement methods that respect important features such as edges play a fundamental role in digital image processing. In the last decades a large
variety of methods have been proposed. Nevertheless, the correct restoration and
preservation of, e.g., sharp corners, crossings or texture in images is still a challenge, in particular in the presence of severe distortions. Moreover, in the context of image denoising many methods are designed for the removal of additive Gaussian noise and their adaptation for other types of noise occurring in practice requires usually additional efforts.
The aim of this thesis is to contribute to these topics and to develop and analyze new
methods for restoring images corrupted by different types of noise:
First, we present variational models and diffusion methods which are particularly well
suited for the restoration of sharp corners and X junctions in images corrupted by
strong additive Gaussian noise. For their deduction we present and analyze different
tensor based methods for locally estimating orientations in images and show how to
successfully incorporate the obtained information in the denoising process. The advantageous
properties of the obtained methods are shown theoretically as well as by
numerical experiments. Moreover, the potential of the proposed methods is demonstrated
for applications beyond image denoising.
Afterwards, we focus on variational methods for the restoration of images corrupted
by Poisson and multiplicative Gamma noise. Here, different methods from the literature
are compared and the surprising equivalence between a standard model for
the removal of Poisson noise and a recently introduced approach for multiplicative
Gamma noise is proven. Since this Poisson model has not been considered for multiplicative
Gamma noise before, we investigate its properties further for more general
regularizers including also nonlocal ones. Moreover, an efficient algorithm for solving
the involved minimization problems is proposed, which can also handle an additional
linear transformation of the data. The good performance of this algorithm is demonstrated
experimentally and different examples with images corrupted by Poisson and
multiplicative Gamma noise are presented.
In the final part of this thesis new nonlocal filters for images corrupted by multiplicative
noise are presented. These filters are deduced in a weighted maximum likelihood
estimation framework and for the definition of the involved weights a new similarity measure for the comparison of data corrupted by multiplicative noise is applied. The
advantageous properties of the new measure are demonstrated theoretically and by
numerical examples. Besides, denoising results for images corrupted by multiplicative
Gamma and Rayleigh noise show the very good performance of the new filters.

In this work we study and investigate the minimum width annulus problem (MWAP), the circle center location or circle location problem (CLP) and the point center location or point location problem (PLP) on Rectilinear and Chebyshev planes as well as in networks. The relations between the problems have served as a basis for finding of elegant solution, algorithms for both new and well known problems. So, MWAP was formulated and investigated in Rectilinear space. In contrast to Euclidean metric, MWAP and PLP have at least one common optimal point. Therefore, MWAP on Rectilinear plane was solved in linear time with the help of PLP. Hence, the solution sequence was PLP-->MWAP. It was shown, that MWAP and CLP are equivalent. Thus, CLP can be also solved in linear time. The obtained results were analysed and transfered to Chebyshev metric. After that, the notions of circle, sphere and annulus in networks were introduced. It should be noted that the notion of a circle in a network is different from the notion of a cycle. An O(mn) time algorithm for solution of MWAP was constructed and implemented. The algorithm is based on the fact that the middle point of an edge represents an optimal solution of a local minimum width annulus on this edge. The resulting complexity is better than the complexity O(mn+n^2logn) in unweighted case of the fastest known algorithm for minimizing of the range function, which is mathematically equivalent to MWAP. MWAP in unweighted undirected networks was extended to the MWAP on subsets and to the restricted MWAP. Resulting problems were analysed and solved. Also the p–minimum width annulus problem was formulated and explored. This problem is NP–hard. However, the p–MWAP has been solved in polynomial O(m^2n^3p) time with a natural assumption, that each minimum width annulus covers all vertexes of a network having distances to the central point of annulus less than or equal to the radius of its outer circle. In contrast to the planar case MWAP in undirected unweighted networks have appeared to be a root problem among considered problems. During investigation of properties of circles in networks it was shown that the difference between planar and network circles is significant. This leads to the nonequivalence of CLP and MWAP in the general case. However, MWAP was effectively used in solution procedures for CLP giving the sequence MWAP-->CLP. The complexity of the developed and implemented algorithm is of order O(m^2n^2). It is important to mention that CLP in networks has been formulated for the first time in this work and differs from the well–studied location of cycles in networks. We have constructed an O(mn+n^2logn) algorithm for well–known PLP. The complexity of this algorithm is not worse than the complexity of the currently best algorithms. But the concept of the solution procedure is new – we use MWAP in order to solve PLP building the opposite to the planar case solution sequence MWAP-->PLP and this method has the following advantages: First, the lower bounds LB obtained in the solution procedure are proved to be in any case better than the strongest Halpern’s lower bound. Second, the developed algorithm is so simple that it can be easily applied to complex networks manually. Third, the empirical complexity of the algorithm is equal to O(mn). MWAP was extended to and explored in directed unweighted and weighted networks. The complexity bound O(n^2) of the developed algorithm for finding of the center of a minimum width annulus in the unweighted case does not depend on the number of edges in a network, because the problems can be solved in the order PLP-->MWAP. In the weighted case computational time is of order O(mn^2).

Thermoplastic polymer-polymer composites consist of a polymeric matrix and a
polymeric reinforcement. The combination of these materials offers outstanding
mechanical properties at lower weight than standard fiber reinforced materials.
Furthermore, when both polymeric components originate from the same family or,
ideally, from the same polymer, their sustainability degree is higher than standard
fiber reinforced composites.
A challenge of polymer-polymer composites is the subsequent processing of their
semi-finished materials by heating techniques. Since the fibers are made of meltable
thermoplastic, the reinforcing fiber structure might be lost during the heating process.
Hence, the mechanical properties of an overheated polymer-polymer composite
would decline, and finally, they would be even lower than the neat matrix. A decrease
of process temperature to manage the heating challenge is not reasonable since the
cycle time would be increased at the same time. Therefore, this work pursues the
adaption of a fast and selective heating method on the use with polymer-polymer
composites. Inductively activatable particles, so-called susceptors, were distributed in
the matrix to evoke a local heating in the matrix when being exposed to an
alternating magnetic field. In this way, the energy input to the fibers is limited.
The experimental series revealed the induction particle heating effect to be mainly
related to susceptor material, susceptor fraction, susceptor distribution as well as
magnetic field strength, coupling distance, and heating time. A proper heating was
achieved with ferromagnetic particles at a filler content of only 5 wt-% in HDPE as
well as with its respective polymer fiber reinforced composites. The study included
the analysis of susceptor impact on mechanical and thermal matrix properties as well
as a degradation evaluation. The susceptors were identified to have only a marginal
impact on matrix properties. Furthermore, a semi-empiric simulation of the particle
induction heating was applied, which served for the investigation of intrinsic melting
processes.
The achieved results, the experimental as well as the analytic study, were
successfully adapted to a thermoforming process with a polymer-polymer material,
which had been preheated by means of particle induction.

The overall goal of the work is to simulate rarefied flows inside geometries with moving boundaries. The behavior of a rarefied flow is characterized through the Knudsen number \(Kn\), which can be very small (\(Kn < 0.01\) continuum flow) or larger (\(Kn > 1\) molecular flow). The transition region (\(0.01 < Kn < 1\)) is referred to as the transition flow regime.
Continuum flows are mainly simulated by using commercial CFD methods, which are used to solve the Euler equations. In the case of molecular flows one uses statistical methods, such as the Direct Simulation Monte Carlo (DSMC) method. In the transition region Euler equations are not adequate to model gas flows. Because of the rapid increase of particle collisions the DSMC method tends to fail, as well
Therefore, we develop a deterministic method, which is suitable to simulate problems of rarefied gases for any Knudsen number and is appropriate to simulate flows inside geometries with moving boundaries. Thus, the method we use is the Finite Pointset Method (FPM), which is a mesh-free numerical method developed at the ITWM Kaiserslautern and is mainly used to solve fluid dynamical problems.
More precisely, we develop a method in the FPM framework to solve the BGK model equation, which is a simplification of the Boltzmann equation. This equation is mainly used to describe rarefied flows.
The FPM based method is implemented for one and two dimensional physical and velocity space and different ranges of the Knudsen number. Numerical examples are shown for problems with moving boundaries. It is seen, that our method is superior to regular grid methods with respect to the implementation of boundary conditions. Furthermore, our results are comparable to reference solutions gained through CFD- and DSMC methods, respectevly.

In this thesis, we focus on the application of the Heath-Platen (HP) estimator in option
pricing. In particular, we extend the approach of the HP estimator for pricing path dependent
options under the Heston model. The theoretical background of the estimator
was first introduced by Heath and Platen [32]. The HP estimator was originally interpreted
as a control variate technique and an application for European vanilla options was
presented in [32]. For European vanilla options, the HP estimator provided a considerable
amount of variance reduction. Thus, applying the technique for path dependent options
under the Heston model is the main contribution of this thesis.
The first part of the thesis deals with the implementation of the HP estimator for pricing
one-sided knockout barrier options. The main difficulty for the implementation of the HP
estimator is located in the determination of the first hitting time of the barrier. To test the
efficiency of the HP estimator we conduct numerical tests with regard to various aspects.
We provide a comparison among the crude Monte Carlo estimation, the crude control
variate technique and the HP estimator for all types of barrier options. Furthermore, we
present the numerical results for at the money, in the money and out of the money barrier
options. As numerical results imply, the HP estimator performs superior among others
for pricing one-sided knockout barrier options under the Heston model.
Another contribution of this thesis is the application of the HP estimator in pricing bond
options under the Cox-Ingersoll-Ross (CIR) model and the Fong-Vasicek (FV) model. As
suggested in the original paper of Heath and Platen [32], the HP estimator has a wide
range of applicability for derivative pricing. Therefore, transferring the structure of the
HP estimator for pricing bond options is a promising contribution. As the approximating
Vasicek process does not seem to be as good as the deterministic volatility process in the
Heston setting, the performance of the HP estimator in the CIR model is only relatively
good. However, for the FV model the variance reduction provided by the HP estimator is
again considerable.
Finally, the numerical result concerning the weak convergence rate of the HP estimator
for pricing European vanilla options in the Heston model is presented. As supported by
numerical analysis, the HP estimator has weak convergence of order almost 1.

This thesis discusses several applications of computational topology to the visualization
of scalar fields. Scalar field data come from different measurements and simulations. The
intrinsic properties of this kind of data, which make the visualization of it to a complicated
task, are the large size and presence of noise. Computational topology is a powerful tool
for automatic feature extraction, which allows the user to interpret the information contained
in the dataset in a more efficient way. Utilizing it one can make the main purpose of
scientific visualization, namely extracting knowledge from data, a more convenient task.
Volume rendering is a class of methods designed for realistic visual representation of 3D
scalar fields. It is used in a wide range of applications with different data size, noise
rate and requirements on interactivity and flexibility. At the moment there is no known
technique which can meet the needs of every application domain, therefore development
of methods solving specific problems is required. One of such algorithms, designed for
rendering of noisy data with high frequencies is presented in the first part of this thesis.
The method works with multidimensional transfer functions and is especially suited for
functions exhibiting sharp features. Compared with known methods the presented algorithm
achieves better visual quality with a faster performance in presence of mentioned
features. An improvement on the method utilizing a topological theory, Morse theory, and
a topological construct, Morse-Smale complex, is also presented in this part of the thesis.
The improvement allows for performance speedup at a little precomputation and memory
cost.
The usage of topological methods for feature extraction on a real world dataset often
results in a very large feature space which easily leads to information overflow. Topology
simplification is designed to reduce the number of features and allow a domain expert
to concentrate on the most important ones. In the terms of Morse theory features are
represented by critical points. An importance measure which is usually used for removing
critical points is called homological persistence. Critical points are cancelled pairwise
according to their homological persistence value. In the presence of outlier-like noise
homological persistence has a clear drawback: the outliers get a high importance value
assigned and therefore are not being removed. In the second part of this thesis a new
importance measure is presented which is especially suited for data with outliers. This
importance measure is called scale space persistence. The algorithm for the computation
of this measure is based on the scale space theory known from the area of computer
vision. The development of a critical point in scale space gives information about its
spacial extent, therefore outliers can be distinguished from other critical points. The usage
of the presented importance measure is demonstrated on a real world application, crater
identification on a surface of Mars.
The third part of this work presents a system for general interactive topology analysis
and exploration. The development of such a system is motivated by the fact that topological
methods are often considered to be complicated and hard to understand, because
application of topology for visualization requires deep understanding of the mathematical
background behind it. A domain expert exploring the data using topology for feature
extraction needs an intuitive way to manipulate the exploration process. The presented
system is based on an intuitive notion of a scene graph, where the user can choose and
place the component blocks to achieve an individual result. This way the domain expert
can extract more knowledge from given data independent on the application domain. The
tool gives the possibility for calculation and simplification of the underlying topological
structure, Morse-Smale complex, and also the visualization of parts of it. The system also
includes a simple generic query language to acquire different structures of the topological
structure at different levels of hierarchy.
The fourth part of this dissertation is concentrated on an application of computational
geometry for quality assessment of a triangulated surface. Quality assessment of a triangulation
is called surface interrogation and is aimed for revealing intrinsic irregularities
of a surface. Curvature and continuity are the properties required to design a visually
pleasing geometric object. For example, a surface of a manufactured body usually should
be convex without bumps of wiggles. Conventional rendering methods hide the regions
of interest because of smoothing or interpolation. Two new methods which are presented
here: curvature estimation using local fitting with B´ezier patches and computation of reflection
lines for visual representation of continuity, are specially designed for assessment
problems. The examples and comparisons presented in this part of the thesis prove the
benefits of the introduced algorithms. The methods are also well suited for concurrent visualization
of the results from simulation and surface interrogation to reveal the possible
intrinsic relationship between them.

Photonic crystals are inhomogeneous dielectric media with periodic variation of the refractive index. A photonic crystal gives us new tools for the manipulation of photons and thus has received great interests in a variety of fields. Photonic crystals are expected to be used in novel optical devices such as thresholdless laser diodes, single-mode light emitting diodes, small waveguides with low-loss sharp bends, small prisms, and small integrated optical circuits. They can be operated in some aspects as "left handed materials" which are capable of focusing transmitted waves into a sub-wavelength spot due to negative refraction. The thesis is focused on the applications of photonic crystals in communications and optical imaging: • Photonic crystal structures for potential dispersion management in optical telecommunication systems • 2D non-uniform photonic crystal waveguides with a square lattice for wide-angle beam refocusing using negative refraction • 2D non-uniform photonic crystal slabs with triangular lattice for all-angle beam refocusing • Compact phase-shifted band-pass transmission filter based on photonic crystals

The proliferation of sensors in everyday devices – especially in smartphones – has led to crowd sensing becoming an important technique in many urban applications ranging from noise pollution mapping or road condition monitoring to tracking the spreading of diseases. However, in order to establish integrated crowd sensing environments on a large scale, some open issues need to be tackled first. On a high level, this thesis concentrates on dealing with two of those key issues: (1) efficiently collecting and processing large amounts of sensor data from smartphones in a scalable manner and (2) extracting abstract data models from those collected data sets thereby enabling the development of complex smart city services based on the extracted knowledge.
Going more into detail, the first main contribution of this thesis is the development of methods and architectures to facilitate simple and efficient deployments, scalability and adaptability of crowd sensing applications in a broad range of scenarios while at the same time enabling the integration of incentivation mechanisms for the participating general public. During an evaluation within a complex, large-scale environment it is shown that real-world deployments of the proposed data recording architecture are in fact feasible. The second major contribution of this thesis is the development of a novel methodology for using the recorded data to extract abstract data models which are representing the inherent core characteristics of the source data correctly. Finally – and in order to bring together the results of the thesis – it is demonstrated how the proposed architecture and the modeling method can be used to implement a complex smart city service by employing a data driven development approach.

The Wilkie model is a stochastic asset model, developed by A.D. Wilkie in 1984 with a purpose to explore the behaviour of investment factors of insurers within the United Kingdom. Even so, there is still no analysis that studies the Wilkie model in a portfolio optimization framework thus far. Originally, the Wilkie model is considering a discrete-time horizon and we apply the concept of Wilkie model to develop a suitable ARIMA model for Malaysian data by using Box-Jenkins methodology. We obtained the estimated parameters for each sub model within the Wilkie model that suits the case of Malaysia, and permits us to analyse the result based on statistics and economics view. We then tend to review the continuous time case which was initially introduced by Terence Chan in 1998. The continuous-time Wilkie model inspired is then being employed to develop the wealth equation of a portfolio that consists of a bond and a stock. We are interested in building portfolios based on three well-known trading strategies, a self-financing strategy, a constant growth optimal strategy as well as a buy-and-hold strategy. In dealing with the portfolio optimization problems, we use the stochastic control technique consisting of the maximization problem itself, the Hamilton-Jacobi-equation, the solution to the Hamilton-Jacobi-equation and finally the verification theorem. In finding the optimal portfolio, we obtained the specific solution of the Hamilton-Jacobi-equation and proved the solution via the verification theorem. For a simple buy-and-hold strategy, we use the mean-variance analysis to solve the portfolio optimization problem.

In this thesis, we have dealt with two modeling approaches of the credit risk, namely the structural (firm value) and the reduced form. In the former one, the firm value is modeled by a stochastic process and the first hitting time of this stochastic process to a given boundary defines the default time of the firm. In the existing literature, the stochastic process, triggering the firm value, has been generally chosen as a diffusion process. Therefore, on one hand it is possible to obtain closed form solutions for the pricing problems of credit derivatives and on the other hand the optimal capital structure of a firm can be analysed by obtaining closed form solutions of firm's corporate securities such as; equity value, debt value and total firm value, see Leland(1994). We have extended this approach by modeling the firm value as a jump-diffusion process. The choice of the jump-diffusion process was a crucial step to obtain closed form solutions for corporate securities. As a result, we have chosen a jump-diffusion process with double exponentially distributed jump heights, which enabled us to analyse the effects of jump on the optimal capital structure of a firm. In the second part of the thesis, by following the reduced form models, we have assumed that the default is triggered by the first jump of a Cox process. Further, by following Schönbucher(2005), we have modeled the forward default intensity of a firm as a geometric Brownian motion and derived pricing formulas for credit default swap options in a more general setup than the ones in Schönbucher(2005).

The usage of sensors in modern technical systems and consumer products is in a rapid increase. This advancement can be characterized by two major factors, namely, the mass introduction of consumer oriented sensing devices to the market and the sheer amount of sensor data being generated. These characteristics raise subsequent challenges regarding both the consumer sensing devices' reliability and the management and utilization of the generated sensor data. This thesis addresses these challenges through two main contributions. It presents a novel framework that leverages sentiment analysis techniques in order to assess the quality of consumer sensing devices. It also couples semantic technologies with big data technologies to present a new optimized approach for realization and management of semantic sensor data, hence providing a robust means of integration, analysis, and reuse of the generated data. The thesis also presents several applications that show the potential of the contributions in real-life scenarios.
Due to the broad range, growing feature set and fast release pace of new sensor-based products, evaluating these products is very challenging as standard product testing is not practical. As an alternative, an end-to-end aspect-based sentiment summarizer pipeline for evaluation of consumer sensing devices is presented. The pipeline uses product reviews to extract the sentiment at the aspect level and includes several components namely, product name extractor, aspects extractor and a lexicon-based sentiment extractor which handles multiple sentiment analysis challenges such as sentiment shifters, negations, and comparative sentences among others. The proposed summarizer's components generally outperform the state-of-the-art approaches. As a use case, features of the market leading fitness trackers are evaluated and a dynamic visual summarizer is presented to display the evaluation results and to provide personalized product recommendations for potential customers.
The increased usage of sensing devices in the consumer market is accompanied with increased deployment of sensors in various other fields such as industry, agriculture, and energy production systems. This necessitates using efficient and scalable methods for storing and processing of sensor data. Coupling big data technologies with semantic techniques not only helps to achieve the desired storage and processing goals, but also facilitates data integration, data analysis, and the utilization of data in unforeseen future applications through preserving the data generation context. This thesis proposes an efficient and scalable solution for semantification, storage and processing of raw sensor data through ontological modelling of sensor data and a novel encoding scheme that harnesses the split between the statements of the conceptual model of an ontology (TBox) and the individual facts (ABox) along with in-memory processing capabilities of modern big data systems. A sample use case is further introduced where a smartphone is deployed in a transportation bus to collect various sensor data which is then utilized in detecting street anomalies.
In addition to the aforementioned contributions, and to highlight the potential use cases of sensor data publicly available, a recommender system is developed using running route data, used for proximity-based retrieval, to provide personalized suggestions for new routes considering the runner's performance, visual and nature of route preferences.
This thesis aims at enhancing the integration of sensing devices in daily life applications through facilitating the public acquisition of consumer sensing devices. It also aims at achieving better integration and processing of sensor data in order to enable new potential usage scenarios of the raw generated data.

The Symbol Grounding Problem (SGP) is one of the first attempts to proposed a hypothesis about mapping abstract concepts and the real world. For example, the concept "ball" can be represented by an object with a round shape (visual modality) and phonemes /b/ /a/ /l/ (audio modality).
This thesis is inspired by the association learning presented in infant development.
Newborns can associate visual and audio modalities of the same concept that are presented at the same time for vocabulary acquisition task.
The goal of this thesis is to develop a novel framework that combines the constraints of the Symbol Grounding Problem and Neural Networks in a simplified scenario of association learning in infants. The first motivation is that the network output can be considered as numerical symbolic features because the attributes of input samples are already embedded. The second motivation is the association between two samples is predefined before training via the same vectorial representation. This thesis proposes to associate two samples and the vectorial representation during training. Two scenarios are considered: sample pair association and sequence pair association.
Three main contributions are presented in this work.
The first contribution is a novel Symbolic Association Model based on two parallel MLPs.
The association task is defined by learning that two instances that represent one concept.
Moreover, a novel training algorithm is defined by matching the output vectors of the MLPs with a statistical distribution for obtaining the relationship between concepts and vectorial representations.
The second contribution is a novel Symbolic Association Model based on two parallel LSTM networks that are trained on weakly labeled sequences.
The definition of association task is extended to learn that two sequences represent the same series of concepts.
This model uses a training algorithm that is similar to MLP-based approach.
The last contribution is a Classless Association.
The association task is defined by learning based on the relationship of two samples that represents the same unknown concept.
In summary, the contributions of this thesis are to extend Artificial Intelligence and Cognitive Computation research with a new constraint that is cognitive motivated. Moreover, two training algorithms with a new constraint are proposed for two cases: single and sequence associations. Besides, a new training rule with no-labels with promising results is proposed.

The lattice Boltzmann method (LBM) is a numerical solver for the Navier-Stokes equations, based on an underlying molecular dynamic model. Recently, it has been extended towardsthe simulation of complex fluids. We use the asymptotic expansion technique to investigate the standard scheme, the initialization problem and possible developments towards moving boundary and fluid-structure interaction problems. At the same time, it will be shown how the mathematical analysis can be used to understand and improve the algorithm. First of all, we elaborate the tool "asymptotic analysis", proposing a general formulation of the technique and explaining the methods and the strategy we use for the investigation. A first standard application to the LBM is described, which leads to the approximation of the Navier-Stokes solution starting from the lattice Boltzmann equation. As next, we extend the analysis to investigate origin and dynamics of initial layers. A class of initialization algorithms to generate accurate initial values within the LB framework is described in detail. Starting from existing routines, we will be able to improve the schemes in term of efficiency and accuracy. Then we study the features of a simple moving boundary LBM. In particular, we concentrate on the initialization of new fluid nodes created by the variations of the computational fluid domain. An overview of existing possible choices is presented. Performing a careful analysis of the problem we propose a modified algorithm, which produces satisfactory results. Finally, to set up an LBM for fluid structure interaction, efficient routines to evaluate forces are required. We describe the Momentum Exchange algorithm (MEA). Precise accuracy estimates are derived, and the analysis leads to the construction of an improved method to evaluate the interface stresses. In conclusion, we test the defined code and validate the results of the analysis on several simple benchmarks. From the theoretical point of view, in the thesis we have developed a general formulation of the asymptotic expansion, which is expected to offer a more flexible tool in the investigation of numerical methods. The main practical contribution offered by this work is the detailed analysis of the numerical method. It allows to understand and improve the algorithms, and construct new routines, which can be considered as starting points for future researches.

In change-point analysis the point of interest is to decide if the observations follow one model
or if there is at least one time-point, where the model has changed. This results in two sub-
fields, the testing of a change and the estimation of the time of change. This thesis considers
both parts but with the restriction of testing and estimating for at most one change-point.
A well known example is based on independent observations having one change in the mean.
Based on the likelihood ratio test a test statistic with an asymptotic Gumbel distribution was
derived for this model. As it is a well-known fact that the corresponding convergence rate is
very slow, modifications of the test using a weight function were considered. Those tests have
a better performance. We focus on this class of test statistics.
The first part gives a detailed introduction to the techniques for analysing test statistics and
estimators. Therefore we consider the multivariate mean change model and focus on the effects
of the weight function. In the case of change-point estimators we can distinguish between
the assumption of a fixed size of change (fixed alternative) and the assumption that the size
of the change is converging to 0 (local alternative). Especially, the fixed case in rarely analysed
in the literature. We show how to come from the proof for the fixed alternative to the
proof of the local alternative. Finally, we give a simulation study for heavy tailed multivariate
observations.
The main part of this thesis focuses on two points. First, analysing test statistics and, secondly,
analysing the corresponding change-point estimators. In both cases, we first consider a
change in the mean for independent observations but relaxing the moment condition. Based on
a robust estimator for the mean, we derive a new type of change-point test having a randomized
weight function. Secondly, we analyse non-linear autoregressive models with unknown
regression function. Based on neural networks, test statistics and estimators are derived for
correctly specified as well as for misspecified situations. This part extends the literature as
we analyse test statistics and estimators not only based on the sample residuals. In both
sections, the section on tests and the one on the change-point estimator, we end with giving
regularity conditions on the model as well as the parameter estimator.
Finally, a simulation study for the case of the neural network based test and estimator is
given. We discuss the behaviour under correct and mis-specification and apply the neural
network based test and estimator on two data sets.

The goal of this thesis is to find ways to improve the analysis of hyperspectral Terahertz images. Although it would be desirable to have methods that can be applied on all spectral areas, this is impossible. Depending on the spectroscopic technique, the way the data is acquired differs as well as the characteristics that are to be detected. For these reasons, methods have to be developed or adapted to be especially suitable for the THz range and its applications. Among those are particularly the security sector and the pharmaceutical industry.
Due to the fact that in many applications the volume of spectra to be organized is high, manual data processing is difficult. Especially in hyperspectral imaging, the literature is concerned with various forms of data organization such as feature reduction and classification. In all these methods, the amount of necessary influence of the user should be minimized on the one hand and on the other hand the adaption to the specific application should be maximized.
Therefore, this work aims at automatically segmenting or clustering THz-TDS data. To achieve this, we propose a course of action that makes the methods adaptable to different kinds of measurements and applications. State of the art methods will be analyzed and supplemented where necessary, improvements and new methods will be proposed. This course of action includes preprocessing methods to make the data comparable. Furthermore, feature reduction that represents chemical content in about 20 channels instead of the initial hundreds will be presented. Finally the data will be segmented by efficient hierarchical clustering schemes. Various application examples will be shown.
Further work should include a final classification of the detected segments. It is not discussed here as it strongly depends on specific applications.

The main goal of this thesis is twofold. First, the thesis aims at bridging the gap between existing Pattern Recognition (PR) methods of automatic signature verification and the requirements for their application in forensic science. This gap, attributed by various factors ranging from system definition to evaluation, prevents automatic methods from being used by Forensic Handwriting Examiners (FHEs). Second, the thesis presents novel signature verification methods developed particularly considering the implications of forensic casework, and outperforming the state-of-the-art PR methods.
The first goal of the thesis is attributed by four important factors, i.e., data, terminology, output reporting, and how evaluation of automatic systems is carried out today. It is argued that traditionally the signature data used in PR are not actual/close representative of the real world data (especially that available in forensic cases). The systems trained on such data are, therefore, not suitable for forensic environments. This situation can be tackled by providing more realistic data to PR researchers. To this end, various signature and handwriting datasets are gathered in collaboration with FHEs and are made publicly available through the course of this thesis. A special attention is given to disguised signatures--where authentic authors purposefully make their signatures look like a forgery. This genre was at large neglected in PR research previously.
The terminology used, in the two communities - PR and FHEs, differ greatly. In fact, even in PR, there is no standard terminology and people often differ in the usage of various terms particularly related to various types of forged signatures/handwriting. The thesis presents a new terminology that is equally useful for both forensic scientists and PR researchers. The proposed terminology is hoped to increase the general acceptability of automatic signature analysis systems in forensic science.
The outputs reported by general signature verification systems are not acceptable for FHEs and courts as they are either binary (yes/no) or score (raw evidence) based on similarity/difference. The thesis describes that automatic systems should rather report the probability of observing the evidence (e.g., a certain similarity/difference score) given the signature belongs to the acclaimed identity, and the probability of observing the same evidence given the signature does not belong to the acclaimed identity. This will take automatic systems from hard decisions to soft decisions, thereby enabling them to report likelihood ratios that actually represent the evidential value of the score rather than the raw score (evidence).
When automatic systems report soft decisions (as in the form of likelihood ratios), the thesis argues that there must be some methods to evaluate such systems. This thesis presents one such adaptation. The thesis argues that the state-of-the-art evaluation methods, like equal error rate and area under curve, do not address the needs of forensic science. These needs require an assessment of the evidential value of signature verification, rather than a hard/pure classification (accept/reject binary decision). The thesis demonstrates and validates a relatively simple adaptation of the current verification methods based on the Bayesian inference dependent calibration of continuous scores rather than hard classifications (binary and/or score based classification).
The second goal of this thesis is to introduce various local features based techniques which are capable of performing signature verification in forensic cases and reporting results as anticipated by FHEs and courts. This is an important contribution of the thesis because of the following two reasons. First, to the best of author's knowledge, local feature descriptors are for the first time used for development of signature verification systems for forensic environments (particularly considering disguised signatures). Previously, such methods have been heavily used for recognition tasks, rather than verification of writing behaviors, such as character and digit recognition. Second, the proposed methods not only report the more traditional decisions (like scores-usually reported in PR) but also the Bayesian inference based likelihood ratios (suitable for courts and forensic cases).
Furthermore, the thesis also provides a detailed man vs. machine comparison for signature verification tasks. The men, in this comparison, are forensic scientists serving as forensic handwriting examiners and having experience of varying number of years. The machines are the local features based methods proposed in this thesis, along with various other state-of-the-art signature verification systems. The proposed methods clearly outperform the state-of-the-art systems, and sometimes the human experts.
Finally, the thesis details various tasks that have been performed in the areas closely related to signature verification and its application in forensic casework. These include, developing novel local feature based methods for extraction of signatures/handwritten text from document images, hyper-spectral image analysis for extraction of signatures from forensic documents, and analysis of on-line signatures acquired through specialized pens equipped with Accelerometer and Gyroscope. These tasks are important as they enable the thesis to take PR systems one step further close to direct application in forensic cases.

Many loads acting on a vehicle depend on the condition and quality of roads
traveled as well as on the driving style of the motorist. Thus, during vehicle development,
good knowledge on these further operations conditions is advantageous.
For that purpose, usage models for different kinds of vehicles are considered. Based
on these mathematical descriptions, representative routes for multiple user
types can be simulated in a predefined geographical region. The obtained individual
driving schedules consist of coordinates of starting and target points and can
thus be routed on the true road network. Additionally, different factors, like the
topography, can be evaluated along the track.
Available statistics resulting from travel survey are integrated to guarantee reasonable
trip length. Population figures are used to estimate the number of vehicles in
contained administrative units. The creation of thousands of those geo-referenced
trips then allows the determination of realistic measures of the durability loads.
Private as well as commercial use of vehicles is modeled. For the former, commuters
are modeled as the main user group conducting daily drives to work and
additional leisure time a shopping trip during workweek. For the latter, taxis as
example for users of passenger cars are considered. The model of light-duty commercial
vehicles is split into two types of driving patterns, stars and tours, and in
the common traffic classes of long-distance, local and city traffic.
Algorithms to simulate reasonable target points based on geographical and statistical
data are presented in detail. Examples for the evaluation of routes based
on topographical factors and speed profiles comparing the influence of the driving
style are included.

In this thesis we propose an efficient method to compute the automorphism group of an arbitrary hyperelliptic function field over a given constant field of odd characteristic as well as over its algebraic extensions. Beside theoretical applications, knowing the automorphism group also is useful in cryptography: The Jacobians of hyperelliptic curves have been suggested by Koblitz as groups for cryptographic purposes, because the discrete logarithm is believed to be hard in this kind of groups. In order to obtain "secure" Jacobians, it is necessary to prevent attacks like Pohlig/Hellman's and Duursma/Gaudry/Morain's. The latter is only feasible, if the corresponding function field has an automorphism of large order. According to a theorem by Madan, automorphisms seem to allow the Pohlig/Hellman attack, too. Hence, the function field of a secure Jacobian will most likely have trivial automorphism group. In other words: Computing the automorphism group of a hyperelliptic function field promises to be a quick test for insecure Jacobians. Let us outline our algorithm for computing the automorphism group Aut(F/k) of a hyperelliptic function field F/k. It is well known that Aut(F/k) is finite. For each possible subgroup U of Aut(F/k), Rolf Brandt has given a normal form for F if k is algebraically closed. Hence our problem reduces to deciding, whether a given hyperelliptic function field F=k(x,y), y^2=D_x has a defining equation of the form given by Brandt. This question can be answered using theorem III.18: We have F=k(t,u), u^2=D_t iff x is a fraction of linear polynomials in t and y=pu, where the factor p is a rational function w.r.t. t which can be determined explicitly from the coefficients of x. This condition can be checked efficiently using Gröbner basis techniques. With additional effort, it is also possible to compute Aut(F/k) if k is not algebraically closed. Investigating a huge number of examples one gets the impression that the above motivation of getting a quick test for insecure Jacobians is partially fulfilled: The computation of automorphism groups is quite fast using the suggested algorithm. Furthermore, fields with nontrivial automorphism groups seem to have insecure Jacobians. Only fields of small characteristic seem to have a reasonable chance of having nontrivial automorphisms. Hence, from a cryptographic point of view, computing Aut(F/k) seems to make sense whenever k has small characteristic.

Inappropriate speed is the most common reason for road traffic accidents world wide. Thus, a necessity for speed management exists. The so-called SUNflower states Sweden, the United Kingdom and the Netherlands - each spending strong effort in traffic safety policies - have great success in reducing mean road speeds and speed variances through speed management. However, the effect is still insufficient for gaining real traffic safety. Thus, there is a discussion to make use of technical in-vehicle devices. One of these technologies called Intelligent Speed Adaptation (ISA) reduces vehicle speeds. This is done either by warning the driver that he is speeding, or activating the accelerator pedal with a counterforce, or reducing the gasoline supply to the motor. The three ways of reducing the speed are called version 1-3. The EC-project for research on speed adaptation policies on European roads (PROSPER) deals with strategic proposals for the implementation of the different ISA-versions. This thesis includes selected results of PROSPER. In this thesis two empiric surveys were done in order to give an overview about the basic conditions (e.g. social, economic, technical aspects) for an ISA implementation in Germany. On one hand, a stakeholder analysis and questionnaire using the Delphi-method has been accomplished in two rounds. On the other hand, a questionnaire with speed offenders has been accomplished, too, in two rounds. In addition, the author created an expert pool consisting of 23 experts representing the most important fields of science and practice in which ISA is involved. The author made phone or personal interviews with most of the experts. 12 experts also produced a detailed publication on their professional point of view towards ISA. The two surveys and the professional comments on ISA led to four possible implementation scenarios for ISA in Germany. However, due to a strong political opposition against ISA it is also thinkable that ISA is not implemented or the implementation process starts after 2015 (i.e. outside the aimed period of time). The scenarios are as follows: A) Implementation of version 1 by market forces with governmental subventions. B) Implementation of version 2 by market forces supported by traffic safety institutions and image-making processes. C) Implementation of a modified version 3 by law for speed offenders instead of cancellation of the driving licence. D) Implementation of various versions in Germany because of a broad implementation of ISA in the SUNflower states. X) Non-implementation of ISA leads to the necessity of alternative speed management measures. The author prefers scenario B because - ceteris paribus - it seems to be the most likely way to implement the technology. As soon as ISA reaches technical maturity, the implementation process has to be accomplished in three steps. 1) Marketing and image making 2) Margin introduction 3) Market penetration This implementation process for ISA by market forces could effect a percentage of at least 15% of all vehicles equipped with ISA before the year 2015.

Analog sensor electronics requires special care during design in order to increase the quality and precision of the signal, and the life time of the product. Nevertheless, it can experience static deviations due to the manufacturing tolerances, and dynamic deviations due to operating in non-ideal environment. Therefore, the advanced applications such as MEMS technology employs calibration loop to deal with the deviations, but unfortunately, it is considered only in the digital domain, which cannot cope with all the analog deviations such as saturation of the analog signal, etc. On the other hand, rapid-prototyping is essential to decrease the development time, and the cost of the products for small quantities. Recently, evolvable hardware has been developed with the motivation to cope with the mentioned sensor electronic problems. However the industrial specifications and requirements are not considered in the hardware learning loop. Indeed, it minimizes the error between the required output and the real output generated due to given test signal. The aim of this thesis is to synthesize the generic organic-computing sensor electronics and return hardware with predictable behavior for embedded system applications that gains the industrial acceptance; therefore, the hardware topology is constrained to the standard hardware topologies, the hardware standard specifications are included in the optimization, and hierarchical optimization are abstracted from the synthesis tools to evolve first the building blocks, then evolve the abstract level that employs these optimized blocks. On the other hand, measuring some of the industrial specifications needs expensive equipments and some others are time consuming which is not fortunate for embedded system applications. Therefore, the novel approach "mixtrinsic multi-objective optimization" is proposed that simulates/estimates the set of the specifications that is hard to be measured due to the cost or time requirements, while it measures intrinsically the set of the specifications that has high sensitivity to deviations. These approaches succeed to optimize the hardware to meet the industrial specifications with low cost measurement setup which is essential for embedded system applications.

Fucoidan is a class of biopolymers mainly found in brown seaweeds. Due to its diverse medical importance, homogenous supply as well as a GMP-compliant product is of a special interest. Therefore, in addition to optimization of its extraction and purification from classical resources, other techniques were tried (e.g., marine tissue culture and heterologous expression of enzymes involved in its biosynthesis). Results showed that 17.5% (w/w) crude fucoidan after pre-treatment and extraction was obtained from the brown macroalgae F. vesiculosus. Purification by affinity chromatography improved purity relative to the commercial purified product. Furthermore, biological investigations revealed improved anti-coagulant and anti-viral activities compared with crude fucoidan. Furthermore, callus-like and protoplast cultures as well as bioreactor cultivation were developed from F. vesiculosus representing a new horizon to produce fucoidan biotechnologically. Moreover, heterologous expression of several enzymes involved in its biosynthesis by E. coli (e.g., FucTs and STs) demonstrated the possibility to obtain active enzymes that could be utilized in enzymatic in vitro synthesis of fucoidan. All these competitive techniques could provide the global demands from fucoidan.

Carotenoids are organic lipophilic tetraterpenes ubiquitously present in Nature and found across the three domains of life (Archaea, Bacteria and Eukaryotes). Their structure is characterized by an extensive conjugated double-bond system, which serves as a light-absorbing chromophore, hence determining its colour, and enables carotenoids to absorb energy from other molecules and to act as antioxidant agents. Humans obtain carotenoids mainly via the consumption of fruits and vegetables, and to a smaller extent from other food sources such as fish and eggs. The concentration of carotenoids in the human plasma and tissues has been positively associated with a lower incidence of several chronic diseases including, cancer, diabetes, macular degeneration and cardiovascular conditions, likely due to their antioxidant properties. However, an important aspect of carotenoids, namely β- and α-carotene and β-cryptoxanthin, in human health and development, is their potential to be converted by the body into Vitamin A.
Yet, bioavailability of carotenoids is relatively low (< 30%) and dependent, among others, on dietary factors, such as amount and type of dietary lipids and the presence of dietary fibres. One dietary factor that has been found to negatively impact carotenoid bioaccessibility and cellular uptake in vitro is high concentrations of divalent cations during simulated gastro-intestinal digestion. Nevertheless, the mechanism of action of divalent cations remains unclear. The goal of this thesis was to better understand how divalent cations act during digestion and modulate carotenoid bioavailability. In vitro trials of simulated gastro-intestinal digestion and cellular uptake were run to investigate how varying concentrations of calcium, magnesium and zinc affected the bioaccessibility of both pure carotenoids and carotenoids from food matrices. In order to validate or refute results obtained in vitro, a randomized and double blinded placebo controlled cross-over postprandial trial (24 male participants) was carried out, testing the effect of 3 supplementary calcium doses (0 mg, 500 mg and 1000 mg) on the bioavailability of carotenoids from a spinach based meal. In vitro trials showed that addition of the divalent cations significantly decreased the bioaccessibility of both pure carotenoids (P < 0.001) and those from food matrices (P < 0.01). This effect was dependent on the type of mineral and its concentration. Strongest effects were seen for increasing concentrations of calcium followed by magnesium and zinc. The addition of divalent cations also altered the physico-chemical properties, i.e. viscosity and surface tension, of the digestas. However, the extent of this effect varied according to the type of matrix. The effects on bioaccessibility and physico-chemical properties were accompanied by variations of the zeta-potential of the particles in solution. Taken together, results from the in vitro trials strongly suggested that divalent cations were able to bind bile salts and other surfactant agents, affecting their solubility. The observed i) decrease in macroviscosity, ii) increase in surface tension, and the iii) reduction of the zeta-potential of the digesta, confirmed the removal of surfactant agents from the system, most likely due to precipitation as a result of the lower solubility of the mineral-surfactant complexes. As such, micellarization of carotenoids was hindered, explaining their reduced bioaccessibility. As for the human trial, results showed that there was no significant influence of supplementation with either 500 or 1000 mg of supplemental calcium (in form of carbonate) on the bioavailability of a spinach based meal, as measured by the area-under curve of carotenoid concentrations in the plasma-triacylglycerol rich fraction, suggesting that the in vitro results are not supported in such an in vivo scenario, which may be explained by the initial low bioaccessibility of spinach carotenoids and the dissolution kinetics of the calcium pills. Further investigations are necessary to understand how divalent cations act during in vivo digestion and potentially interact with lipophilic nutrients and food constituents.

A positive affection of human health by nutrition is of high interest, especially for bioactive compounds which are consumed daily in high amounts. This is the case for chlorogenic acids (CGA) ingested by coffee. This molecule class is associated with several possible beneficial health effects observed in vitro that strongly depend on their bioavailability. So far factors influencing bioavailability of CGA such as dose, molecule structure and site of absorption haven´t been investigated sufficiently.
Therefore we performed an in vivo dose-response study with ileostomists, who consumed three different nutritional doses of CGA ingested as instant coffee (4,525 (HIGH); 2,219 (MEDIUM); 1,053 (LOW) μmol CGA). CGA concentrations were determined in ileal fluid, urine and plasma. Furthermore, we conducted an ex vivo study with pig jejunal mucosa using the Ussing chamber model to confirm the in vivo observations. Individual transfer rates of CGA from coffee were investigated, namely: caffeoylquinic acid (CQA), feruloylquinic acid (FQA), caffeic acid (CA), dicaffeoylquinic acid (diCQA) and QA at physiological concentrations (0.2–3.5 mM). Samples were analyzed by HPLC-DAD, -ESI-MS and -ESI-MS/MS.
About ⅔ of the ingested CGA by coffee consumption were available in the colon dose independent. Nevertheless, the results showed that the consumption of higher CGA doses leads to a faster ileal excretion. This corresponds to a plasma AUC0-8h for CGA and metabolites of 4,412 ± 751 nM*h0-8-1 (HIGH), 2,394 ± 637 nM*h0-8-1 (MEDIUM) and 1,782 ± 731 nM*h0-8-1 (LOW) respectively, and a renal excretion of 8.0 ± 4.9% (HIGH), 12.1 ± 6.7% (MEDIUM) and 14.6 ± 6.8% (LOW). Moreover interindividual differences in gastrointestinal transit times were related to differences in total CGA absorption. Thus the variety of patient´s physiology is a decisive bioavailability factor for CGA uptake. This is corroborated ex vivo by a direct proportional relationship of incubation time with absorbed CGA amount.
The consumption of high CGA doses influences the metabolism pattern as an increasing glucuronidation was observed with consumption of increasing CGA doses. However, the different CGA doses have only minor effects on the overall bioavailability which was confirmed ex vivo by a non-saturable passive diffusion of 5-CQA. Furthermore, we identified in the Ussing chamber an active efflux secretion for 5-CQA that decreases its bioavailability and the physicochemical properties of the CGA subgroups as an important bioavailability factor. Transferred amount in increasing order: diCQA, trace amounts; CQA ≈ 1%; CA ≈ 1.5%; FQA ≈ 2%; and QA ≈ 4%.
Altogether, the consumption of increasing CGA doses by coffee had a minor effect on oral bioavailability in ileostomists, such as a slightly increased glucuronidation. Thus, the consumption of high amounts of CGA from coffee in the daily diet is not limiting the CGA concentrations at the site of possible health effects in the human body. However, according to the patient´s physiology the interindividual gastrointestinal transit time which is possibly influenced by dose is influencing CGA bioavailability. Moreover, ex vivo CGA absorption is governed by diffusion as an absorption mechanism corroborating an unsaturable uptake in vivo and by the individual physicochemical properties of CGA.

For many years, most distributed real-time systems employed data communication systems specially tailored to address the specific requirements of individual domains: for instance, Controlled Area Network (CAN) and Flexray in the automotive domain, ARINC 429 [FW10] and TTP [Kop95] in the aerospace domain. Some of these solutions were expensive, and eventually not well understood.
Mostly driven by the ever decreasing costs, the application of such distributed real-time system have drastically increased in the last years in different domains. Consequently, cross-domain communication systems are advantageous. Not only the number of distributed real-time systems have been increasing but also the number of nodes per system, have drastically increased, which in turn increases their network bandwidth requirements. Further, the system architectures have been changing, allowing for applications to spread computations among different computer nodes. For example, modern avionics systems moved from federated to integrated modular architecture, also increasing the network bandwidth requirements.
Ethernet (IEEE 802.3) [iee12] is a well established network standard. Further, it is fast, easy to install, and the interface ICs are cheap [Dec05]. However, Ethernet does not offer any temporal guarantee. Research groups from academia and industry have presented a number of protocols merging the benefits of Ethernet and the temporal guarantees required by distributed real-time systems. Two of these protocols are: Avionics Full-Duplex Switched Ethernet (AFDX) [AFD09] and Time-Triggered Ethernet (TTEthernet) [tim16]. In this dissertation, we propose solutions for two problems faced during the design of AFDX and TTEthernet networks: avoiding data loss due to buffer overflow in AFDX networks with multiple priority traffic, and scheduling of TTEthernet networks.
AFDX guarantees bandwidth separation and bounded transmission latency for each communication channel. Communication channels in AFDX networks are not synchronized, and therefore frames might compete for the same output port, requiring buffering to avoid data loss. To avoid buffer overflow and the resulting data loss, the network designer must reserve a safe, but not too pessimistic amount of memory of each buffer. The current AFDX standard allows for the classification of the network traffic with two priorities. Nevertheless, some commercial solutions provide multiple priorities, increasing the complexity of the buffer backlog analysis. The state-of-the-art AFDX buffer backlog analysis does not provide a method to compute deterministic upper bounds
iiifor buffer backlog of AFDX networks with multiple priority traffic. Therefore, in this dissertation we propose a method to address this open problem. Our method is based on the analysis of the largest busy period encountered by frames stored in a buffer. We identify the ingress (and respective egress) order of frames in the largest busy period that leads to the largest buffer backlog, and then compute the respective buffer backlog upper bound. We present experiments to measure the computational costs of our method.
In TTEthernet, nodes are synchronized, allowing for message transmission at well defined points in time, computed off-line and stored in a conflict-free scheduling table. The computation of such scheduling tables is a NP-complete problem [Kor92], which should be solved in reasonable time for industrial size networks. We propose an approach to efficiently compute a schedule for the TT communication channels in TTEthernet networks, in which we model the scheduling problem as a search tree. As the scheduler traverses the search tree, it schedules the communication channels on a physical link. We presented two approaches to traverse the search tree while progressively creating the vertices of the search tree. A valid schedule is found once the scheduler reaches a valid leaf. If on the contrary, it reaches an invalid leaf, the scheduler backtracks searching for a path to a valid leaf. We present a set of experiments to demonstrate the impact of the input parameters on the time taken to compute a feasible schedule or to deem the set of virtual links infeasible.

Wetlands are special areas that they offer habitat for terrestrial and water life. Wetlands are nest sides also for amphibian, for this reason wetlands offer wide range diversity for species. Wetlands are also reproduction regions for birds. Wetlands have special importance for ecosystem because they obstruct erosion. Wetlands absorb contaminants from water therefore wetlands contribute to clean water and they offer more potable water. Wetlands obstruct waterflood. In that case wetlands must be maintained and conserved. Wetlands must be conserved because wetlands vanish very rapidly because of contamination, excessively agriculture, urban sprawl, dams…etc. this PhD thesis contributes to solve problems of wetlands that they are affected from urbanization especially metropolitan areas. Growth of cities requires more land for settlements; the more settlements bring about the more urban sprawl. The more urban sprawl deteriorates more natural regions. In this cycle wetlands are also affected from urbanization effects. In this sense some precautions should be developed in order to protect wetlands from urbanization effect. These precautions should include anticipation about effects of urbanization. An important tool for conserving wetlands and protecting these regions from cities is land uses and land use planning in city and regional planning. First step of land use planning is determination of settlement appropriateness. Settlement appropriateness contributes to choose correct locations for settlement in this respect wetlands can be affected in minimum level from urban sprawl. This PhD thesis inquires a method about buffer zones around wetlands and Thresholds in basin of wetlands; and this method is examined in two case study areas Mogan and Büyükçekmece Lake. According to results of Mogan and Büyükçekmece Lake the PhD method will be generalized to other quasi wetlands that they exist near cities and are affected from urban sprawl.

Although today’s bipeds are capable of demonstrating impressive locomotion skills, in many aspects, there’s still a big gap compared to the capabilities observed in humans. Partially, this is due to the deployed control paradigms that are mostly based on analytical approaches. The analytical nature of those approaches entails strong model dependencies – regarding the robotic platform as well as the environment – which makes them prone to unknown disturbances. Recently, an increasing number of biologically-inspired control approaches have been presented from which a human-like bipedal gait emerges. Although the control structures only rely on proprioceptive sensory information, the smoothness of the motions and the robustness against external disturbances is impressive. Due to the lack of suitable robotic platforms, until today the controllers have been mostly applied to
simulations.
Therefore, as the first step towards a suitable platform, this thesis presents the Compliant Robotic Leg (CARL) that features mono- as well as biarticular actuation. The design is driven by a set of core-requirements that is primarily derived from the biologically-inspired behavior-based bipedal locomotion control (B4LC) and complemented by further functional aspects from biomechanical research. Throughout the design process, CARL is understood as a unified dynamic system that emerges from the interplay of the mechanics, the electronics, and the control. Thus, having an explicit control approach and the respective gait in mind, the influence of each subsystem on the characteristics of the overall system is considered
carefully.
The result is a planar robotic leg whose three joints are driven by five highly integrated linear SEAs– three mono- and two biarticular actuators – with minimized reflected inertia. The SEAs are encapsulated by FPGA-based embedded nodes that are designed to meet the hard application requirements while enabling the deployment of a full-featured robotic framework. CARL’s foot is implemented using a COTS prosthetic foot; the sensor information is obtained from the deformation of its main structure. Both subsystems are integrated into a leg structure that matches the proportions of a human with a size of 1.7 m.
The functionality of the subsystems, as well as the overall system, is validated experimentally. In particular, the final experiment demonstrates a coordinated walking motion and thereby confirms that CARL can produce the desired behavior – a natural looking, human-like gait is emerging from the interplay of the behavior-based walking control and the mechatronic system. CARL is robust regarding impacts, the redundant actuation system can render the desired joint torques/impedances, and the foot system supports the walking structurally while it provides the necessary sensory information. Considering that there is no movement of the upper trunk, the angle and torque profiles are comparable to the ones found in humans.

The focus of this work has been to develop two families of wavelet solvers for the inner displacement boundary-value problem of elastostatics. Our methods are particularly suitable for the deformation analysis corresponding to geoscientifically relevant (regular) boundaries like sphere, ellipsoid or the actual Earth's surface. The first method, a spatial approach to wavelets on a regular (boundary) surface, is established for the classical (inner) displacement problem. Starting from the limit and jump relations of elastostatics we formulate scaling functions and wavelets within the framework of the Cauchy-Navier equation. Based on numerical integration rules a tree algorithm is constructed for fast wavelet computation. This method can be viewed as a first attempt to "short-wavelength modelling", i.e. high resolution of the fine structure of displacement fields. The second technique aims at a suitable wavelet approximation associated to Green's integral representation for the displacement boundary-value problem of elastostatics. The starting points are tensor product kernels defined on Cauchy-Navier vector fields. We come to scaling functions and a spectral approach to wavelets for the boundary-value problems of elastostatics associated to spherical boundaries. Again a tree algorithm which uses a numerical integration rule on bandlimited functions is established to reduce the computational effort. For numerical realization for both methods, multiscale deformation analysis is investigated for the geoscientifically relevant case of a spherical boundary using test examples. Finally, the applicability of our wavelet concepts is shown by considering the deformation analysis of a particular region of the Earth, viz. Nevada, using surface displacements provided by satellite observations. This represents the first step towards practical applications.

Accurate path tracking control of tractors became a key technology for automation in agriculture. Increasingly sophisticated solutions, however, revealed that accurate path tracking control of implements is at least equally important. Therefore, this work focuses on accurate path tracking control of both tractors and implements. The latter, as a prerequisite for improved control, are equipped with steering actuators like steerable wheels or a steerable drawbar, i.e. the implements are actively steered. This work contributes both new plant models and new control approaches for those kinds of tractor-implement combinations. Plant models comprise dynamic vehicle models accounting for forces and moments causing the vehicle motion as well as simplified kinematic descriptions. All models have been derived in a systematic and automated manner to allow for variants of implements and actuator combinations. Path tracking controller design begins with a comprehensive overview and discussion of existing approaches in related domains. Two new approaches have been proposed combining the systematic setup and tuning of a Linear-Quadratic-Regulator with the simplicity of a static output feedback approximation. The first approach ensures accurate path tracking on slopes and curves by including integral control for a selection of controlled variables. The second approach, instead, ensures this by adding disturbance feedforward control based on side-slip estimation using a non-linear kinematic plant model and an Extended Kalman Filter. For both approaches a feedforward control approach for curved path tracking has been newly derived. In addition, a straightforward extension of control accounting for the implement orientation has been developed. All control approaches have been validated in simulations and experiments carried out with a mid-size tractor and a custom built demonstrator implement.

In embedded systems, there is a trend of integrating several different functionalities on a common platform. This has been enabled by increasing processing power and the arise of integrated system-on-chips.
The composition of safety-critical and non-safety-critical applications results in mixed-criticality systems. Certification Authorities (CAs) demand the certification of safety-critical applications with strong confidence in the execution time bounds. As a consequence, CAs use conservative assumptions in the worst-case execution time (WCET) analysis which result in more pessimistic WCETs than the ones used by designers. The existence of certified safety-critical and non-safety-critical applications can be represented by dual-criticality systems, i.e., systems with two criticality levels.
In this thesis, we focus on the scheduling of mixed-criticality systems which are subject to certification. Scheduling policies cognizant of the mixed-criticality nature of the systems and the certification requirements are needed for efficient and effective scheduling. Furthermore, we aim at reducing the certification costs to allow faster modification and upgrading, and less error-prone certification. Besides certification aspects, requirements of different operational modes result in challenging problems for the scheduling process. Despite the mentioned problems, schedulers require a low runtime overhead for an efficient execution at runtime.
The presented solutions are centered around time-triggered systems which feature a low runtime overhead. We present a transformation to include event-triggered activities, represented by sporadic tasks, already into the offline scheduling process. Further, this transformation can also be applied on periodic tasks to shorten the length of schedule tables which reduces certification costs. These results can be used in our method to construct schedule tables which creates two schedule tables to fulfill the requirements of dual-criticality systems using mode changes at runtime. Finally, we present a scheduler based on the slot-shifting algorithm for mixed-criticality systems. In a first version, the method schedules dual-criticality jobs without the need for mode changes. An already certified schedule table can be used and at runtime, the scheduler reacts to the actual behavior of the jobs and thus, makes effective use of the available resources. Next, we extend this method to schedule mixed-criticality job sets with different operational modes. As a result, we can schedule jobs with varying parameters in different modes.

Recent progresses and advances in the field of consumer electronics, driven by display
technologies and also the sector of mobile, hand-held devices, enable new ways in
presenting information to users, as well as new ways of user interaction, therefore
providing a basis for user-centered applications and work environments.
My thesis focuses on how arbitrary display environments can be utilized to improve
both the user experience, regarding perception of information, and also to provide
intuitive interaction possibilities. On the one hand advances in display technologies
provide the basis for new ways of visualizing content and collaborative work, on the
other hand forward-pressing developments in the consumer market, especially the
market of smart phones, offer potential to enhance usability in terms of interaction
and therefore can provide additional benefit for users.
Tiled display setups, combining both large screen real estate and high resolution,
provide new possibilities and chances to visualize large datasets and to facilitate col-
laboration in front of a large screen area. Furthermore these display setups present
several advantages over the traditional single-user-workspace environments: con-
trary to single-user-workspaces, multiple users are able to explore a dataset displayed
on a tiled display system, at the same time, thus allowing new forms of collabora-
tive work. Based on that, face-to-face discussions are enabled, an additional value
is added. Large displays also allow the utilization of the user’s spatial memory, al-
lowing physical navigation without the need of switching between different windows
to explore information.
With Tiled++ I contributed a versatile approach to address the bezel problem. The
bezel problem is one of the Top Ten research challenges in the research field of LCD-
based tiled wall setups. By applying the Tiled++ approach a large high resolution
Focus & Context screen is created, combining high resolution focus areas with low
resolution context information, projected onto the bezel area.
Additionally the field of user interaction poses an important challenge, especially
regarding the utilization of large tiled displays, since traditional keyboard & mouse
interaction devices reached their limits. My focus in this thesis is on Mobile HCI.Devices like mobile phones are utilized to interact with large displays, since they
feature various interaction modalities and preserve user mobility.
Large public displays, as a modernized form of traditional bulletin boards, also en-
able new ways of handling information, displaying content, and user interaction.
Utilized in hot spots, Digital Interactive Public Pinboards can provide an adequate
answer to questions like how to approach pressing issues like disaster and crisis man-
agement for both responders as well as citizens and also new ways of how to handle
information flow (contribution & distribution & accession). My contribution to the
research field of public display environments was the conception and implementa-
tion of an easy-to-use and easy-to-set-up architecture to overcome shortcomings of
current approaches and to cover the needs of aid personnel.
Although being a niche, Virtual Reality (VR) environments can provide additional
value for visualizing specific content. Disciplines like earth sciences & geology, me-
chanical engineering, design, and architecture can benefit from VR environments. In
order to consider the variety of users, I introduce a more intuitive and user friendly
interaction metaphor, the ARC metaphor.
Visualization challenges base on being able to cope with more and more complex
datasets and to bridge the gap between comprehensibility and loss of information.
Furthermore the visualization approach has to be reasonable, which is a crucial
factor when working in interdisciplinary teams, where the standard of knowledge
is diverse. Users have to be able to conceive the visualized content in a fast and
reliable way. My contribution are visualization approaches in the field of supportive
visualization.
Finally, my work illuminates how the synthesis of visualization, interaction and dis-
play technologies enhance the user experience. I promote a holistic view. The user
is brought back into the focus of attention, provided with a tool-set to support him,
without overextending the abilities of, for example, non-expert users, a crucial factor
in the more and more interdisciplinary field of computer science.

Esterases and lipases are widely used as industrial enzymes and for the synthesis of chiral drugs. Because of their rich secondary metabolism, Streptomyces species offer a relatively untapped source of interesting esterases and lipases. S. coelicolor and S. avermitilis contain 51 genes annotated as esterases and/or lipases. In this study I have cloned 14 different genes encoding for lipolytic enzymes from S. coelicolor (11 genes) and S. avermitilis (four genes). Some of these genes were over-expressed in E. coli. Three of the produced enzymes, which were produced by the genes SCO 7131, SCO6966 and SCO3644, were characterized biochemically and one of them was subjected for directed evolution. The gene estA (locus SCO 7131) was annotated as a putative lipase/esterase in the genome sequence of S. coelicolor A3(2), but does not have a homologue in the genome sequence of S. avermitilis or in other known Streptomyces sequences. estA was cloned and expressed in E. coli as a His-tagged protein. The protein was purified and could be recovered in its non-tagged form after digestion with factor Xa. The relative molecular weight was estimated to be 35.5kDa. The enzyme was only active towards acetate esters and not on larger substrates. It had a stereospecificity towards α-naphathylacetate. It was thermostable, with a half-life at 50C of 4.5 hours. Est A showed stability over pH range 5.5-10, and had optimum pH of 7.5. Its activity was drastically decreased when it was pre-incubated in 10mM PMSF, Cu+2 and Hg+2. It was not very stable in most organic solvents and had only slight enantioselectivity. Est A belongs to the HSL family whose founder member is the human hormone-sensitive lipase. I have developed a protein profile for the HSL family modifying the conserved motifs found by Arpigny and Jaeger (1999). Due to the presence of several HSL members with known 3D structure and good homology to Est A, I was able to make a homology model of Est A. Five different mutants of Est A were produced through site directed mutagenesis: W87F, V158A, W87F/V158A, M162L and S163A. The mutants M162L and S163A did not produce a significant change either in substrate specificity or enzyme kinetics. The mutants V158A and W87F/V158A could act on the larger substrates p-nitrophenylbutyrate and caproate and tributyrin. The mutant V158A had improved thermostability and its t1/2 at 50ºC increased to 24h. The affinity of V158A towards p-nitrophenyacetate increased 6-fold when compared with the wild type, whereas the affinity of W87F decreased 4-fold. Directed evolution of Est A was done through random mutagenesis and ER-PCR. A library of 6336 mutants was constructed and screened for mutants with a broader spectrum of substrate specificity. The mutant XXVF7 did show alteration in the substrate specificity of Est A. The mutant XXVF7 had 5 amino acids changes L76R, L146P, S196G, W213R and L267R. The gene locus SCO 6966 (estB gene) was cloned and expressed in E. coli as a His-tagged protein. It was not possible to remove the His-tag using factor Xa. The tagged protein had a molecular weight 31.9kDa. Est B was active against short chain fatty acid esters (C2-C6). Its optimum temperature was 30ºC and was stable for 1h at temperatures up to 37ºC. The enzyme had maximum activity at pH 8-8.5 and was stable over pH range 7.5-11 for 24h. It was highly sensitive for PMSF, Cu+2 and Hg+2. The enzymatic activity deceased in presence of organic solvents, however it was fairly stable for 1h in 20% organic solvents solutions. A third esterase was produced from the gene locus SCO 3644. This esterase was a thermosensitive one with optimum temperature of 35ºC. The three characterized enzymes included a thermophilic, mesophilic and psychrophilic ones. This indicates the high variation in the characters of Streptomyces lipolytic enzymes and highlighting Streptomyces as a source for esterases and lipases of interesting catalytic activity. This study was an initial trial to provide a strategy for a comprehensive use of genome data.

Grape powdery mildew, Erysiphe necator, is one of the most significant plant pathogens, which affects grape growing regions world-wide. Because of its short generation time and the production of large amounts of conidia throughout the season, E. necator is classified as a moderate to high risk pathogen with respect to the development of fungicide resistance. The number of fungicidal mode of actions available to control powdery mildew is limited and for some of them resistances are already known. Aryl-phenyl-ketones (APKs), represented by metrafenone and pyriofenone, and succinate-dehydrogenase inhibitors (SDHIs), composed of numerous active ingredients, are two important fungicide classes used for the control of E. necator. Over the period 2014 to 2016, the emergence and development of metrafenone and SDHI resistant E. necator isolates in Europe was followed and evaluated. The distribution of resistant isolates was thereby strongly dependent on the European region. Whereas the north-western part is still predominantly sensitive, samples from east European countries showed higher resistance frequencies.
Classical sensitivity tests with obligate biotrophs can be challenging regarding sampling, transport and especially the maintenance of the living strains. Whenever possible, molecular genetic methods are preferred for a more efficient monitoring. Such methods require the knowledge of the resistance mechanisms. The exact molecular target and the resistance mechanism of metrafenone is still unknown. Whole genome sequencing of metrafenone sensitive and resistant wheat powdery mildew isolates, as well as adapted laboratory mutants of Aspergillus nidulans, where performed with the aim to identify proteins potentially linked to the mode of action or which contribute to metrafenone resistance. Based on comparative SNP analysis, four proteins potentially associated with metrafenone resistance were identified, but validation studies could not confirm their role in metrafenone resistance. In contrast to APKs, the mode of action of SDHIs is well understood. Sequencing of the sdh-genes of less sensitive E. necator isolates identified four different target-site mutations, the B-H242R, B-I244V, C-G169D and C-G169S, in sdhB and sdhC, respectively. Based on this information it was possible to develop molecular genetic monitoring methods for the mutations B-H242R and C-G169D. In 2016, the B-H242R was thereby identified as by far the most frequent mutation. Depending on the analysed SDH compound and the sdh-genotype, different sensitivities were observed and revealed a complex cross-resistance pattern.
Growth competition assays without selection pressure, with mixtures of sensitive and resistant E. necator isolates, were performed to determine potential fitness costs associated with fungicide resistance. With the experimental setups used, a clear fitness disadvantage associated with metrafenone resistance was not identified, although a strong variability of fitness was observed among the tested resistant E. necator isolates. For isolates with a reduced sensitivity towards SDHIs, associated fitness costs were dependent on the sdh-genotype analysed. Competition tests with the B-H242R genotypes gave evidence that there are no fitness costs associated with this mutation. In contrast, the C-G169D genotypes were less competitive, indicating a restricted fitness compared to the tested sensitive partners. Competition assays of field isolates, which exhibited several resistances towards different fungicide classes, indicated that there are no fitness costs associated with a multiple resistant phenotype in E. necator. Overall, these results clearly indicate the importance to analyse a representative number of isolates with sensitive and resistant phenotypes.

Photochemical reactions are of great interest due to their importance in chemical and biological processes. Highly sensitive IR/UV double and triple resonance spectroscopy in molecular beam experiments in combination with ab initio and DFT calculations yields information on reaction coordinates and Intersystem Crossing (ISC) processes subsequent to photoexcitation. In general, molecular beam experiments enable the investigation of isolated, cold molecules without any influence of the environment. Furthermore, small aggregates can be analyzed in a supersonic jet by gradually adding solvent molecules like water. Conclusions concerning the interactions in solution can be derived by investigating and fully understanding small systems with a defined amount of solvent molecules. In this work the first applications of combined IR/UV spectroscopy on reactive isolated molecules and triplet states in molecular beams without using any messenger molecules are presented. Special focus was on excited state proton transfer reactions, which can also be described as keto enol tautomerisms. Various molecules such as 3-hydroxyflavone, 2-(2-naphthyl)-3-hydroxychromone and 2,5-dihydroxybenzoic acid have been investigated with regard to this question. In the case of 3-hydroxyflavone and 2-(2-naphthyl)-3-hydroxychromone, the IR spectra have been recorded subsequent to an excited state proton transfer. Furthermore the dihydrate of 3-hydroxyflavone has been analyzed concerning a possible proton transfer in the excited state: The proton transfer reaction along the water molecules (proton wire) has to be induced by raising the excitation energy. However, photoinduced reactions involve not only singlet but also triplet states. As an archetype molecule xanthone has been analysed. After excitation to the S2 state, ISC occurs into the triplet manifold leading to a population of the T1 state. The IR spectrum of the T1 state has been recorded for the first time using the UV/IR/UV technique without using any messenger molecules. Altogether it is shown that IR/UV double and triple resonance techniques are suitable tools to analyze reaction coordinates of photochemical processes.

In this thesis, collision-induced dissociation (CID) studies serve to elucidate relative stabilities and to determine bond strengths within a given structure type of transition metal complexes. The infrared multi photon dissociation (IRMPD) spectroscopy combined with density functional theory (DFT) allow for structural analysis and provide insights into the coordination sphere of transition metal centers. The used combination of CID and IRMPD experiments is a powerful tool to obtain a detailed and comprehensive characterization and understanding of interactions between transition metals and organic ligands. The compounds’ spectrum comprises mono- or oligonuclear transition metal complexes containing iron, palladium, and ruthenium as well as lanthanide containing single molecule magnets (SMM). The presented investigations on the different transition metal complexes reveal manifold effects for each species leading to valuable results. A fundamental understanding of metal to ligand interactions is mandatory for the development of new and better organometallic complexes with catalytic, optical or magnetic properties.

Characterization of neuronal activity in the auditory brainstem of rats: An optical imaging approach
(2004)

In this doctoral thesis, several aspects of neuronal activity in the rat superior olivary complex (SOC), an auditory brainstem structure, were analyzed using optical imaging with voltage-sensitive dyes (VSD). The thesis is divided into 5 Chapters. Chapter 1 is a general introduction, which gives an overview of the auditory brainstem and VSD imaging. In Chapter 2, an optical imaging method for the SOC was standardized, using the VSD RH795. To do so, the following factors were optimized: (1) An extracellular potassium concentration of 5 mM is necessary during the incubation and recording to observe synaptically evoked responses in the SOC. (2) Employing different power supplies reduced the noise. (3) Averaging of 10 subsequent trials yielded a better signal-to-noise ratio. (4) RH795 of 100 µM with 50 min prewash was optimal to image SOC slices for more than one hour. (5) Stimulus-evoked optical signals were TTX sensitive, revealing action potential-driven input. (6) Synaptically evoked optical signals were characterized to be composed of pre- and postsynaptic components. (7) Optical signals were well correlated with anatomical structures. Overall, this method allows the comparative measurement of electrical activity of cell ensembles with high spatio-temporal resolution. In Chapter 3, the nature of functional inputs to the lateral superior olive (LSO), the medial superior olive (MSO), and the superior paraolivary nucleus (SPN) were analyzed using the glycine receptor blocker strychnine and the AMPA/kainate receptor blocker CNQX. In the LSO, the known glutamatergic inputs from the ipsilateral, and the glycinergic inputs from the ipsilateral and contralateral sides, were confirmed. Furthermore, a CNQX-sensitive input from the contralateral was identified. In the MSO, the glutamatergic and glycinergic inputs from the ipsilateral and contralateral sides were corroborated. In the SPN, besides the known glycinergic input from the contralateral, I found a glycinergic input from the ipsilateral and I also identified CNQX-sensitive inputs from the contralateral and ipsilateral sides. Together, my results thus corroborate findings obtained with different preparations and methods, and provide additional information on the pharmacological nature of the inputs. In Chapter 4, the development of glycinergic inhibition for the LSO, the MSO, the SPN, and the medial nucleus of the trapezoid body (MNTB) was studied by characterizing the polarity of strychnine-sensitive responses. In the LSO, the high frequency region displayed a shift in the polarity at P4, whereas the low frequency region displayed at P6. In the MSO, both the regions displayed the shift at P5. The SPN displayed a shift in the polarity at E18-20 without any regional differences. The MNTB lacked a shift between P3-10. Together, these results demonstrate a differential timing in the development of glycinergic inhibition in these nuclei. In Chapter 5, the role of the MSO in processing bilateral time differences (t) was investigated. This was done by stimulating ipsilateral and contralateral inputs to the MSO with different t values. In preliminary experiments, the postsynaptic responses showed a differential pattern in the spread of activity upon different t values. This data demonstrates a possible presence of delay lines as proposed by Jeffress in the interaural time difference model of sound localization. In conclusion, this study demonstrates the usage of VSD imaging to analyze the neuronal activity in auditory brainstem slices. Moreover, this study expands the knowledge of the inputs to the SOC, and has identified one glycinergic and three AMPA/kainate glutamatergic novel inputs to the SOC nuclei.

In the last decade, injection molding of long-fiber reinforced thermoplastics
(LFT) has been established as a low-cost, high volume technique for manufacturing
parts with complex shape without any post-treatment [1–3]. Applications
are mainly found in the automotive industry with a volume annually
growing by 10% to 15% [4].
While first applications were based on polyamide (PA6 and PA6.6), the market
share of glass fiber reinforced polypropylene (PP) is growing due to cost savings
and ease of processing. With the use of polypropylene, different processing
techniques such as gas-assisted injection molding [5] or injection compression
molding [6] have emerged in addition to injection molding [7, 8].
In order to overcome or justify higher materials costs when compared to short
fiber reinforced thermoplastics, the manufacturing techniques for LFT pellets
with fiber length greater than 10mm have evolved starting from pultrusion by
improving impregnation and throughput [9] or by direct addition of fiber strands
in the mold [10–12].
The benefit of long glass fiber reinforcement either in PP or PA is mainly due
to the enhanced resistance to fiber pull-out resulting in an increase in impact
properties and strength [13–19], even at low temperature levels [20]. Creep
and fatigue resistance are also substantially improved [21, 22].
The performance of fiber reinforced thermoplastics manufactured by injection
molding strongly depends on the flow-induced microstructure which is
driven by materials composition, processing conditions and part geometry.
The anisotropic microstructure is characterized by fiber fraction and dispersion,
fiber length and fiber orientation.
Facing the complexity of this processing technique, simulation becomes a precious
tool already in the concept phase for parts manufactured by injection
molding. Process simulation supports decisions with respect to choice of concepts
and materials. The part design is determined in terms of mold filling
including location of gates, vents and weld lines. Tool design requires the
determination of melt feeding, logistics and mold heating. Subsequently, performance
including prediction of shrinkage and warpage as well as structural
analysis is evaluated [23].
While simulation based on two-dimensional representation of three-dimensional
part geometry has been extensively used during the last two decades, the
complexity of the parts as well as the trend towards solid modelling in CAD
and CAE demands the step towards three-dimensional process simulation. The scope of this work is the prediction of flow-induced microstructure during
injection molding of long glass fiber reinforced polypropylene using threedimensional
process simulation. Modelling of the injection molding process in
three dimensions is supported experimentally by rheological characterization
in both shear and extensional flow and by two- and three-dimensional evaluation
of microstructure.
In chapter 2 the fundamentals of rheometry and rheology are presented with
respect to long fiber reinforced thermoplastics. The influence of parameters
on microstructure is described and approaches for modelling the state of microstructure
and its dynamics are discussed.
Chapter 3 introduces a rheometric technique allowing for rheological characterization
of polymer melts at processing conditions as encountered during
manufacturing. Using this rheometer, both shear and extensional viscosity of
long glass fiber reinforced polypropylene are measured with respect to composition
of materials, processing conditions and geometry of the cavity.
Chapter 4 contains the evaluation of microstructure of long glass fiber reinforced
polypropylene in terms of two-dimensional fiber orientation and its dependence
on materials parameters and processing condition. For the evaluation
of three-dimensional microstructure, a technique based on x-ray tomography
is introduced.
In chapter 5, modelling of microstructural dynamics is addressed. One-way
coupling of interactions between fluid and fibers is described macroscopically.
The flow behavior of fibers in the vicinity of cavity walls is evaluated experimentally.
From these observations, a model for treatment of fiber-wall interaction
with respect to numerical simulation is proposed.
Chapter 6 presents the application of three-dimensional simulation of the injection
molding process. Mold filling simulation is performed using a commercial
code while prediction of 3D fiber orientation is based on a proprietary module.
The rheological and thermal properties derived in chapter 3 are tested by
simulation of the experiments and comparison of predicted pressure and temperature
profile versus recorded results. The performance of fiber orientation
prediction is verified using analytical solutions of test examples from literature.
The capability of three-dimensional simulation is demonstrated based on the
simulation of mold filling and prediction of fiber orientation for an automotive
part.

This thesis comprises several independent research studies on transition metal complexes as trapped ions in isolation. Electrospray Ionization (ESI) serves to transfer ions from solution into the gas phase for mass spectrometric investigations. Subsequently, a variety of experimental and theoretical methods provide fundamental insights into molecular properties of the isolated complexes: InfraRed (Multiple) Photon Dissociation (IR-(M)PD) spectroscopy provides information on binding motifs and molecular structures at cryo temperatures as well as at room temperature. Collision Induced Dissociation (CID) serves to elucidate molecular fragmentation pathways as well as relative stabilities of the complexes at room temperature. Quantum chemical calculations via Density Functional Theory (DFT) substantiate the experimental results and deepen the fundamental insights into the molecular properties of the complexes. Magnetic couplings between metal centers in oligonuclear complexes are investigated by Broken Symmetry DFT modelling and X Ray Magnetic Circular Dichroism (XMCD) spectroscopy.

The broad engineering applications of polymers and composites have become the
state of the art due to their numerous advantages over metals and alloys, such as
lightweight, easy processing and manufacturing, as well as acceptable mechanical
properties. However, a general deficiency of thermoplastics is their relatively poor
creep resistance, impairing service durability and safety, which is a significant barrier
to further their potential applications. In recent years, polymer nanocomposites have
been increasingly focused as a novel field in materials science. There are still many
scientific questions concerning these materials leading to the optimal property
combinations. The major task of the current work is to study the improved creep
resistance of thermoplastics filled with various nanoparticles and multi-walled carbon
nanotubes.
A systematic study of three different nanocomposite systems by means of
experimental observation and modeling and prediction was carried out. In the first
part, a nanoparticle/PA system was prepared to undergo creep tests under different
stress levels (20, 30, 40 MPa) at various temperatures (23, 50, 80 °C). The aim was
to understand the effect of different nanoparticles on creep performance. 1 vol. % of
300 nm and 21 nm TiO2 nanoparticles and nanoclay was considered. Surface
modified 21 nm TiO2 particles were also investigated. Static tensile tests were
conducted at those temperatures accordingly. It was found that creep resistance was
significantly enhanced to different degrees by the nanoparticles, without sacrificing
static tensile properties. Creep was characterized by isochronous stress-strain curves,
creep rate, and creep compliance under different temperatures and stress levels.
Orientational hardening, as well as thermally and stress activated processes were
briefly introduced to further understanding of the creep mechanisms of these
nanocomposites. The second material system was PP filled with 1 vol. % 300 nm and 21 nm TiO2
nanoparticles, which was used to obtain more information about the effect of particle
size on creep behavior based on another matrix material with much lower Tg. It was
found especially that small nanoparticles could significantly improve creep resistance.
Additionally, creep lifetime under high stress levels was noticeably extended by
smaller nanoparticles. The improvement in creep resistance was attributed to a very
dense network formed by the small particles that effectively restricted the mobility of
polymer chains. Changes in the spherulite morphology and crystallinity in specimens
before and after creep tests confirmed this explanation.
In the third material system, the objective was to explore the creep behavior of PP
reinforced with multi-walled carbon nanotubes. Short and long aspect ratio nanotubes
with 1 vol. % were used. It was found that nanotubes markedly improved the creep
resistance of the matrix, with reduced creep deformation and rate. In addition, the
creep lifetime of the composites was dramatically extended by 1,000 % at elevated
temperatures. This enhancement contributed to efficient load transfer between
carbon nanotubes and surrounding polymer chains.
Finally, a modeling analysis and prediction of long-term creep behaviors presented a
comprehensive understanding of creep in the materials studied here. Both the
Burgers model and Findley power law were applied to satisfactorily simulate the
experimental data. The parameter analysis based on Burgers model provided an
explanation of structure-to-property relationships. Due to their intrinsic difference, the
power law was more capable of predicting long-term behaviors than Burgers model.
The time-temperature-stress superposition principle was adopted to predict long-term
creep performance based on the short-term experimental data, to make it possible to
forecast the future performance of materials.

Clusters bridge the gap between single atoms or molecules and the condensed phase and it is the challenge of cluster science to obtain a deeper understanding of the molecular foundation of the observed cluster specific properties/reactivities and their dependence on size. The electronic structure of hydrated magnesium monocations [Mg,nH2O]+, n<20, exhibits a strong cluster size dependency. With increasing number of H2O ligands the SOMO evolves from a quasi-valence state (n=3-5), in which the singly occupied molecular orbital (SOMO) is not yet detached from the metal atom and has distinct sp-hybrid character, to a contact ion pair state. For larger clusters (n=17,19) these ion pair states are best described as solvent separated ion pair states, which are formed by a hydrated dication and a hydrated electron. With growing cluster size the SOMO moves away from the magnesium ion to the cluster surface, where it is localized through mutual attractive interactions between the electron density and dangling H-atoms of H2O ligands forming "molecular tweezers" HO-H (e-) H-OH. In case of the hydrated aluminum monocations [Al,nH2O]+,n=20, different isomers of the formal stoichiometry [Al,20H2O]+ were investigated by using gradient-corrected DFT (BLYP) and three different basic structures for [Al,20H2O]+ were identified: (a) [AlI(H2O)20]+ with a threefold coordinated AlI; (b) [HAlIII(OH)(H2O)19]+ with a fourfold coordinated AlIII; (c) [HAlIII(OH)(H2O)19]+ with a fivefold coordinated AlIII. In ground state [AlI(H2O)20]+ (a) which contains aluminum in oxidation state +1 the 3s2 valence electrons remain located at the aluminium monocation. Different than for open shell magnesium monocations no electron transfer into the hydration shell is observed for closed shell AlI. However, clusters of type (a) are high energy isomers (DE»+190 kJ mol-1) and the activation barrier for reaction into cluster type (b) or (c) is only approximately 14 kJ mol-1. The performed ab initio calculations reveal that unlike in [Mg,nH2O]+, n=7-17, for which H atom eliminiation is found to be the result of an intracluster redoxreaction, in [Al,nH2O]+,n=20, H2 is formed in an intracluster acid-base reaction. In [Mg,nH2O]+, n>17, the magnesium dication was found to coexist with a hydrated electron in larger cluster sizes. This proves that intermolecular electron delocalization - previously almost exclusively studied in (H2O)n- and (NH3)n- clusters - can also be an important issue for water clusters doped with an open shell metal cation or a metal anion. Structures and stabilities of hydrated magnesium water cluster anions with the formal stoichiometry [Mg,nH2O]-, n=1-11, were investigated by application of various correlated ab initio methods (MP2, CCSD, CCSD(T)). Metal cations surely have high relevance in numerous biological processes, and as most biological processes take place in aqueous solution hydrated metal ions will be involved. However, in biological systems solvent molecules (i.e. water) compete with different solvated chelate ligands for coordination sites at the metal ion and the solvent and chelate ligands are in mutual interactions with each other and the metal ion. These interactions were investigated for the hydration of ZnII/carnosine complexes by application of FT-ICR-MS, gas-phase H/D exchange experiments and supporting ab initio calculations. In the last chapter of this work the Free Electron Laser IR Multi Photon Dissocition (FEL-IR-MPD) spectra of mass selected cationic niobium acetonitrile complexes with the formal stoichiometry [Nb,nCH3CN]+, n=4-5, in the spectral range 780 – 2500 cm-1 are reported. In case of n=4 the recorded vibrational bands are close to those of the free CH3CN molecule and the experimental spectra do not contain any evident indication of a potential reaction beyond complex formation. By comparison with B3LYP calculated IR absorption spectra the recorded spectra are assigned to high spin (quintet, S=2), planar [NbI(NCCH3)4]+. In [Nb,nCH3CN]+, n=5, new vibrational bands shifted away from those of the acetonitrile monomer are observed between 1300 – 1550 cm-1. These bands are evidence of a chemical modification due to an intramolecular reaction. Screening on the basis of B3LYP calculated IR absorption spectra allow for an assignment of the recorded spectra to the metallacyclic species [NbIII(NCCH3)3(N=C(CH3)C(CH3)=N)]+ (triplet, S=1), which has formed in a internal reductive nitrile coupling reaction from [NbI(NCCH3)5]+. Calculated reaction coordinates explain the experimentally observed differences in reactivity between ground state [NbI(NCCH3)4]+ and [NbI(NCCH3)5]+. The reductive nitrile coupling reaction is exothermic and accessible (Ea=49 kJ mol-1) only in [NbI(NCCH3)5]+, whereas in [NbI(NCCH3)4]+ the reaction is found to be endothermic and retarded by significantly higher activation barriers (Ea>116 kJ mol-1).