### Refine

#### Year of publication

- 2004 (2) (remove)

#### Document Type

- Working Paper (2) (remove)

#### Language

- English (2) (remove)

#### Keywords

#### Faculty / Organisational entity

This work is concerned with a nonlinear Galerkin method for solving the incompressible Navier-Stokes equation on the sphere. It extends the work of Debussche, Marion,Shen, Temam et al. from one-dimensional or toroidal domains to the spherical geometry. In the first part, the method based on type 3 vector spherical harmonics is introduced and convergence is indicated. Further it is shown that the occurring coupling terms involving three vector spherical harmonics can be expressed algebraically in terms of Wigner-3j coefficients. To improve the numerical efficiency and economy we introduce an FFT based pseudo spectral algorithm for computing the Fourier coefficients of the nonlinear advection term. The resulting method scales with O(N^3), if N denotes the maximal spherical harmonic degree. The latter is demonstrated in an extensive numerical example.

Superselection rules induced by the interaction with a mass zero Boson field are investigated for a class of exactly soluble Hamiltonian models. The calculations apply as well to discrete as to continuous superselection rules. The initial state (reference state) of the Boson field is either a normal state or a KMS state. The superselection sectors emerge if and only if the Boson field is infrared divergent, i. e. the bare photon number diverges and the ground state of the Boson field disappears in the continuum. The time scale of the decoherence depends on the strength of the infrared contributions of the interaction and on properties of the initial state of the Boson system. These results are first derived for a Hamiltonian with conservation laws. But in the most general case the Hamiltonian includes an additional scattering potential, and the only conserved quantity is the energy of the total system. The superselection sectors remain stable against the perturbation by the scattering processes.