### Refine

#### Year of publication

#### Document Type

- Report (399) (remove)

#### Language

- English (399) (remove)

#### Keywords

- numerical upscaling (7)
- hub location (5)
- Elastoplastizität (4)
- Integer programming (4)
- modelling (4)
- poroelasticity (4)
- Darcy’s law (3)
- Dienstgüte (3)
- Elastic BVP (3)
- Elastoplasticity (3)

#### Faculty / Organisational entity

We consider a highly-qualified individual with respect to her choice between two distinct career paths. She can choose between a mid-level management position in a large company and an executive position within a smaller listed company with the possibility to directly affect the company’s share price. She invests in the financial market includ- ing the share of the smaller listed company. The utility maximizing strategy from consumption, investment, and work effort is derived in closed form for logarithmic utility. The power utility case is discussed as well. Conditions for the individual to pursue her career with the smaller listed company are obtained. The participation constraint is formulated in terms of the salary differential between the two posi- tions. The smaller listed company can offer less salary. The salary shortfall is offset by the possibility to benefit from her work effort by acquiring own-company shares. This gives insight into aspects of optimal contract design. Our framework is applicable to the pharma- ceutical and financial industry, and the IT sector.

In this expository article, we give an introduction into the basics of bootstrap tests in general. We discuss the residual-based and the wild bootstrap for regression models suitable for applications in signal and image analysis. As an illustration of the general idea, we consider a particular test for detecting differences between two noisy signals or images which also works for noise with variable variance. The test statistic is essentially the integrated squared difference between the signals after denoising them by local smoothing. Determining its quantile, which marks the boundary between accepting and rejecting the hypothesis of equal signals, is hardly possible by standard asymptotic methods whereas the bootstrap works well. Applied to the rows and columns of images, the resulting algorithm not only allows for the detection of defects but also for the characterization of their location and shape in surface inspection problems.

Weighted k-cardinality trees
(1992)

We consider the k -CARD TREE problem, i.e., the problem of finding in a given undirected graph G a subtree with k edges, having minimum weight. Applications of this problem arise in oil-field leasing and facility layout. While the general problem is shown to be strongly NP hard, it can be solved in polynomial time if G is itself a tree. We give an integer programming formulation of k-CARD TREE, and an efficient exact separation routine for a set of generalized subtour elimination constraints. The polyhedral structure of the convex huLl of the integer solutions is studied.

A wavelet technique, the wavelet-Mie-representation, is introduced for the analysis and modelling of the Earth's magnetic field and corresponding electric current distributions from geomagnetic data obtained within the ionosphere. The considerations are essentially based on two well-known geomathematical keystones, (i) the Helmholtz-decomposition of spherical vector fields and (ii) the Mie-representation of solenoidal vector fields in terms of poloidal and toroidal parts. The wavelet-Mie-representation is shown to provide an adequate tool for geomagnetic modelling in the case of ionospheric magnetic contributions and currents which exhibit spatially localized features. An important example are ionospheric currents flowing radially onto or away from the Earth. To demonstrate the functionality of the approach, such radial currents are calculated from vectorial data of the MAGSAT and CHAMP satellite missions.

We study the global solution of Fredholm integral equations of the second kind by the help of Monte Carlo methods. Global solution means that we seek to approximate the full solution function. This is opposed to the usual applications of Monte Carlo, were one only wants to approximate a functional of the solution. In recent years several researchers developed Monte Carlo methods also for the global problem. In this paper we present a new Monte Carlo algorithm for the global solution of integral equations. We use multiwavelet expansions to approximate the solution. We study the behaviour of variance on increasing levels, and based on this, develop a new variance reduction technique. For classes of smooth kernels and right hand sides we determine the convergence rate of this algorithm and show that it is higher
than those of previously developed algorithms for the global problem. Moreover, an information-based complexity analysis shows that our algorithm is optimal among all stochastic algorithms of the same computational
cost and that no deterministic algorithm of the same cost can reach its convergence rate.

The article is concerned with the modelling of ionospheric current systems from induced magnetic fields measured by satellites in a multiscale framework. Scaling functions and wavelets are used to realize a multiscale analysis of the function spaces under consideration and to establish a multiscale regularization procedure for the inversion of the considered vectorial operator equation. Based on the knowledge of the singular system a regularization technique in terms of certain product kernels and corresponding convolutions can be formed. In order to reconstruct ionospheric current systems from satellite magnetic field data, an inversion of the Biot-Savart's law in terms of multiscale regularization is derived. The corresponding operator is formulated and the singular values are calculated. The method is tested on real magnetic field data of the satellite CHAMP and the proposed satellite mission SWARM.

Computer processing of free form surfaces forms the basis of a closed construction process starting with surface design and up to NC-production.
Numerical simulation and visualization allow quality analysis before manufacture. A new aspect in surface analysis is described, the stability
of surfaces versus infinitesimal bendings. The stability concept is derived
from the kinetic meaning of a special vector field which is given by the deformation. Algorithms to calculate this vector field together with an appropriate visualization method give a tool able to analyze surface stability.

We present a two-scale finite element method for solving Brinkman’s and Darcy’s equations. These systems of equations model fluid flows in highly porous and porous media, respectively. The method uses a recently proposed discontinuous Galerkin FEM for Stokes’ equations byWang and Ye and the concept of subgrid approximation developed by Arbogast for Darcy’s equations. In order to reduce the “resonance error” and to ensure convergence to the global fine solution the algorithm is put in the framework of alternating Schwarz iterations using subdomains around the coarse-grid boundaries. The discussed algorithms are implemented using the Deal.II finite element library and are tested on a number of model problems.

A new variance reduction technique for the Monte Carlo solution of integral
equations is introduced. It is based on separation of the main part. A neighboring equation with exactly known solution is constructed by the help of a deterministic Galerkin scheme. The variance of the method is analyzed, and an application to the radiosity equation of computer graphics, together with numerical test results is given.

For most applications the used transport service providers are predetermined during the development of the application. This makes it difficult to consider the application communication requirements and to exploit specific features of the network technology. Specialized protocols that are more efficient and offer a qualitative improved service are typically not supported by most applications because they are not commonly available. In this paper we propose a concept for the realization of protocol independent transport services. Only a transport service is predetermined during the development of the application and an appropriate transport service provider is dynamically selected at run time. This enables to exploit specialized protocols if possible, but standard protocols could still be used if necessary. The main focus of this paper is how a transport service could provide a new transport service provider transparently to existing applications. A prototype is presented that maps TCP/IP based applications to an ATM specific transport service provider which offers a reliable and unreliable transport service like TCP/IP.

In the ground vehicle industry it is often an important task to simulate full vehicle models based on the wheel forces and moments, which have been measured during driving over certain roads with a prototype vehicle. The models are described by a system of differential algebraic equations (DAE) or ordinary differential equations (ODE). The goal of the simulation is to derive section forces at certain components for a durability assessment. In contrast to handling simulations, which are performed including more or less complex tyre models, a driver model, and a digital road profile, the models we use here usually do not contain the tyres or a driver model. Instead, the measured wheel forces are used for excitation of the unconstrained model. This can be difficult due to noise in the input data, which leads to an undesired drift of the vehicle model in the simulation.

We prove a general monotonicity result about Nash flows in directed networks and use it for the design of truthful mechanisms in the setting where each edge of the network is controlled by a different selfish agent, who incurs costs when her edge is used. The costs for each edge are assumed to be linear in the load on the edge. To compensate for these costs, the agents impose tolls for the usage of edges. When nonatomic selfish network users choose their paths through the network independently and each user tries to minimize a weighted sum of her latency and the toll she has to pay to the edges, a Nash flow is obtained. Our monotonicity result implies that the load on an edge in this setting can not increase when the toll on the edge is increased, so the assignment of load to the edges by a Nash flow yields a monotone algorithm. By a well-known result, the monotonicity of the algorithm then allows us to design truthful mechanisms based on the load assignment by Nash flows. Moreover, we consider a mechanism design setting with two-parameter agents, which is a generalization of the case of one-parameter agents considered in a seminal paper of Archer and Tardos. While the private data of an agent in the one-parameter case consists of a single nonnegative real number specifying the agent's cost per unit of load assigned to her, the private data of a two-parameter agent consists of a pair of nonnegative real numbers, where the first one specifies the cost of the agent per unit load as in the one-parameter case, and the second one specifies a fixed cost, which the agent incurs independently of the load assignment. We give a complete characterization of the set of output functions that can be turned into truthful mechanisms for two-parameter agents. Namely, we prove that an output function for the two-parameter setting can be turned into a truthful mechanism if and only if the load assigned to every agent is nonincreasing in the agent's bid for her per unit cost and, for almost all fixed bids for the agent's per unit cost, the load assigned to her is independent of the agent's bid for her fixed cost. When the load assigned to an agent is continuous in the agent's bid for her per unit cost, it must be completely independent of the agent's bid for her fixed cost. These results motivate our choice of linear cost functions without fixed costs for the edges in the selfish routing setting, but the results also seem to be interesting in the context of algorithmic mechanism design themselves.

SHIM is a concurrent deterministic programming language for embedded systems built on rendezvous communication. It abstracts away many details to give the developer a high-level view that includes virtual shared variables, threads as orthogonal statements, and deterministic concurrent exceptions.
In this paper, we present a new way to compile a SHIM-like language into a set of asynchronous guarded actions, a well-established intermediate representation for concurrent systems. By doing so, we build a bridge to many other tools, including hardware synthesis and formal verification. We present our translation in detail, illustrate it through examples, and show how the result can be used by various other tools.

Due to the increasing number of natural or man-made disasters, the application of operations research methods in evacuation planning has seen a rising interest in the research community. From the beginning, evacuation planning has been highly focused on car-based evacuation. Recently, also the evacuation of transit depended evacuees with the help of buses has been considered.
In this case study, we apply two such models and solution algorithms to evacuate a core part of the metropolitan capital city Kathmandu of Nepal as a hypothetical endangered region, where a large part of population is transit dependent. We discuss the computational results for evacuation time under a broad range of possible scenarios, and derive planning suggestions for practitioners.

The Train Marshalling Problem consists of rearranging an incoming train in a marshalling yard in such a way that cars with the same destinations appear consecutively in the final train and the number of needed sorting tracks is minimized. Besides an initial roll-in operation, just one pull-out operation is allowed. This problem was introduced by Dahlhaus et al. who also showed that the problem is NP-complete. In this paper, we provide a new lower bound on the optimal objective value by partitioning an appropriate interval graph. Furthermore, we consider the corresponding online problem, for which we provide upper and lower bounds on the competitiveness and a corresponding optimal deterministic online algorithm. We provide an experimental evaluation of our lower bound and algorithm which shows the practical tightness of the results.

One approach to multi-criteria IMRT planning is to automatically calculate a data set of Pareto-optimal plans for a given planning problem in a first phase, and then interactively explore the solution space and decide for the clinically best treatment plan in a second phase. The challenge of computing the plan data set is to assure that all clinically meaningful plans are covered and that as many as possible clinically irrelevant plans are excluded to keep computation times within reasonable limits. In this work, we focus on the approximation of the clinically relevant part of the Pareto surface, the process that consititutes the first phase. It is possible that two plans on the Parteto surface have a very small, clinically insignificant difference in one criterion and a significant difference in one other criterion. For such cases, only the plan that is clinically clearly superior should be included into the data set. To achieve this during the Pareto surface approximation, we propose to introduce bounds that restrict the relative quality between plans, so called tradeoff bounds. We show how to integrate these trade-off bounds into the approximation scheme and study their effects.

UML and SDL are languages for the development of software systems that have different origins, and have evolved separately for many years. Recently, it can be observed that OMG and ITU, the standardisation bodies responsible for UML and SDL, respectively, are making efforts to harmonise these languages. So far, harmonisation takes place mainly on a conceptual level, by extending and aligning the set of language concepts. In this paper, we argue that harmonisation of languages can be approached both from a syntactic and semantic perspective. We show how a common syntactical basis can be derived from the analysis of the UML meta-model
and the SDL abstract grammar. For this purpose, conceptually sound and well-founded mappings from meta-models to abstract grammars and vice versa are defined and applied. On the semantic level, a comparison between corresponding language constructs is performed.

Territory design may be viewed as the problem of grouping small geographic areas into larger geographic clusters called territories in such a way that the latter are acceptable according to relevant planning criteria. In this paper we review the existing literature for applications of territory design problems and solution approaches for solving these types of problems. After identifying features common to all applications we introduce a basic territory design model and present in detail two approaches for solving this model: a classical location–allocation approach combined with optimal split resolution techniques and a newly developed computational geometry based method. We present computational results indicating the efficiency and suitability of the latter method for solving large–scale practical problems in an interactive environment. Furthermore, we discuss extensions to the basic model and its integration into Geographic Information Systems.

The Basic Reference Model of ODP introduces a number of basic concepts in order to provide a common basis for the development of a coherent set of standards. To achieve this objective, a clear understanding of the basic concepts is one prerequisite. This paper makes an effort at clarifying some of the basic concepts independently of standardized or non-standardized formal description techniques. Among the basic concepts considered here are: agent, action, interaction, interaction point, architecture, behaviour, system, composition, refinement, and abstraction. In a case study, it is then shown how these basic concepts can be represented in a formal specification written in temporal logic.

We will present a rigorous derivation of the equations and interface conditions for ion, charge and heat transport in Li-ion insertion batteries. The derivation is based exclusively on universally accepted principles of nonequilibrium thermodynamics and the assumption of a one step intercalation reaction at the interface of electrolyte and active particles. Without loss of generality the transport in the active particle is assumed to be isotropic. The electrolyte is described as a fully dissociated salt in a neutral solvent. The presented theory is valid for transport on a spatial scale for which local charge neutrality holds i.e. beyond the scale of the diffuse double layer. Charge neutrality is explicitely used to determine the correct set of thermodynamically independent variables. The theory guarantees strictly positive entropy production. The various contributions to the Peltier coeficients for the interface between the active particles and the electrolyte as well as the contributions to the heat of mixing are obtained as a result of the theory.

The intuitionistic calculus mj for sequents, in which no other logical symbols than those for implication and universal quantification occur, is introduced and analysed. It allows a simple backward application, called mj-reduction here, for searching for derivation trees. Terms needed in mj-reduction can be found with the unification algorithm. mj-Reduction with unification can be seen as a natural extension of SLD-resolution. mj-Derivability of the sequents considered here coincides with derivability in Johansson's minimal intuitionistic calculus LHM in [6]. Intuitionistic derivability of formulae with negation and classical derivability of formulae with all usual logical symbols can be expressed with mj-derivability and hence be verified by mj-reduction. mj-Derivations can be easily translated into LJ-derivations without
"Schnitt", or into NJ-derivations in a slightly sharpened form of Prawitz' normal form. In the first three sections, the systematic use of mj-reduction for proving in predicate logic is emphasized. Although the fourth section, the last and largest, is exclusively devoted to the mathematical analysis of the calculus mj, the first three sections may be of interest to a wider readership, including readers looking for applications of symbolic logic. Unfortunately, the mathematical analysis of the calculus mj, as the study of Gentzen's calculi, demands a large amount of technical work that obscures the natural unfolding of the argumentation. To alleviate this, definitions and theorems are completely embedded in the text to provide a fluent and balanced mathematical discourse: new concepts are indicated with bold-face, proofs of assertions are outlined, or omitted when it is assumed that the reader can provide them.

In this paper we develop a network location model that combines the characteristics of ordered median and gradual cover models resulting in the Ordered Gradual Covering Location Problem (OGCLP). The Gradual Cover Location Problem (GCLP) was specifically designed to extend the basic cover objective to capture sensitivity with respect to absolute travel distance. Ordered Median Location problems are a generalization of most of the classical locations problems like p-median or p-center problems. They can be modeled by using so-called ordered median functions. These functions multiply a weight to the cost of fulfilling the demand of a customer which depends on the position of that cost relative to the costs of fulfilling the demand of the other customers. We derive Finite Dominating Sets (FDS) for the one facility case of the OGCLP. Moreover, we present efficient algorithms for determining the FDS and also discuss the conditional case where a certain number of facilities are already assumed to exist and one new facility is to be added. For the multi-facility case we are able to identify a finite set of potential facility locations a priori, which essentially converts the network location model into its discrete counterpart. For the multi-facility discrete OGCLP we discuss several Integer Programming formulations and give computational results.

Approximation properties of the underlying estimator are used to improve the efficiency of the method of dependent tests. A multilevel approximation procedure is developed such that in each level the number of samples is balanced with the level-dependent variance, resulting in a considerable reduction of the overall computational cost. The new technique is applied to the Monte Carlo estimation of integrals depending on a parameter.

In this paper the multi terminal q-FlowLoc problem (q-MT-FlowLoc) is introduced. FlowLoc problems combine two well-known modeling tools: (dynamic) network flows and locational analysis. Since the q-MT-FlowLoc problem is NP-hard we give a mixed integer programming formulation and propose a heuristic which obtains a feasible solution by calculating a maximum flow in a special graph H. If this flow is also a minimum cost flow, various versions of the heuristic can be obtained by the use of different cost functions. The quality of this solutions is compared.

Optimal degree reductions, i.e. best approximations of \(n\)-th degree Bezier curves
by Bezier curves of degree \(n\) - 1, with respect to different norms are studied. It
is shown that for any \(L_p\)-norm the euclidean degree reduction where the norm is applied to the euclidean distance function of two curves is identical to componentwise degree reduction. The Bezier points of the degree reductions are found to lie on parallel lines through the Bezier points of any Taylor expansion of degree \(n\) - 1 of the original curve. This geometric situation is shown to hold also in the case of constrained degree reduction. The Bezier points of the degree reduction are explicitly given in the unconstrained case for \(p\) = 1 and \(p\) = 2 and in the constrained case for \(p\) = 2.

Virtual Reality (VR) is to be seen as the superset of simulation and animation. Visualization is done by rendering. The fundamental model of VR accounts for all phenomenons to be modelled with help of a computer. Examples range from simple dragging actions with a mouse device to the complex simulation of physically based animation.

The Folgar-Tucker equation (FTE) is the model most frequently used for the prediction of fiber orientation (FO) in simulations of the injection molding process for short-fiber reinforced thermoplasts. In contrast to its widespread use in injection molding simulations, little is known about the mathematical properties of the FTE: an investigation of e.g. its phase spaceMFT has been presented only recently. The restriction of the dependent variable of the FTE to the setMFT turns the FTE into a differential algebraic system (DAS), a fact which is commonly neglected when devising numerical schemes for the integration of the FTE. In this article1 we present some recent results on the problem of trace stability as well as some introductory material which complements our recent paper.

In the Finite-Volume-Particle Method (FVPM), the weak formulation of a hyperbolic conservation law is discretized by restricting it to a discrete set of test functions. In contrast to the usual Finite-Volume approach, the test functions are not taken as characteristic functions of the control volumes in a spatial grid, but are chosen from a partition of unity with smooth and overlapping partition functions (the particles), which can even move along prescribed velocity fields. The information exchange between particles is based on standard numerical flux functions. Geometrical information, similar to the surface area of the cell faces in the Finite-Volume Method and the corresponding normal directions are given as integral quantities of the partition functions. After a brief derivation of the Finite-Volume-Particle Method, this work focuses on the role of the geometric coefficients in the scheme.

The calculation of form factors is an important problem in computing the global illumination in the radiosity setting. Closed form solutions often are only available for objects without obstruction and are very hard to calculate. Using Monte Carlo integration and ray tracing provides a fast and elegant tool for the estimation of the form factors. In this paper we show, that using deterministic low discrepancy sample points is superior to random sampling, resulting in an acceleration of more than half an order of magnitude.

Two approaches for determining the Euler-Poincaré characteristic of a set observed on lattice points are considered in the context of image analysis { the integral geometric and the polyhedral approach. Information about the set is assumed to be available on lattice points only. In order to retain properties of the Euler number and to provide a good approximation of the true Euler number of the original set in the Euclidean space, the appropriate choice of adjacency in the lattice for the set and its background is crucial. Adjacencies are defined using tessellations of the whole space into polyhedrons. In R 3 , two new 14 adjacencies are introduced additionally to the well known 6 and 26 adjacencies. For the Euler number of a set and its complement, a consistency relation holds. Each of the pairs of adjacencies (14:1; 14:1), (14:2; 14:2), (6; 26), and (26; 6) is shown to be a pair of complementary adjacencies with respect to this relation. That is, the approximations of the Euler numbers are consistent if the set and its background (complement) are equipped with this pair of adjacencies. Furthermore, sufficient conditions for the correctness of the approximations of the Euler number are given. The analysis of selected microstructures and a simulation study illustrate how the estimated Euler number depends on the chosen adjacency. It also shows that there is not a uniquely best pair of adjacencies with respect to the estimation of the Euler number of a set in Euclidean space.

The capacitated single-allocation hub location problem revisited: A note on a classical formulation
(2009)

Denote by G = (N;A) a complete graph where N is the set of nodes and A is the set of edges. Assume that a °ow wij should be sent from each node i to each node j (i; j 2 N). One possibility is to send these °ows directly between the corresponding pairs of nodes. However, in practice this is often neither e±cient nor costly attractive because it would imply that a link was built between each pair of nodes. An alternative is to select some nodes to become hubs and use them as consolidation and redistribution points that altogether process more e±ciently the flow in the network. Accordingly, hubs are nodes in the graph that receive tra±c (mail, phone calls, passengers, etc) from di®erent origins (nodes) and redirect this tra±c directly to the destination nodes (when a link exists) or else to other hubs. The concentration of tra±c in the hubs and its shipment to other hubs lead to a natural decrease in the overall cost due to economies of scale.

The Analytic Blossom
(2001)

Blossoming is a powerful tool for studying and computing with Bézier and B-spline curves and surfaces - that is, for the investigation and analysis of polynomials and piecewise polynomials in geometric modeling. In this paper, we define a notion of the blossom for Poisson curves. Poisson curves are to analytic functions what Bézier curves are to polynomials - a representation adapted to geometric design. As in the polynomial setting, the blossom provides a simple, powerful, elegant and computationally meaningful way to analyze Poisson curves. Here, we
define the analytic blossom and interpret all the known algorithms for Poisson curves - subdivision, trimming, evaluation of the function and its derivatives, and conversion between the Taylor and the Poisson basis - in terms of this analytic blossom.

This document offers a concise introduction to the Goal Question Metric Paradigm (GQM Paradigm), and surveys research on applying and extending the GQM Paradigm. We describe the GQM Paradigm in terms of its basic principles, techniques for structuring GQM-related documents, and methods for performing tasks of planning and implementing a measurement program based on GQM. We also survey prototype software tools that support applying the GQM Paradigm in various ways. An annotated bibliography lists sources that document experience gained while using the GQM Paradigm and offer in-depth information about the GQM Paradigm.

This report reviews selected image binarization and segmentation methods that have been proposed and which are suitable for the processing of volume images. The focus is on thresholding, region growing, and shape–based methods. Rather than trying to give a complete overview of the field, we review the original ideas and concepts of selected methods, because we believe this information to be important for judging when and under what circumstances a segmentation algorithm can be expected to work properly.

The quality of freeform surfaces is one of the major topics of CAD/CAM. Aesthetic and technical demands require the construction of high quality surfaces with strong shape conditions. Quality diminishing properties like dents or flat points have to be eliminated while approximation conditions must hold at the same time. Our approach combines quality and approximation criteria to a nonlinear multicriteria optimization problem and achieves an automatic approximation and fitting process.

This paper describes some new algorithms for the accurate calculation of surface properties. In the first part an arithmetic on Bézier surfaces is introduced. Formulas are given, which determine the Bézier points and weights of the resulting surface from the points and weights of the operand surfaces. An application of the arithmetic operations to the surface interrogation methods are described in the second part. It turns out, that the quality analysis can be reduced to a few numerical stable operations. Finally the advantages and disadvantages of this method are discussed.

This paper investigates the convergence of the Lanczos method for computing the smallest eigenpair of a selfadjoint elliptic differential operator via inverse iteration (without shifts).
Superlinear convergence rates are established, and their sharpness is investigated for a simple model problem. These results are illustrated numerically for a more difficult problem.

An efficient mathematical model to virtually generate woven metal wire meshes is
presented. The accuracy of this model is verified by the comparison of virtual structures with three-dimensional
images of real meshes, which are produced via computer tomography. Virtual structures
are generated for three types of metal wire meshes using only easy to measure parameters. For these
geometries the velocity-dependent pressure drop is simulated and compared with measurements
performed by the GKD - Gebr. Kufferath AG. The simulation results lie within the tolerances of
the measurements. The generation of the structures and the numerical simulations were done at
GKD using the Fraunhofer GeoDict software.

We introduce the concept of streamballs for fluid flow visualization. Streamballs are based upon implicit surface generation techniques adopted from the well-known metaballs. Their property to split or merge automatically in areas of significant divergence or convergence makes them an ideal tool for the visualization of arbitrary complex flow fields. Using convolution surfaces generated by continuous skeletons for streamball construction offers the possibility to visualize even tensor fields.

Many rendering problems can only be solved using Monte Carlo integration. The noise and variance inherent with the statistical method efficiently can be reduced by stratification. So far only uncorrelated stratification methods were used that in addition depend on the dimension of the integration domain. Based on rank-1-lattices we present a new stratification technique that removes this dependency on dimension, is much more efficient by correlation, is trivial to implement, and robust to use. The superiority of the new scheme is demonstrated for standard rendering algorithms.

In this paper, a multi-period supply chain network design problem is addressed. Several aspects of practical relevance are considered such as those related with the financial decisions that must be accounted for by a company managing a supply chain. The decisions to be made comprise the location of the facilities, the flow of commodities and the investments to make in alternative activities to those directly related with the supply chain design. Uncertainty is assumed for demand and interest rates, which is described by a set of scenarios. Therefore, for the entire planning horizon, a tree of scenarios is built. A target is set for the return on investment and the risk of falling below it is measured and accounted for. The service level is also measured and included in the objective function. The problem is formulated as a multi-stage stochastic mixed-integer linear programming problem. The goal is to maximize the total financial benefit. An alternative formulation which is based upon the paths in the scenario tree is also proposed. A methodology for measuring the value of the stochastic solution in this problem is discussed. Computational tests using randomly generated data are presented showing that the stochastic approach is worth considering in these type of problems.

One of the fundamental problems in computational structural biology is the prediction of RNA secondary structures from a single sequence. To solve this problem, mainly two different approaches have been used over the past decades: the free energy minimization (MFE) approach which is still considered the most popular and successful method and the competing stochastic context-free grammar (SCFG) approach. While the accuracy of the MFE based algorithms is limited by the quality of underlying thermodynamic models, the SCFG method abstracts from free energies and instead tries to learn about the structural behavior of the molecules by training the grammars on known real RNA structures, making it highly dependent on the availability of a rich high quality training set. However, due to the respective problems associated with both methods, new statistics based approaches towards RNA structure prediction have become increasingly appreciated. For instance, over the last years, several statistical sampling methods and clustering techniques have been invented that are based on the computation of partition functions (PFs) and base pair probabilities according to thermodynamic models. A corresponding SCFG based statistical sampling algorithm for RNA secondary structures has been studied just recently. Notably, this probabilistic method is capable of producing accurate (prediction) results, where its worst-case time and space requirements are equal to those of common RNA folding algorithms for single sequences.
The aim of this work is to present a comprehensive study on how enriching the underlying SCFG by additional information on the lengths of generated substructures (i.e. by incorporating length-dependencies into the SCFG based sampling algorithm, which is actually possible without significant losses in performance) affects the reliability of the induced RNA model and the accuracy of sampled secondary structures. As we will see, significant differences with respect to the overall quality of generated sample sets and the resulting predictive accuracy are typically implied. In principle, when considering the more specialized length-dependent SCFG model as basis for statistical sampling, a higher accuracy of predicted foldings can be reached at the price of a lower diversity of generated candidate structures (compared to the more general traditional SCFG variant or sampling based on PFs that rely on free energies).

A spectral theory for stationary random closed sets is developed and provided with a sound mathematical basis. Definition and proof of existence of the Bartlett spectrum of a stationary random closed set as well as the proof of a Wiener-Khintchine theorem for the power spectrum are used to two ends: First, well known second order characteristics like the covariance can be estimated faster than usual via frequency space. Second, the Bartlett spectrum and the power spectrum can be used as second order characteristics in frequency space. Examples show, that in some cases information about the random closed set is easier to obtain from these characteristics in frequency space than from their real world counterparts.

In this paper we propose a general approach solution method for the single facility ordered median problem in the plane. All types of weights (non-negative, non-positive, and mixed) are considered. The big triangle small triangle approach is used for the solution. Rigorous and heuristic algorithms are proposed and extensively tested on eight different problems with excellent results.

It has been empirically verified that smoother intensity maps can be expected to produce shorter sequences when step-and-shoot collimation is the method of choice. This work studies the length of sequences obtained by the sequencing algorithm by Bortfeld and Boyer using a probabilistic approach. The results of this work build a theoretical foundation for the up to now only empirically validated fact that if smoothness of intensity maps is considered during their calculation, the solutions can be expected to be more easily applied.

In this paper, an extension to the classical capacitated single-allocation hub location problem is studied in which the size of the hubs is part of the decision making process. For each potential hub a set of capacities is assumed to be available among which one can be chosen. Several formulations are proposed for the problem, which are compared in terms of the bound provided by the linear programming relaxation. Di®erent sets of inequalities are proposed to enhance the models. Several preprocessing tests are also presented with the goal of reducing the size of the models for each particular instance. The results of the computational experiments performed using the proposed models are reported.

To simulate the influence of process parameters to the melt spinning process a fiber model is used and coupled with CFD calculations of the quench air flow. In the fiber model energy, momentum and mass balance are solved for the polymer mass flow. To calculate the quench air the Lattice Boltzmann method is used. Simulations and experiments for different process parameters and hole configurations are compared and show a good agreement.

Recently we developed a discrete model of elastic rods with symmetric cross section suitable for a fast simulation of quasistatic deformations [33]. The model is based on Kirchhoff’s geometrically exact theory of rods. Unlike simple models of “mass & spring” type typically used in VR applications, our model provides a proper coupling of bending and torsion. The computational approach comprises a variational formulation combined with a finite difference discretization of the continuum model. Approximate solutions of the equilibrium equations for sequentially varying boundary conditions are obtained by means of energy minimization using a nonlinear CG method. As the computational performance of our model yields solution times within the range of milliseconds, our approach proves to be sufficient to simulate an interactive manipulation of such flexible rods in virtual reality applications in real time.

In this paper, we discuss approaches related to the explicit modeling of human beings in software development processes. While in most older simulation models of software development processes, esp. those of the system dynamics type, humans are only represented as a labor pool, more recent models of the discrete-event simulation type require representations of individual humans. In that case, particularities regarding the person become more relevant. These individual effects are either considered as stochastic variations of productivity, or an explanation is sought based on individual characteristics, such as skills for instance. In this paper, we explore such possibilities by recurring to some basic results in psychology, sociology, and labor science. Various specific models for representing human effects in software process simulation are discussed.

Ownership Domains generalize ownership types. They support programming patterns like iterators that are not possible with ordinary ownership types. However, they are still too restrictive for cases in which an object X wants to access the public domains of an arbitrary number of other objects, which often happens in observer scenarios. To overcome this restriction, we developed so-called loose domains which abstract over several precise domains. That is, similar to the relation between supertypes and subtypes we have a relation between loose and precise domains. In addition, we simplified ownership domains by reducing the number of domains per object to two and hard-wiring the access permissions between domains. We formalized the resulting type system for an OO core language and proved type soundness and a fundamental accessibility property.

Shadow-Mapping
(1993)

Most radiosity techniques store radiosities in certain sample points, typically the vertices of polyhedral scenes. As diffuse radiosities are view independent they can be used for an interactive 'walk-through'. This paper presents an algorithm for storing radiosities independent of the representation of the object. A distributed rendering system, which uses this shadow-mapping technique is described. The basic thermophysical definitions, needed to derive a sum formula for a form factor calculation of polygons, are explained.

This report gives an overview of the separate translation of synchronous imperative programs to synchronous guarded actions. In particular, we consider problems to be solved for separate compilation that stem from preemption statements and local variable declarations. We explain how we solved these problems and sketch our solutions implemented in the our Averest framework to implement a compiler that allows a separate compilation of imperative synchronous programs with local variables and unrestricted preemption statements. The focus of the report is the big picture of our entire design flow.

Selfish Bin Coloring
(2009)

We introduce a new game, the so-called bin coloring game, in which selfish players control colored items and each player aims at packing its item into a bin with as few different colors as possible. We establish the existence of Nash and strong as well as weakly and strictly Pareto optimal equilibria in these games in the cases of capacitated and uncapacitated bins. For both kinds of games we determine the prices of anarchy and stability concerning those four equilibrium concepts. Furthermore, we show that extreme Nash equilibria, those with minimal or maximal number of colors in a bin, can be found in time polynomial in the number of items for the uncapcitated case.

Over a period of 30 years, ITU-T’s Specification and Description Language (SDL) has matured to a sophisticated formal modelling language for distributed systems and communication protocols. The language definition of SDL-2000, the latest version of SDL, is complex and difficult to maintain. Full tool support for SDL is costly to implement. Therefore, only subsets of SDL are currently supported by tools. These SDL subsets - called SDL profiles - already cover a wide range of systems, and are often suffcient in practice. In this report, we present our approach for extracting the formal semantics for SDL profiles from the complete SDL semantics. We then formalise the approach, present our SDL-profile tool, and report on our experiences.

We present a methodology to augment system safety step-by-step and illustrate the approach by the definition of reusable solutions for the detection of fail-silent nodes - a watchdog and a heartbeat. These solutions can be added to real-time system designs, to protect against certain types of system failures. We use SDL as a system design language for the development of distributed systems, including real-time systems.

We study global and local robustness properties of several estimators for shape and scale in a generalized Pareto model. The estimators considered in this paper cover maximum likelihood estimators, skipped maximum likelihood estimators, moment-based estimators, Cramér-von-Mises Minimum Distance estimators, and, as a special case of quantile-based estimators, Pickands Estimator as well as variants of the latter tuned for higher finite sample breakdown point (FSBP), and lower variance. We further consider an estimator matching population median and median of absolute deviations to the empirical ones (MedMad); again, in order to improve its FSBP, we propose a variant using a suitable asymmetric Mad as constituent, and which may be tuned to achieve an expected FSBP of 34%. These estimators are compared to one-step estimators distinguished as optimal in the shrinking neighborhood setting, i.e., the most bias-robust estimator minimizing the maximal (asymptotic) bias and the estimator minimizing the maximal (asymptotic) MSE. For each of these estimators, we determine the FSBP, the influence function, as well as statistical accuracy measured by asymptotic bias, variance, and mean squared error—all evaluated uniformly on shrinking convex contamination neighborhoods. Finally, we check these asymptotic theoretical findings against finite sample behavior by an extensive simulation study.

Facility location problems in the plane are among the most widely used tools of Mathematical Programming in modeling real-world problems. In many of these problems restrictions have to be considered which correspond to regions in which a placement of new locations is forbidden. We consider center and median problems where the forbidden set is
a union of pairwise disjoint convex sets. As applications we discuss the assembly of printed circuit boards, obnoxious facility location and the location of emergency facilities.

Worldwide the installed capacity of renewable technologies for electricity production is
rising tremendously. The German market is particularly progressive and its regulatory
rules imply that production from renewables is decoupled from market prices and electricity
demand. Conventional generation technologies are to cover the residual demand
(defined as total demand minus production from renewables) but set the price at the
exchange. Existing electricity price models do not account for the new risks introduced
by the volatile production of renewables and their effects on the conventional demand
curve. A model for residual demand is proposed, which is used as an extension of
supply/demand electricity price models to account for renewable infeed in the market.
Infeed from wind and solar (photovoltaics) is modeled explicitly and withdrawn from
total demand. The methodology separates the impact of weather and capacity. Efficiency
is transformed on the real line using the logit-transformation and modeled as a stochastic process. Installed capacity is assumed a deterministic function of time. In a case study the residual demand model is applied to the German day-ahead market
using a supply/demand model with a deterministic supply-side representation. Price trajectories are simulated and the results are compared to market future and option
prices. The trajectories show typical features seen in market prices in recent years and the model is able to closely reproduce the structure and magnitude of market prices.
Using the simulated prices it is found that renewable infeed increases the volatility of forward prices in times of low demand, but can reduce volatility in peak hours. Prices
for different scenarios of installed wind and solar capacity are compared and the meritorder effect of increased wind and solar capacity is calculated. It is found that wind
has a stronger overall effect than solar, but both are even in peak hours.

In this paper the existence of translation transversal designs which is equivalent to the existence of certain particular partitions in finite groups is studied. All considerations are based on the fact that the particular component of such a partition (the component representing the point classes of the corresponding design) is a normal subgroup of the translation group. With regard to groups admitting an (s,k,\(\lambda\))-partiton, on one hand the already known families of such groups are determined without using R. BAER's, 0.H.KEGEL's and M. SUZUKI' s classification of finite groups with partition and on the other hand some new results on the special structure of p - groups are proved. Furthermore, the existence of a series of nonabelian p - groups of odd order which can be represented as translation groups of certain (s,k,1) - translation transversal designs is shown; moreover, the translation groups are normal subgroups of collineation groups acting regularly on the set of flags of the same designs.

In a dynamic network, the quickest path problem asks for a path minimizing the time needed to send a given amount of flow from source to sink along this path. In practical settings, for example in evacuation or transportation planning, the reliability of network arcs depends on the specific scenario of interest. In this circumstance, the question of finding a quickest path among all those having at least a desired path reliability arises. In this article, this reliable quickest path problem is solved by transforming it to the restricted quickest path problem. In the latter, each arc is associated a nonnegative cost value and the goal is to find a quickest path among those not exceeding a predefined budget with respect to the overall (additive) cost value. For both, the restricted and reliable quickest path problem, pseudopolynomial exact algorithms and fully polynomial-time approximation schemes are proposed.

There is a well known relationship between alternating automata on finite words and symbolically represented nondeterministic automata on finite words. This relationship is of practical relevance because it allows to combine the advantages of alternating and symbolically represented nondeterministic automata on finite words. However, for infinite words the situation is unclear. Therefore, this work investigates the relationship between alternating omega-automata and symbolically represented nondeterministic omega-automata. Thereby, we identify classes of alternating omega-automata that are as expressive as safety, liveness and deterministic prefix automata, respectively. Moreover, some very simple symbolic nondeterminisation procedures are developed for the classes corresponding to safety and liveness properties.

This paper develops truncated Newton methods as an appropriate tool for nonlinear inverse problems which are ill-posed in the sense of Hadamard. In each Newton step an approximate solution for the linearized problem is computed with the conjugate gradient method as an inner iteration. The conjugate gradient iteration is terminated when the residual has been reduced to a prescribed percentage. Under certain assumptions on the nonlinear operator it is shown that the algorithm converges and is stable if the discrepancy principle is used to terminate the outer iteration.
These assumptions are fulfilled , e.g., for the inverse problem of identifying the diffusion coefficient in a parabolic differential equation from distributed data.

The inverse problem of recovering the Earth's density distribution from data of the first or second derivative of the gravitational potential at satellite orbit height is discussed for a ball-shaped Earth. This problem is exponentially ill-posed. In this paper a multiscale regularization technique using scaling functions and wavelets constructed for the corresponding integro-differential equations is introduced and its numerical applications are discussed. In the numerical part the second radial derivative of the gravitational potential at 200 km orbitheight is calculated on a point grid out of the NASA/GSFC/NIMA Earth Geopotential Model (EGM96). Those simulated derived data out of SGG (satellite gravity gradiometry) satellite measurements are taken for convolutions with the introduced scaling functions yielding a multiresolution analysis of harmonic density variations in the Earth's crust. Moreover, the noise sensitivity of the regularization technique is analyzed numerically.

We are concerned with a parameter choice strategy for the Tikhonov regularization \((\tilde{A}+\alpha I)\tilde{x}\) = T* \(\tilde{y}\)+ w where \(\tilde{A}\) is a (not necessarily selfadjoint) approximation of T*T and T*\(\tilde y\)+ w is a perturbed form of the (not exactly computed) term T*y. We give conditions for convergence and optimal convergence rates.

Katja is a tool generating order-sorted recursive data types as well as position types for Java, from specifications using an enhanced ML like notation. Katja’s main features are its conciseness of specifications, the rich interface provided by the generated code and the Java atypical immutability of types. After several stages of extending and maintaining the Katja project, it became apparent many changes had to be done. The original design of Katja wasn’t prepared for the introduction of several backends, the introduction of position sorts and constant feature enhancements and bug fixes. By supplying this report Katja reaches release status for the first time.

Simulation of multibody systems (mbs) is an inherent part in developing and design of complex mechanical systems. Moreover, simulation during operation gained in importance in the recent years, e.g. for HIL-, MIL- or monitoring applications. In this paper we discuss the numerical simulation of multibody systems on different platforms. The main section of this paper deals with the simulation of an established truck model [9] on different platforms, one microcontroller and two real-time processor boards. Additional to numerical C-code the latter platforms provide the possibility to build the model with a commercial mbs tool, which is also investigated. A survey of different ways of generating code and equations of mbs models is given and discussed concerning handling, possible limitations as well as performance. The presented benchmarks are processed under terms of on-board real time applications. A further important restriction, caused by the real-time requirement, is a fixed integration step size. Whence, carefully chosen numerical integration algorithms are necessary, especially in the case of closed loops in the model. We investigate linearly-implicit time integration methods with fixed step size, so-called Rosenbrock methods, and compare them with respect to their accuracy and performance on the tested processors.

Max ordering (MO) optimization is introduced as tool for modelling production
planning with unknown lot sizes and in scenario modelling. In MO optimization a feasible solution set \(X\) and, for each \(x\in X, Q\) individual objective functions \(f_1(x),\dots,f_Q(x)\) are given. The max ordering objective
\(g(x):=max\) {\(f_1(x),\dots,f_Q(x)\)} is then minimized over all \(x\in X\).
The paper discusses complexity results and describes exact and approximative
algorithms for the case where \(X\) is the solution set of combinatorial
optimization problems and network flow problems, respectively.

The simulation of random fields has many applications in computer graphics such as e.g. ocean wave or turbulent wind field modeling. We present a new and strikingly simple synthesis algorithm for random fields on rank-1 lattices that requires only one Fourier transform independent of the dimension of the support of the random field. The underlying mathematical principle of discrete Fourier transforms on rank-1 lattices breaks the curse of dimension of the standard tensor product Fourier transform, i.e. the number of function values does not exponentially depend on the dimension, but can be chosen linearly.

Quasi-Monte Carlo Radiosity
(1996)

The problem of global illumination in computer graphics is described by a second kind Fredholm integral equation. Due to the complexity of this equation, Monte Carlo methods provide an interesting tool for approximating
solutions to this transport equation. For the case of the radiosity equation, we present the deterministic method of quasi-rondom walks. This method very efficiently uses low discrepancy sequences for integrating the Neumann series and consistently outperforms stochastic techniques. The method of quasi-random walks also is applicable to transport problems in settings other
than computer graphics.

The radiance equation, which describes the global illumination problem in computer graphics, is a high dimensional integral equation. Estimates of the solution are usually computed on the basis of Monte Carlo methods. In this paper we propose and investigate quasi-Monte Carlo methods, which means that we replace (pseudo-) random samples by low discrepancy sequences, yielding deterministic algorithms. We carry out a comparative numerical study between Monte Carlo and quasi-Monte Carlo methods. Our results show that quasi-Monte Carlo converges considerably faster.

Monte Carlo integration is often used for antialiasing in rendering processes.
Due to low sampling rates only expected error estimates can be stated, and the variance can be high. In this article quasi-Monte Carlo methods are presented, achieving a guaranteed upper error bound and a convergence rate essentially as fast as usual Monte Carlo.

We study summation of sequences and integration in the quantum model of computation. We develop quantum algorithms for computing the mean of sequences which satisfy a \(p\)-summability condition and for integration of functions from Lebesgue spaces \(L_p([0,1]^d)\) and analyze their convergence rates. We also prove lower bounds which show that the proposed algorithms are, in many cases, optimal within the setting of quantum computing. This extends recent results of Brassard, Høyer, Mosca, and Tapp (2000) on computing the mean for bounded sequences and complements results of Novak (2001) on integration of functions from Hölder classes.

We study high dimensional integration in the quantum model of computation. We develop quantum algorithms for integration of functions from Sobolev classes \(W^r_p [0,1]^d\) and analyze their convergence rates. We also prove lower bounds which show that the proposed algorithms are, in many cases, optimal within the setting of quantum computing. This extends recent results of Novak on integration of functions from Hölder classes.

In this work we use the Parsimonious Multi–Asset Heston model recently developed in [Dimitroff et al., 2009] at Fraunhofer ITWM, Department Financial Mathematics, Kaiserslautern (Germany) and apply it to Quanto options. We give a summary of the model and its calibration scheme. A suitable transformation of the Quanto option payoff is explained and used to price Quantos within the new framework. Simulated prices are given and compared to market prices and Black–Scholes prices. We find that the new approach underprices the chosen options, but gives better results than the Black–Scholes approach, which is prevailing in the literature on Quanto options.

In this paper we deal with dierent statistical modeling of real world accident data in order to quantify the eectiveness of a safety function or a safety conguration (meaning a specic combination of safety functions) in vehicles. It is shown that the eectiveness can be estimated along the so-called relative risk, even if the eectiveness does depend on a confounding variable which may be categorical or continuous. For doing so a concrete statistical modeling is not necessary, that is the resulting estimate is of nonparametric nature. In a second step the quite usual and from a statistical point of view classical logistic regression modeling is investigated. Main emphasis has been laid on the understanding of the model and the interpretation of the occurring parameters. It is shown that the eectiveness of the safety function also can be detected via such a logistic approach and that relevant confounding variables can and should be taken into account. The interpretation of the parameters related to the confounder and the quantication of the in uence of the confounder is shown to be rather problematic. All the theoretical results are illuminated by numerical data examples.

The provision of quality-of-service (QoS) on the network layer is a major challenge in communication networks. This applies particularly to mobile ad-hoc networks (MANETs) in the area of Ambient Intelligence (AmI), especially with the increasing use of delay and bandwidth sensitive applications. The focus of this survey lies on the classification and analysis of selected QoS routing protocols in the domain of mobile ad-hoc networks. Each protocol is briefly described and assessed, and the results are summarized in multiple tables.

We introduce a refined tree method to compute option prices using the stochastic volatility model of Heston. In a first step, we model the stock and variance process as two separate trees and with transition probabilities obtained by matching tree moments up to order two against the Heston model ones. The correlation between the driving Brownian motions in the Heston model is then incorporated by the node-wise adjustment of the probabilities. This adjustment, leaving the marginals fixed, optimizes the match between tree and model correlation. In some nodes, we are even able to further match moments of higher order. Numerically this gives convergence orders faster than 1/N, where N is the number of dis- cretization steps. Accuracy of our method is checked for European option prices against a semi closed-form, and our prices for both European and American options are compared to alternative approaches.

In nancial mathematics stock prices are usually modelled directly as a result of supply and demand and under the assumption that dividends are paid continuously. In contrast economic theory gives us the dividend discount model assuming that the stock price equals the present value of its future dividends. These two models need not to contradict each other - in their paper Korn and Rogers (2005) introduce a general dividend model preserving the stock price to follow a stochastic process and to be equal to the sum of all its discounted dividends. In this paper we specify the model of Korn and Rogers in a Black-Scholes framework in order to derive a closed-form solution for the pricing of American Call options under the assumption of a known next dividend followed by several stochastic dividend payments during the option's time to maturity.

Many applications dealing with geometry acquisition and processing produce polygonal meshes that carry artifacts like discretization noise. While there are many approaches to remove the artifacts by smoothing or filtering the mesh, they are not tailored to any specific application subject to·certain restrictive objectives. We show how to incorporate smoothing schemes based on the general Laplacian approximation to satsify all those objectives at
the same time for the results of flow simulation in the application field of car manufacturing. In the presented application setting the major restrictions come from the bounding volume of the flow simulation, the so-called installation space. In particular, clean mesh regions (without noise) should not be smoothed while at the same time the installation space must not be violated by the smoothing of the noisy mesh regions. Additionally, aliasing effects at the boundary between clean and noisy mesh regions must be prevented. To address the fact that the meshes come from flow simulation, the presented method is versatile enough to preserve their exact volume and to apply anisotropic filters using the flow information.
Although the paper focuses on the results of a specific application, most of its findings can be transferred to different settings as well.

A polynomial function \(f : L \to L\) of a lattice \(\mathcal{L}\) = \((L; \land, \lor)\) is generated by the identity function id \(id(x)=x\) and the constant functions \(c_a (x) = a\) (for every \(x \in L\)), \(a \in L\) by applying the operations \(\land, \lor\) finitely often. Every polynomial function in one or also in several variables is a monotone function of \(\mathcal{L}\).
If every monotone function of \(\mathcal{L}\)is a polynomial function then \(\mathcal{L}\) is called orderpolynomially complete. In this paper we give a new characterization of finite order-polynomially lattices. We consider doubly irreducible monotone functions and point out their relation to tolerances, especially to central relations. We introduce chain-compatible lattices
and show that they have a non-trivial congruence if they contain a finite interval and an infinite chain. The consequences are two new results. A modular lattice \(\mathcal{L}\) with a finite interval is order-polynomially complete if and only if \(\mathcal{L}\) is finite projective geometry. If \(\mathcal{L}\) is simple modular lattice of infinite length then every nontrivial interval is of infinite length and has the same cardinality as any other nontrivial interval of \(\mathcal{L}\). In the last sections we show the descriptive power of polynomial functions of
lattices and present several applications in geometry.

The problem of constructing a geometric model of an existing object from a set of boundary points arises in many areas of industry. In this paper we present a new solution to this problem which is an extension of Boissonnat's method [2]. Our approach uses the well known Delaunay triangulation of the data points as an intermediate step. Starting with this structure, we eliminate tetrahedra until we get an appropriate approximation of the desired shape. The method proposed in this paper is capable of reconstructing objects with arbitrary genus and can cope with different point densities in different regions of the object. The
problems which arise during the elimination process, i.e. which tetrahedra can be eliminated, which order has to be used to control the process and finally, how to stop the elimination procedure at the right time, are discussed in detail. Several examples are given to show the validity of the method.

We examine the feasibility polyhedron of the uncapacitated hub location problem (UHL) with multiple allocation, which has applications in the fields of air passenger and cargo transportation, telecommunication and postal delivery services. In particular we determine the dimension and derive some classes of facets of this polyhedron. We develop some general rules about lifting facets from the uncapacitated facility location (UFL) for UHL and projecting facets from UHL to UFL. By applying these rules we get a new class of facets for UHL which dominates the inequalities in the original formulation. Thus we get a new formulation of UHL whose constraints are all facet–defining. We show its superior computational performance by benchmarking it on a well known data set.

This work presents a new framework for Gröbner basis computations with Boolean polynomials. Boolean polynomials can be modeled in a rather simple way, with both coefficients and degree per variable lying in {0, 1}. The ring of Boolean polynomials is, however, not a polynomial ring, but rather the quotient ring of the polynomial ring over the field with two elements modulo the field equations x2 = x for each variable x. Therefore, the usual polynomial data structures seem not to be appropriate for fast Gröbner basis computations. We introduce a specialized data structure for Boolean polynomials based on zero-suppressed binary decision diagrams (ZDDs), which is capable of handling these polynomials more efficiently with respect to memory consumption and also computational speed. Furthermore, we concentrate on high-level algorithmic aspects, taking into account the new data structures as well as structural properties of Boolean polynomials. For example, a new useless-pair criterion for Gröbner basis computations in Boolean rings is introduced. One of the motivations for our work is the growing importance of formal hardware and software verification based on Boolean expressions, which suffer – besides from the complexity of the problems – from the lack of an adequate treatment of arithmetic components. We are convinced that algebraic methods are more suited and we believe that our preliminary implementation shows that Gröbner bases on specific data structures can be capable to handle problems of industrial size.

Home Health Care (HHC) services are becoming increasingly important in Europe’s aging societies. Elderly people have varying degrees of need for assistance and medical treatment. It is advantageous to allow them to live in their own homes as long as possible, since a long-term stay in a nursing home can be much more costly for the social insurance system than a treatment at home providing assistance to the required level. Therefore, HHC services are a cost-effective and flexible instrument in the social system. In Germany, organizations providing HHC services are generally either larger charities with countrywide operations or small private companies offering services only in a city or a rural area. While the former have a hierarchical organizational structure and a large number of employees, the latter typically only have some ten to twenty nurses under contract. The relationship to the patients (“customers”) is often long-term and can last for several years. Therefore acquiring and keeping satisfied customers is crucial for HHC service providers and intensive competition among them is observed.

Web-based authentication is a popular mechanism implemented by Wireless Internet Service Providers (WISPs) because it allows a simple registration and authentication of customers, while avoiding the high resource requirements of the new IEEE 802.11i security standard and the backward compatibility issues of legacy devices. In this work we demonstrate two different and novel attacks against web-based authentication. One attack exploits operational anomalies of low- and middle-priced devices in order to hijack wireless clients, while the other exploits an already known vulnerability within wired-networks, which in dynamic wireless environments turns out to be even harder to detect and protect against.

In this article, a new model predictive control approach to nonlinear stochastic systems will be presented. The new approach is based on particle filters, which are usually used for estimating states or parameters. Here, two particle filters will be combined, the first one giving an estimate for the actual state based on the actual output of the system; the second one gives an estimate of a control input for the system. This is basically done by adopting the basic model predictive control strategies for the second particle filter. Later in this paper, this new approach is applied to a CSTR (continuous stirred-tank reactor) example and to the inverted pendulum.