### Refine

#### Year of publication

#### Document Type

- Report (106) (remove)

#### Language

- English (106) (remove)

#### Keywords

- Elastoplastizität (4)
- Elastoplasticity (3)
- Hysterese (3)
- Mathematikunterricht (3)
- Modellierung (3)
- modelling (3)
- praxisorientiert (3)
- Elastic BVP (2)
- Elastisches RWP (2)
- Elastoplastisches RWP (2)

#### Faculty / Organisational entity

- Fachbereich Mathematik (106) (remove)

In this paper we continue the study of p - groups G of square order \(p^{2n}\) and investigate the existence of partial congruence partitions (sets of mutually disjoint subgroups of order \(p^n\)) in G. Partial congruence partitions are used to construct translation nets and partial difference sets, two objects studied extensively in finite geometries and combinatorics. We prove that the maximal number of mutually disjoint subgroups of order \(p^n\) in a group G of order \(p^{2n}\) cannot be more than \((p^{n-1}-1)(p-1)^{-1}\) provided that \(n\ge4\)and that G is not elementary abelian. This improves a result in [6] and as we do not distinguish the cases p=2 and p odd in the present paper, we also have a generalization of D. FROHARDT' s theorem on 2 - groups in [4]. Furthermore we study groups of order \(p^6\). We can show that for each odd prime number, there exist exactly four nonisomorphic groups which contain at least p+2 mutually disjoint subgroups of order \(p^3\). Again, as we do not distinguish between the even and the odd case in advance, we in particular obtain
D. GLUCK' s and A. P. SPRAGUE' s classification of groups of order 64 which contain at least 4 mutually disjoint subgroups of order 8 in [5] and [13] respectively.

In this paper the existence of translation transversal designs which is equivalent to the existence of certain particular partitions in finite groups is studied. All considerations are based on the fact that the particular component of such a partition (the component representing the point classes of the corresponding design) is a normal subgroup of the translation group. With regard to groups admitting an (s,k,\(\lambda\))-partiton, on one hand the already known families of such groups are determined without using R. BAER's, 0.H.KEGEL's and M. SUZUKI' s classification of finite groups with partition and on the other hand some new results on the special structure of p - groups are proved. Furthermore, the existence of a series of nonabelian p - groups of odd order which can be represented as translation groups of certain (s,k,1) - translation transversal designs is shown; moreover, the translation groups are normal subgroups of collineation groups acting regularly on the set of flags of the same designs.

The notion of Q-Gorenstein smoothings has been introduced by Kollar. ([KoJ], 6.2.3). This notion is essential for formulating Kollar's conjectures on smoothing components for rational surface singularities. He conjectures, loosely speaking, that every smoothing of a rational surface singularity can be obtained by blowing down a deformation of a partial resolution, this partial resolution having the property (among others) that the singularities occuring on it all have qG-smoothings. (For more details and precise statements see [Ko], ch. 6.). It is therefore of interest to construct singularities having qG-smoothings.

Limits of instantons
(1991)

Moduli for singularities
(1991)

The aim of this article is to give a survey on recent results about moduli spaces for curve singularities and for modules over the local ring of a fixed curve singularity. We emphasize especially the general concept which lies behind these constructions.
Therefore, the article might be useful to the reader who wishes to have the leading ideas and the main steps of the proofs explained without going into all the details. We also calculate explicit examples (for singularities and for modules) which illustrate
the general theorems.

We show that the different module structures of GF(\(q^m\)) arising from the intermediate fields of GF(\(q^m\))and GF(q) can be studied simultaneously with the help of some basic properties of cyclotomic polynomials. We use this ideas to give a detailed and constructive proof of the most difficult part of a Theorem of D. Blessenohl and K. Johnsen (1986), i.e., the existence of elements v in GF(\(q^m\)) over GF(q) which generate normal bases over any intermediate field of GF(\(q^m\)) and GF(q), provided that m is a prime power. Such elements are called completely free in GF(\(q^m\)) over GF(q). We develop a recursive formula for the number of completely free elements in GF(\(q^m\)) over GF(q) in the case where m is a prime power. Some of the results can be generalized to finite cyclic Galois extensions
over arbitrary fields.

Let \(a_1, i:=1,\dots,m\), be an i.i.d. sequence taking values in \(\mathbb{R}^n\), whose convex hull is interpreted as a stochastic polyhedron \(P\). For a special class of random variables, which decompose additively relative to their boundary simplices, eg. the volume of \(P\), simple integral representations of its first two moments are given in case of rotationally symmetric distributions in order to facilitate estimations of variances or to quantify large deviations from the mean.

We are concerned with a parameter choice strategy for the Tikhonov regularization \((\tilde{A}+\alpha I)\tilde{x}\) = T* \(\tilde{y}\)+ w where \(\tilde{A}\) is a (not necessarily selfadjoint) approximation of T*T and T*\(\tilde y\)+ w is a perturbed form of the (not exactly computed) term T*y. We give conditions for convergence and optimal convergence rates.

Let \(a_i i:= 1,\dots,m.\) be an i.i.d. sequence taking values in \(\mathbb{R}^n\). Whose convex hull is interpreted as a stochastic polyhedron \(P\). For a special class of random variables which decompose additively relative to their boundary simplices, eg. the volume of \(P\), integral representations of their first two moments are given which lead to asymptotic estimations of variances for special "additive variables" known from stochastic approximation theory in case of rotationally symmetric distributions.

Weighted k-cardinality trees
(1992)

We consider the k -CARD TREE problem, i.e., the problem of finding in a given undirected graph G a subtree with k edges, having minimum weight. Applications of this problem arise in oil-field leasing and facility layout. While the general problem is shown to be strongly NP hard, it can be solved in polynomial time if G is itself a tree. We give an integer programming formulation of k-CARD TREE, and an efficient exact separation routine for a set of generalized subtour elimination constraints. The polyhedral structure of the convex huLl of the integer solutions is studied.

Facility location problems in the plane are among the most widely used tools of Mathematical Programming in modeling real-world problems. In many of these problems restrictions have to be considered which correspond to regions in which a placement of new locations is forbidden. We consider center and median problems where the forbidden set is
a union of pairwise disjoint convex sets. As applications we discuss the assembly of printed circuit boards, obnoxious facility location and the location of emergency facilities.

We present a generalization of Proth's theorem for testing certain large integers for primality. The use of Gauß sums leads to a much simpler approach to these primality criteria as compared to the earlier tests. The running time of the algorithms is bounded by a polynomial in the length of the input string. The applicability of our algorithms is linked to certain diophantine approximations of \(l\)-adic roots of unity.

Hyperidentities
(1992)

The concept of a free algebra plays an essential role in universal algebra and in computer science. Manipulation of terms, calculations and the derivation of identities are performed in free algebras. Word problems, normal forms, system of reductions, unification and finite bases of identities are topics in algebra and logic as well as in computer science. A very fruitful point of view is to consider structural properties of free algebras. A.I. Malcev initiated a thorough research of the congruences of free algebras. Henceforth congruence permutable, congruence distributive and congruence modular varieties are
intensively studied. A lot of Malcev type theorems are connected to the congruence lattice of free algebras. Here we consider free algebras as semigroups of compositions of terms and more specific as clones of terms. The properties of these semigroups and clones are adequately described by hyperidentities. Naturally a lot of theorems of "semigroup" or "clone" type can be derived. This topic of research is still in its beginning and therefore a lot öf concepts and results cannot be presented in a final and polished form. Furthermore a lot of problems and questions are open which are of importance for the further development of the theory of hyperidentities.

Max ordering (MO) optimization is introduced as tool for modelling production
planning with unknown lot sizes and in scenario modelling. In MO optimization a feasible solution set \(X\) and, for each \(x\in X, Q\) individual objective functions \(f_1(x),\dots,f_Q(x)\) are given. The max ordering objective
\(g(x):=max\) {\(f_1(x),\dots,f_Q(x)\)} is then minimized over all \(x\in X\).
The paper discusses complexity results and describes exact and approximative
algorithms for the case where \(X\) is the solution set of combinatorial
optimization problems and network flow problems, respectively.

Let \(A\):= {\(a_i\mid i= 1,\dots,m\)} be an i.i.d. random sample in (\mathbb{R}^n\), which we consider a random polyhedron, either as the convex hull of the \(a_i\) or as the intersection of halfspaces {\(x \mid a ^T_i x\leq 1\)}. We introduce a class of polyhedral functionals we will call "additive-type functionals", which covers a number of polyhedral functionals discussed in different mathematical fields, where the emphasis in our contribution will be on those, which arise in linear optimization theory. The class of additive-type functionals is a suitable setting in order to unify and to simplify the asymptotic probabilistic analysis of first and second moments of polyhedral functionals. We provide examples of asymptotic results on expectations and on variances.

The article provides an asymptotic probabilistic analysis of the variance of the number of pivot steps required by phase II of the "shadow vertex algorithm" - a parametric variant of the simplex algorithm, which has been proposed by Borgwardt [1] . The analysis is done for data which satisfy a rotationally
invariant distribution law in the \(n\)-dimensional unit ball.

Despite their very good empirical performance most of the simplex algorithm's variants require exponentially many pivot steps in terms of the problem dimensions of the given linear programming problem (LPP) in worst-case situtation. The first to explain the large gap between practical experience and the disappointing worst-case was Borgwardt (1982a,b), who could prove polynomiality on tbe average for a certain variant of the algorithm-the " Schatteneckenalgorithmus (shadow vertex algorithm)" - using a stochastic problem simulation.

Efficient algorithms and structural results are presented for median
problems with 2 new facilities including the classical 2-Median problem,
the 2-Median problem with forbidden regions and bicriterial 2-Median
problems. This is the first paper dealing with multi-facility multiobjective location problems. The time complexity of all presented algorithms is O(MlogM), where M is the number of existing facilities.

Given Q different objective functions, three types of single-facility problems
are considered: Lexicographic, pareto and max ordering problems. After discussing the interrelation between the problem types, a complete characterization of lexicographic locations and some instances of pareto and max ordering locations is given. The characterizations result in efficient solution algorithms for finding these locations. The paper relies heavily on the theory of restricted locations developed by the same authors, and can be further extended, for instance, to multifacility problems with several objectives. The proposed approach is more general than previously published results on multicriteria planar location problems and is particulary suited for modelling real-world problems.

We investigate two versions of multiple objective minimum spanning tree
problems defined on a network with vectorial weights. First, we want to minimize the maximum of Q linear objective functions taken over the set of all spanning trees (max linear spanning tree problem ML-ST). Secondly, we look for efficient spanning trees (multi criteria spanning tree problem MC-ST). Problem ML-ST is shown to be NP-complete. An exact algorithm which is based on ranking is presented. The procedure can also be used as an approximation scheme. For solving the bicriterion MC-ST, which in the worst case may have an exponential number of efficient trees, a two-phase procedure is presented. Based on the computation of extremal efficient spanning trees we use neighbourhood search to determine a sequence of solutions with the property that the distance
between two consecutive solutions is less than a given accuracy.

Order-semi-primal lattices
(1994)

A nonequilibrium situation governed by kinetic equations with strongly contrasted Knudsen numbers in different subdomains is discussed. We consider a domain decomposition problem for Boltzmann- and Euler equations, establish the correct coupling conditions and prove the validity of the obtained coupled solution . Moreover numerical examples comparing different types of coupling conditions are presented.

Let (\(a_i)_{i\in \bf{N}}\) be a sequence of identically and independently distributed random vectors drawn from the \(d\)-dimensional unit ball \(B^d\)and let \(X_n\):= convhull \((a_1,\dots,a_n\)) be the random polytope generated by \((a_1,\dots\,a_n)\). Furthermore, let \(\Delta (X_n)\) : = (Vol \(B^d\) \ \(X_n\)) be the deviation of the polytope's volume from the volume of the ball. For uniformly distributed \(a_i\) and \(d\ge2\), we prove that tbe limiting distribution of \(\frac{\Delta (X_n)} {E(\Delta (X_n))}\) for \(n\to\infty\) satisfies a 0-1-law. Especially, we provide precise information about the asymptotic behaviour of the variance of \(\Delta (X_n\)). We deliver analogous results for spherically symmetric distributions in \(B^d\) with regularly varying tail.

Let \(a_1,\dots,a_m\) be i.i .d. vectors uniform on the unit sphere in \(\mathbb{R}^n\), \(m\ge n\ge3\) and let \(X\):= {\(x \in \mathbb{R}^n \mid a ^T_i x\leq 1\)} be the random polyhedron generated by. Furthermore, for linearly independent vectors \(u\), \(\bar u\) in \(\mathbb{R}^n\), let \(S_{u, \bar u}(X)\) be the number of shadow vertices of \(X\) in \(span (u, \bar u\)). The paper provides an asymptotic expansion of the expectation value \(E (S_{u, \bar u})\) for fixed \(n\) and \(m\to\infty\). The first terms of the expansion are given explicitly. Our investigation of \(E (S_{u, \bar u})\) is closely connected to Borgwardt's probabilistic analysis of the shadow vertex algorithm - a parametric variant of the simplex algorithm. We obtain an improved asymptotic upper bound for the number of pivot steps required by the shadow vertex algorithm for uniformly on the sphere distributed data.

In multiple criteria optimization an important research topic is the topological structure of the set \( X_e \) of efficient solutions. Of major interest is the connectedness of \( X_e \), since it would allow the determination of \( X_e \) without considering non-efficient solutions in the
process. We review general results on the subject,including the connectedness result for efficient solutions in multiple criteria linear programming. This result can be used to derive a definition of connectedness for discrete optimization problems. We present a counterexample to a previously stated result in this area, namely that the set of efficient solutions of the shortest path problem is connected. We will also show that connectedness does not hold for another important problem in discrete multiple criteria optimization: the spanning tree problem.

In this paper we will introduce the concept of lexicographic max-ordering solutions for multicriteria combinatorial optimization problems. Section 1 provides the basic notions of
multicriteria combinatorial optimization and the definition of lexicographic max-ordering solutions. In Section 2 we will show that lexicographic max-ordering solutions are pareto optimal as well as max-ordering optimal solutions. Furthermore lexicographic max-ordering solutions can be used to characterize the set of pareto solutions. Further properties of lexicographic max-ordering solutions are given. Section 3 will be devoted to algorithms. We give a polynomial time algorithm for the two criteria case where one criterion is a sum and one is a bottleneck objective function, provided that the one criterion sum problem is solvable in polynomial time. For bottleneck functions an algorithm for the general case of Q criteria is presented.

In this paper we investigate two optimization problems for matroids with multiple objective functions, namely finding the pareto set and the max-ordering problem which conists in finding a basis such that the largest objective value is minimal. We prove that the decision versions of both problems are NP-complete. A solution procedure for the max-ordering problem is presented and a result on the relation of the solution sets of the two problems is given. The main results are a characterization of pareto bases by a basis exchange property and finally a connectivity result for proper pareto solutions.

Let \(a_1,\dots,a_n\) be independent random points in \(\mathbb{R}^d\) spherically symmetrically but not necessarily identically distributed. Let \(X\) be the random polytope generated as the convex hull of \(a_1,\dots,a_n\) and for any \(k\)-dimensional subspace \(L\subseteq \mathbb{R}^d\) let \(Vol_L(X) :=\lambda_k(L\cap X)\) be the volume of \(X\cap L\) with respect to the \(k\)-dimensional Lebesgue measure \(\lambda_k, k=1,\dots,d\). Furthermore, let \(F^{(i)}\)(t):= \(\bf{Pr}\) \(\)(\(\Vert a_i \|_2\leq t\)),
\(t \in \mathbb{R}^+_0\) , be the radial distribution function of \(a_i\). We prove that the expectation
functional \(\Phi_L\)(\(F^{(1)}, F^{(2)},\dots, F^{(n)})\) := \(E(Vol_L(X)\)) is strictly decreasing in
each argument, i.e. if \(F^{(i)}(t) \le G^{(i)}(t)t\), \(t \in {R}^+_0\), but \(F^{(i)} \not\equiv G^{(i)}\), we show \(\Phi\) \((\dots, F^{(i)}, \dots\)) > \(\Phi(\dots,G^{(i)},\dots\)). The proof is clone in the more general framework
of continuous and \(f\)- additive polytope functionals.

A polynomial function \(f : L \to L\) of a lattice \(\mathcal{L}\) = \((L; \land, \lor)\) is generated by the identity function id \(id(x)=x\) and the constant functions \(c_a (x) = a\) (for every \(x \in L\)), \(a \in L\) by applying the operations \(\land, \lor\) finitely often. Every polynomial function in one or also in several variables is a monotone function of \(\mathcal{L}\).
If every monotone function of \(\mathcal{L}\)is a polynomial function then \(\mathcal{L}\) is called orderpolynomially complete. In this paper we give a new characterization of finite order-polynomially lattices. We consider doubly irreducible monotone functions and point out their relation to tolerances, especially to central relations. We introduce chain-compatible lattices
and show that they have a non-trivial congruence if they contain a finite interval and an infinite chain. The consequences are two new results. A modular lattice \(\mathcal{L}\) with a finite interval is order-polynomially complete if and only if \(\mathcal{L}\) is finite projective geometry. If \(\mathcal{L}\) is simple modular lattice of infinite length then every nontrivial interval is of infinite length and has the same cardinality as any other nontrivial interval of \(\mathcal{L}\). In the last sections we show the descriptive power of polynomial functions of
lattices and present several applications in geometry.

Let \(a_1,\dots,a_m\) be independent random points in \(\mathbb{R}^n\) that are independent and identically distributed spherically symmetrical in \(\mathbb{R}^n\). Moreover, let \(X\) be the random polytope generated as the convex hull of \(a_1,\dots,a_m\) and let \(L_k\) be an arbitrary \(k\)-dimensional
subspace of \(\mathbb{R}^n\) with \(2\le k\le n-1\). Let \(X_k\) be the orthogonal projection image of \(X\) in \(L_k\). We call those vertices of \(X\), whose projection images in \(L_k\) are vertices of \(X_k\)as well shadow vertices of \(X\) with respect to the subspace \(L_k\) . We derive a distribution independent sharp upper bound for the expected number of shadow vertices of \(X\) in \(L_k\).

It is shown that Tikhonov regularization for ill- posed operator equation
\(Kx = y\) using a possibly unbounded regularizing operator \(L\) yields an orderoptimal algorithm with respect to certain stability set when the regularization parameter is chosen according to the Morozov's discrepancy principle. A more realistic error estimate is derived when the operators \(K\) and \(L\) are related to a Hilbert scale in a suitable manner. The result includes known error estimates for ordininary Tikhonov regularization and also the estimates available under the Hilbert scale approach.

On derived varieties
(1996)

Derived varieties play an essential role in the theory of hyperidentities. In [11] we have shown that derivation diagrams are a useful tool in the analysis of derived algebras and varieties. In this paper this tool is developed further in order to use it for algebraic constructions of derived algebras. Especially the operator \(S\) of subalgebras, \(H\) of homomorphic irnages and \(P\) of direct products are studied. Derived groupoids from the groupoid \(N or (x,y)\) = \(x'\wedge y'\) and from abelian groups are considered. The latter class serves as an example for fluid algebras and varieties. A fluid variety \(V\) has no derived variety as a subvariety and is introduced as a counterpart for solid varieties. Finally we use a property of the commutator of derived algebras in order to show that solvability and nilpotency are preserved under derivation.

This paper investigates the convergence of the Lanczos method for computing the smallest eigenpair of a selfadjoint elliptic differential operator via inverse iteration (without shifts).
Superlinear convergence rates are established, and their sharpness is investigated for a simple model problem. These results are illustrated numerically for a more difficult problem.

The paper deals with parallel-machine and open-shop scheduling problems with preemptions and arbitrary nondecreasing objective function. An approach to describe
the solution region for these problems and to reduce them to minimization problems on polytopes is proposed. Properties of the solution regions for certain problems are investigated. lt is proved that open-shop problems with unit processing times are equivalent to certain parallel-machine problems, where preemption is allowed at arbitrary time. A polynomial algorithm is presented transforming a schedule of one type into a schedule of the other type.

The first part of this paper studies a Levenberg-Marquardt scheme for nonlinear inverse problems where the corresponding Lagrange (or regularization) parameter is chosen from an inexact Newton strategy. While the convergence analysis of standard implementations based on trust region strategies always requires the invertibility of the Fréchet derivative of the nonlinear operator at the exact solution, the new Levenberg-Marquardt scheme is suitable for ill-posed problems as long as the Taylor remainder is of second order in the interpolating metric between the range and dornain
topologies. Estimates of this type are established in the second part of the paper for ill-posed parameter identification problems arising in inverse groundwater hydrology. Both, transient and steady state data are investigated. Finally, the numerical performance of the new Levenberg-Marquardt scheme is
studied and compared to a usual implementation on a realistic but synthetic 2D model problem from the engineering literature.

A convergence rate is established for nonstationary iterated Tikhonov regularization, applied to ill-posed problems involving closed, densely defined linear operators, under general conditions on the iteration parameters. lt is also shown that an order-optimal accuracy is attained when a certain a posteriori stopping rule is used to determine the iteration number.

This paper develops truncated Newton methods as an appropriate tool for nonlinear inverse problems which are ill-posed in the sense of Hadamard. In each Newton step an approximate solution for the linearized problem is computed with the conjugate gradient method as an inner iteration. The conjugate gradient iteration is terminated when the residual has been reduced to a prescribed percentage. Under certain assumptions on the nonlinear operator it is shown that the algorithm converges and is stable if the discrepancy principle is used to terminate the outer iteration.
These assumptions are fulfilled , e.g., for the inverse problem of identifying the diffusion coefficient in a parabolic differential equation from distributed data.

We compare different notions of differentiability of a measure along a vector field on a locally convex space. We consider in the \(L^2\)-space of a differentiable measure the analoga of the classical concepts of gradient, divergence and Laplacian (which coincides with the Ornstein-Uhlenbeck
operator in the Gaussian case). We use these operators for the extension of the basic results of Malliavin and Stroock on the smoothness of finite dimensional image measures under certain nonsmooth mappings to the case of non-Gaussian measures. The proof of this extension is quite direct and does not use any Chaos-decomposition. Finally, the role of this Laplacian in the
procedure of quantization of anharmonic oscillators is discussed.

Dealing with problems from locational planning in schools can enrich the mathematical education. In this report we describe planar locational problems which can be used in mathematical lessons. The problems production of a semiconductor plate, design of a fire brigade building and the warehouse problem are from real-world. The problems are worked out detailed so that the usage for school lessons is possible.

In this paper we consider the location of stops along the edges of an already existing public transportation network, as introduced in [SHLW02]. This can be the introduction of bus stops along some given bus routes, or of railway stations along the tracks in a railway network. The goal is to achieve a maximal covering of given demand points with a minimal number of stops. This bicriterial problem is in general NP-hard. We present a nite dominating set yielding an IP-formulation as a bicriterial set covering problem. We use this formulation to observe that along one single straight line the bicriterial stop location problem can be solved in polynomial time and present an e cient solution approach for this case. It can be used as the basis of an algorithm tackling real-world instances.

This publication tries to develop mathematical subjects for school from realistic problems. The center of this report are business planning and decision problems which occur in almost all companies. The main topics are: Calculation of raw material demand for given orders, consumption of existing stock and the lot sizing.

Linear Optimization is an important area from applied mathematics. A lot of practical problems can be modelled and solved with this technique. This publication shall help to introduce this topic to pupils. The process of modelling, the reduction of problems to their significant attributes shall be described. The linear programms will be solved by using the simplex method. Many examples illustrate the topic.

Algebraic Systems Theory
(2004)

Control systems are usually described by differential equations, but their properties of interest are most naturally expressed in terms of the system trajectories, i.e., the set of all solutions to the equations. This is the central idea behind the so-called "behavioral approach" to systems and control theory. On the other hand, the manipulation of linear systems of differential equations can be formalized using algebra, more precisely, module theory and homological methods ("algebraic analysis"). The relationship between modules and systems is very rich, in fact, it is a categorical duality in many cases of practical interest. This leads to algebraic characterizations of structural systems properties such as autonomy, controllability, and observability. The aim of these lecture notes is to investigate this module-system correspondence. Particular emphasis is put on the application areas of one-dimensional rational systems (linear ODE with rational coefficients), and multi-dimensional constant systems (linear PDE with constant coefficients).

The inverse problem of recovering the Earth's density distribution from data of the first or second derivative of the gravitational potential at satellite orbit height is discussed for a ball-shaped Earth. This problem is exponentially ill-posed. In this paper a multiscale regularization technique using scaling functions and wavelets constructed for the corresponding integro-differential equations is introduced and its numerical applications are discussed. In the numerical part the second radial derivative of the gravitational potential at 200 km orbitheight is calculated on a point grid out of the NASA/GSFC/NIMA Earth Geopotential Model (EGM96). Those simulated derived data out of SGG (satellite gravity gradiometry) satellite measurements are taken for convolutions with the introduced scaling functions yielding a multiresolution analysis of harmonic density variations in the Earth's crust. Moreover, the noise sensitivity of the regularization technique is analyzed numerically.

Piezoelectric filters are used in telecommunication to filter electrical signals. This report deals with the problem of calculating passing and damped frequency intervals for a filter with given geometrical configurations and materials. Only periodic filters, which are widely used in practice, were considered. These filters consist of periodically arranged cells. For a small amount of cells a numerical procedure to visualise the wave propagation in the filter was developed. For a big number of cells another model of the filter was obtained. In this model it is assumed that the filter occupies an infinite domain. This leads to a differential equation, with periodic coefficients, that describes propagation of the wave with a given frequency in the filter. To analyse this equation the Spectral Theory for Periodic Operators had to be employed. Different ways -- analytical and numerical -- to apply the theory were proposed and analysed.

The article is concerned with the modelling of ionospheric current systems from induced magnetic fields measured by satellites in a multiscale framework. Scaling functions and wavelets are used to realize a multiscale analysis of the function spaces under consideration and to establish a multiscale regularization procedure for the inversion of the considered vectorial operator equation. Based on the knowledge of the singular system a regularization technique in terms of certain product kernels and corresponding convolutions can be formed. In order to reconstruct ionospheric current systems from satellite magnetic field data, an inversion of the Biot-Savart's law in terms of multiscale regularization is derived. The corresponding operator is formulated and the singular values are calculated. The method is tested on real magnetic field data of the satellite CHAMP and the proposed satellite mission SWARM.

A wavelet technique, the wavelet-Mie-representation, is introduced for the analysis and modelling of the Earth's magnetic field and corresponding electric current distributions from geomagnetic data obtained within the ionosphere. The considerations are essentially based on two well-known geomathematical keystones, (i) the Helmholtz-decomposition of spherical vector fields and (ii) the Mie-representation of solenoidal vector fields in terms of poloidal and toroidal parts. The wavelet-Mie-representation is shown to provide an adequate tool for geomagnetic modelling in the case of ionospheric magnetic contributions and currents which exhibit spatially localized features. An important example are ionospheric currents flowing radially onto or away from the Earth. To demonstrate the functionality of the approach, such radial currents are calculated from vectorial data of the MAGSAT and CHAMP satellite missions.

The existence of a complete, embedded minimal surface of genus one, with three ends and whose total Gaussian curvature satisfies equality in the estimate of Jorge and Meeks, was a sensation in the middle eighties. From this moment on, the surface of Costa, Hoffman and Meeks has become famous all around the world, not only in the community of mathematicians. With this article, we want to fill a gap in the injectivity proof of Hoffman and Meeks, where there is a lack of a strict mathematical justification. We exclusively argue topologically and do not use additional properties like differentiability or even holomorphy.

A method to correct the elastic stress tensor at a fixed point of an elastoplastic body, which is subject to exterior loads, is presented and analysed. In contrast to uniaxial corrections (Neuber or ESED), our method takes multiaxial phenomena like ratchetting or cyclic hardening/softening into account by use of Jiang's model. Our numerical algorithm is designed for the case that the scalar load functions are piecewise linear and can be used in connection with critical plane/multiaxial rainflow methods in high cycle fatigue analysis. In addition, a local existence and uniqueness result of Jiang's equations is given.

A gradient based algorithm for parameter identification (least-squares) is applied to a multiaxial correction method for elastic stresses and strains at notches. The correction scheme, which is numerically cheap, is based on Jiang's model of elastoplasticity. Both mathematical stress-strain computations (nonlinear PDE with Jiang's constitutive material law) and physical strain measurements have been approximized. The gradient evaluation with respect to the parameters, which is large-scale, is realized by the automatic forward differentiation technique.

In this article, we give some generalisations of existing Lipschitz estimates for the stop and the play operator with respect to an arbitrary convex and closed characteristic a separable Hilbert space. We are especially concerned with the dependency of their outputs with respect to different scalar products.

Error estimates for quasistatic global elastic correction and linear kinematic hardening material
(2006)

We consider in this paper the quasistatic boundary value problems of linear elasticity and nonlinear elastoplasticity with linear kinematic hardening material. We derive expressions and estimates for the difference of solutions (i.e. stress, strain and displacement) of both models. Further, we study the error between the elastoplastic solution and the solution of a postprocessing method, that corrects the solution of the linear elastic problem in order to approximate the elastoplastic model.

In this article, we give an explicit homotopy between the solutions (i.e. stress, strain, displacement) of the quasistatic linear elastic and nonlinear elastoplastic boundary value problem, where we assume a linear kinematic hardening material law. We give error estimates with respect to the homotopy parameter.

In this article, we present an analytic solution for Jiang's constitutive model of elastoplasticity. It is considered in its stress controlled form for proportional stress loading under the assumptions that the one-to-one coupling of the yield surface radius and the memory surface radius is switched off, that the transient hardening is neglected and that the ratchetting exponents are constant.

In this article we give a sufficient condition that a simply connected flexible body does not penetrate itself, if it is subjected to a continuous deformation. It is shown that the deformation map is automatically injective, if it is just locally injective and injective on the boundary of the body. Thereby, it is very remarkable that no higher regularity assumption than continuity for the deformation map is required. The proof exclusively relies on homotopy methods and the Jordan-Brouwer separation theorem.

This paper deals with the problem of determining the sea surface topography from geostrophic flow of ocean currents on local domains of the spherical Earth. In mathematical context the problem amounts to the solution of a spherical differential equation relating the surface curl gradient of a scalar field (sea surface topography) to a surface divergence-free vector field(geostrophic ocean flow). At first, a continuous solution theory is presented in the framework of an integral formula involving Green’s function of the spherical Beltrami operator. Different criteria derived from spherical vector analysis are given to investigate uniqueness. Second, for practical applications Green’s function is replaced by a regularized counterpart. The solution is obtained by a convolution of the flow field with a scaled version of the regularized Green function. Calculating locally without boundary correction would lead to errors near the boundary. To avoid these Gibbs phenomenona we additionally consider the boundary integral of the corresponding region on the sphere which occurs in the integral formula of the solution. For reasons of simplicity we discuss a spherical cap first, that means we consider a continuously differentiable (regular) boundary curve. In a second step we concentrate on a more complicated domain with a non continuously differentiable boundary curve, namely a rectangular region. It will turn out that the boundary integral provides a major part for stabilizing and reconstructing the approximation of the solution in our multiscale procedure.

The purpose of this paper is the canonical connection of classical global gravity field determination following the concept of Stokes (1849), Bruns (1878), and Neumann (1887) on the one hand and modern locally oriented multiscale computation by use of adaptive locally supported wavelets on the other hand. Essential tools are regularization methods of the Green, Neumann, and Stokes integral representations. The multiscale approximation is guaranteed simply as linear difference scheme by use of Green, Neumann, and Stokes wavelets, respectively. As an application, gravity anomalies caused by plumes are investigated for the Hawaiian and Iceland areas.

We study the complexity of finding extreme pure Nash equilibria in symmetric network congestion games and analyse how it depends on the graph topology and the number of users. In our context best and worst equilibria are those with minimum respectively maximum total latency. We establish that both problems can be solved by a Greedy algorithm with a suitable tie breaking rule on parallel links. On series-parallel graphs finding a worst Nash equilibrium is NP-hard for two or more users while finding a best one is solvable in polynomial time for two users and NP-hard for three or more. Additionally we establish NP-hardness in the strong sense for the problem of finding a worst Nash equilibrium on a general acyclic graph.

Minimum Cut Tree Games
(2008)

In this paper we introduce a cooperative game based on the minimum cut tree problem which is also known as multi-terminal maximum flow problem. Minimum cut tree games are shown to be totally balanced and a solution in their core can be obtained in polynomial time. This special core allocation is closely related to the solution of the original graph theoretical problem. We give an example showing that the game is not supermodular in general, however, it is for special cases and for some of those we give an explicit formula for the calculation of the Shapley value.

We prove a general monotonicity result about Nash flows in directed networks and use it for the design of truthful mechanisms in the setting where each edge of the network is controlled by a different selfish agent, who incurs costs when her edge is used. The costs for each edge are assumed to be linear in the load on the edge. To compensate for these costs, the agents impose tolls for the usage of edges. When nonatomic selfish network users choose their paths through the network independently and each user tries to minimize a weighted sum of her latency and the toll she has to pay to the edges, a Nash flow is obtained. Our monotonicity result implies that the load on an edge in this setting can not increase when the toll on the edge is increased, so the assignment of load to the edges by a Nash flow yields a monotone algorithm. By a well-known result, the monotonicity of the algorithm then allows us to design truthful mechanisms based on the load assignment by Nash flows. Moreover, we consider a mechanism design setting with two-parameter agents, which is a generalization of the case of one-parameter agents considered in a seminal paper of Archer and Tardos. While the private data of an agent in the one-parameter case consists of a single nonnegative real number specifying the agent's cost per unit of load assigned to her, the private data of a two-parameter agent consists of a pair of nonnegative real numbers, where the first one specifies the cost of the agent per unit load as in the one-parameter case, and the second one specifies a fixed cost, which the agent incurs independently of the load assignment. We give a complete characterization of the set of output functions that can be turned into truthful mechanisms for two-parameter agents. Namely, we prove that an output function for the two-parameter setting can be turned into a truthful mechanism if and only if the load assigned to every agent is nonincreasing in the agent's bid for her per unit cost and, for almost all fixed bids for the agent's per unit cost, the load assigned to her is independent of the agent's bid for her fixed cost. When the load assigned to an agent is continuous in the agent's bid for her per unit cost, it must be completely independent of the agent's bid for her fixed cost. These results motivate our choice of linear cost functions without fixed costs for the edges in the selfish routing setting, but the results also seem to be interesting in the context of algorithmic mechanism design themselves.

Selfish Bin Coloring
(2009)

We introduce a new game, the so-called bin coloring game, in which selfish players control colored items and each player aims at packing its item into a bin with as few different colors as possible. We establish the existence of Nash and strong as well as weakly and strictly Pareto optimal equilibria in these games in the cases of capacitated and uncapacitated bins. For both kinds of games we determine the prices of anarchy and stability concerning those four equilibrium concepts. Furthermore, we show that extreme Nash equilibria, those with minimal or maximal number of colors in a bin, can be found in time polynomial in the number of items for the uncapcitated case.

In a dynamic network, the quickest path problem asks for a path such that a given amount of flow can be sent from source to sink via this path in minimal time. In practical settings, for example in evacuation or transportation planning, the problem parameters might not be known exactly a-priori. It is therefore of interest to consider robust versions of these problems in which travel times and/or capacities of arcs depend on a certain scenario. In this article, min-max versions of robust quickest path problems are investigated and, depending on their complexity status, exact algorithms or fully polynomial-time approximation schemes are proposed.

The Train Marshalling Problem consists of rearranging an incoming train in a marshalling yard in such a way that cars with the same destinations appear consecutively in the final train and the number of needed sorting tracks is minimized. Besides an initial roll-in operation, just one pull-out operation is allowed. This problem was introduced by Dahlhaus et al. who also showed that the problem is NP-complete. In this paper, we provide a new lower bound on the optimal objective value by partitioning an appropriate interval graph. Furthermore, we consider the corresponding online problem, for which we provide upper and lower bounds on the competitiveness and a corresponding optimal deterministic online algorithm. We provide an experimental evaluation of our lower bound and algorithm which shows the practical tightness of the results.

In the Dynamic Multi-Period Routing Problem, one is given a new set of requests at the beginning of each time period. The aim is to assign requests to dates such that all requests are fulfilled by their deadline and such that the total cost for fulling the requests is minimized. We consider a generalization of the problem which allows two classes of requests: The 1st class requests can only be fulfilled by the 1st class server, whereas the 2nd class requests can be fulfilled by either the 1st or 2nd class server. For each tour, the 1st class server incurs a cost that is alpha times the cost of the 2nd class server, and in each period, only one server can be used. At the beginning of each period, the new requests need to be assigned to service dates. The aim is to make these assignments such that the sum of the costs for all tours over the planning horizon is minimized. We study the problem with requests located on the nonnegative real line and prove that there cannot be a deterministic online algorithm with a competitive ratio better than alpha. However, if we require the difference between release and deadline date to be equal for all requests, we can show that there is a min{2*alpha, 2 + 2/alpha}-competitive algorithm.

In the generalized max flow problem, the aim is to find a maximum flow in a generalized network, i.e., a network with multipliers on the arcs that specify which portion of the flow entering an arc at its tail node reaches its head node. We consider this problem for the class of series-parallel graphs. First, we study the continuous case of the problem and prove that it can be solved using a greedy approach. Based on this result, we present a combinatorial algorithm that runs in O(m*m) time and a dynamic programming algorithm with running time O(m*log(m)) that only computes the maximum flow value but not the flow itself. For the integral version of the problem, which is known to be NP-complete, we present a pseudo-polynomial algorithm.

Online Delay Management
(2010)

We present extensions to the Online Delay Management Problem on a Single Train Line. While a train travels along the line, it learns at each station how many of the passengers wanting to board the train have a delay of delta. If the train does not wait for them, they get delayed even more since they have to wait for the next train. Otherwise, the train waits and those passengers who were on time are delayed by delta. The problem consists in deciding when to wait in order to minimize the total delay of all passengers on the train line. We provide an improved lower bound on the competitive ratio of any deterministic online algorithm solving the problem using game tree evaluation. For the extension of the original model to two possible passenger delays delta_1 and delta_2, we present a 3-competitive deterministic online algorithm. Moreover, we study an objective function modeling the refund system of the German national railway company, which pays passengers with a delay of at least Delta a part of their ticket price back. In this setting, the aim is to maximize the profit. We show that there cannot be a deterministic competitive online algorithm for this problem and present a 2-competitive randomized algorithm.