### Refine

#### Year of publication

#### Document Type

- Preprint (157)
- Article (52)
- Periodical Part (21)
- Doctoral Thesis (6)
- Working Paper (5)
- Diploma Thesis (1)

#### Language

- English (242) (remove)

#### Keywords

- resonances (10)
- Quantum mechanics (8)
- Wannier-Stark systems (8)
- lifetimes (8)
- quantum mechanics (6)
- lifetime statistics (5)
- Lasererzeugtes Plasma (3)
- entropy (3)
- localization (3)
- Brillouin light scattering spectroscopy (2)

#### Faculty / Organisational entity

- Fachbereich Physik (242) (remove)

FeNi/FeMn exchange bias samples with a large exchange bias field at room temperature have been prepared on a Cu buffer layer. Upon irradiation with He ions, both the exchange bias field and the coercive field are modified. For low ion doses the exchange bias field is enhanced by nearly a factor of 2. Above a threshold dose of 0.3olsi 10 15 ions/cm 2 , the exchange bias field decreases continuously as the ion dose increases. The ob-served modifications are explained in terms of defect creation acting as pinning sites for domain walls and atomic intermixing.

For the next generation of high data rate magnetic recording above 1 Gbit/s, a better understanding of the switching processes for both recording heads and media will be required. In order to maximize the switch-ing speed for such devices, the magnetization precession after the magnetic field pulse termination needs to be suppressed to a maximum degree. It is demonstrated experimentally for ferrite films that the appropriate adjustment of the field pulse parameters and/or the static applied field may lead to a full suppression of the magnetization precession immediately upon termination of the field pulse. The suppression is explained by taking into account the actual direction of the magnetization with respect to the static field direction at the pulse termination.

Suppression of the magnetocrystalline bulk anisotropy in thin epitaxial Co(110) films on Cu(110)
(1996)

We report on an unexpected suppression of the magnetocrystalline anisotropy contribution in epitaxial fcc Co(110) films on Cu(110) below a thickness of dc=(50 +/- 10) Å. For film thicknesses larger than dc the measured anisotropy value agrees with published data. Measurements on films with reduced strain indicate a large strain dependence of dc . A model calculation based on a crystal-field formalism and discussed within the context of band theory, which explicitly takes tetragonal misfit strains into account, reproduces the experimen-tally observed anomalies. Our results indicate that the usually applied phenomenological description of anisotropies, assuming additive free energy terms for each anisotropy contribution, fails in this case.

Oscillatory surface in-plane lattice spacing during growth of Co and Cu on a Cu(001) single crystal
(1995)

The magnetic anisotropy of Co/Cu~001! films has been investigated by the magneto-optical Kerr effect, both in the pseudomorphic growth regime and above the critical thickness where strain relaxation sets in. A clear correlation between the onset of strain relaxation as measured by means of reflection high-energy electron diffraction and changes of the magnetic anisotropy has been found.

The first observation of spatiotemporal self-focusing of spin waves is reported. The experimental results are obtained for dipolar spin waves in yttrium-iron-garnet films by means of a newly developed space- and time-resolved Brillouin light scattering technique. They demonstrate self-focusing of a moving wave pulse in two spatial dimensions, and formation of localized two-dimensional wave packets, the collapse of which is stopped by dissipation. The experimental results are in good qualitative agreement with numerical simulations.

An unusual interlayer coupling, recently discovered in layered magnetic systems, is analysed from the experimental and theoretical points of view. This coupling favours the 90 orientation of the magnetization of the adjacent magnetic films. It can be phenomenologically described by a term in the energy expression, which is biquadratic with respect to the magnetizations of the two films. The main experimental findings, as well as the theoretical models, explaining the phenomenon are discussed.

We report on the exchange bias effect as a function of the in-plane direction of the applied field in twofold symmetric, epitaxial Ni 80 Fe 20 /Fe 50 Mn 50 bilayers grown on Cu~110! single-crystal substrates. An enhancement of the exchange bias field, H eb , up to a factor of 2 is observed if the external field is nearly, but not fully aligned perpendicular to the symmetry direction of the exchange bias field. From the measurement of the exchange bias field as a function of the in-plane angle of the applied field, the unidirectional, uniaxial and fourfold anisotropy contributions are determined with high precision. The symmetry direction of the unidirectional anisotropy switches with increasing NiFe thickness from [110] to [001].

We present results of anisotropy and exchange-coupling studies of asymmetric Co/Cr/Fe trilayers and superlattices grown by molecular beam epitaxy on Cr~001!/Mg~001! buffers and substrates. The magnetic properties have been investigated using both the longitudinal magneto-optical Kerr effect and ferromagnetic resonance. The hysteresis data obtained from the trilayer system were fit to a theoretical model which contains both bilinear and biquadratic coupling. The effective in-plane anisotropy was found to be of fourfold symmetry with the same easy-axis orientation for both the Fe and Co layers. An analysis of the easy-axis hysteresis loops indicates long-period oscillatory coupling and also suggests a short periodic coupling. We show that weakly antiferromagnetically coupled asymmetric films might serve as potential candidates for improved spin-valve systems.

We report on investigations of the crystallographic structure and the magnetic anisotropies of epitaxial iron films deposited onto periodically stepped Ag(001) surfaces using low energy electron diffraction, x-ray diffraction, second harmonic generation (SHG), as well as the Brillouin light scattering (BLS) technique. The focus of the present study lies on the interrelation between the surface morphology of the buffer layers and the magnetic properties of the Fe films, epitaxially grown onto them. Especially the symmetry breaking at the atomic steps is found to create an uniaxial magnetic anisotropy measured by BLS and a very strong anisotropic signal in magnetic SHG.

A new advanced space- and time-resolved Brillouin light scattering (BLS) technique is used to study diffraction of two-dimensional beams and pulses of dipolar spin waves excited by strip-line antennas in tangentially magnetized garnet films. The new technique is an effective tool for investigations of two-dimensional spin wave propagation with high spatial and temporal resolution. Linear effects, such as the unidirectional exci-tation of magnetostatic surface waves and the propagation of backward volume magnetostatic waves (BVMSW) in two preferential directions due to the non-collinearity of their phase and group velocities are investigated in detail. In the nonlinear regime stationary and non-stationary self-focusing effects are studied. It is shown, that non-linear diffraction of a stationary BVMSW beam, having a finite transverse aperture, leads to self-focusing of the beam at one spatial point. Diffraction of a finite-duration (non-stationary) BVMSW pulse leads to space-time self-focusing and formation of a strongly localized two-dimensional wave packet (spin wave bullet). Numerical modeling of the diffraction process by using a variational approach and direct numerical integration of the two-dimensional non-linear Schrödinger equation provides a good qualitative description of the observed phenomena.

A new advanced space- and time-resolved Brillouin light scattering technique is used to study diffraction of two-dimensional beams and pulses of dipolar spin waves excited by strip-line antennas in tangentially magnetized garnet films. The technique is an effective tool for investigations of two-dimensional spin wave propagation with high spatial and temporal resolution. Nonlinear effects such as stationary and nonstationary self-focusing are investigated in detail. It is shown, that nonlinear diffraction of a stationary backward volume magnetostatic wave (BVMSW) beam, having a finite transverse aperture, leads to selffocusing of the beam at one spatial point. Diffraction of a finite-duration (non-stationary) BVMSW pulse leads to space-time self-focusing and formation of a strongly localized two-dimensional wave packet (spin wave bullet).

We report on the observation of spin wave quantization in tangentially magnetized Ni80Fe20 discs by means of Brillouin light scattering spectroscopy. For a large wave vector interval several discrete, dispersionless modes with a frequency splitting up to 2.5 GHz were observed. The modes are identified as being magne-tostatic surface spin wave modes quantized by their lateral confinement in the disc. For the lowest modes dynamic magnetic dipolar coupling between the discs is found for a disc spacing of 0.1microm.

Phase velocities of surface acoustic waves in several boron nitride films were investigated by Brillouin light scattering. In the case of films with predominantly hexagonal crystal structure, grown under conditions close to the nucleation threshold of cubic BN, four independent elastic constants have been determined from the dispersion of the Rayleigh and the first Sezawa mode. The large elastic anisotropy of up to c11/c33 = 0.1 is attributed to a pronounced texture with the c-axes of the crystallites parallel to the film plane. In the case of cubic BN films the dispersion of the Rayleigh wave provides evidence for the existence of a more compliant layer at the substrate-film interface. The observed broadening of the Rayleigh mode is identified to be caused by the film morphology.

An experimental study of spin wave quantization in arrays of micron size magnetic Ni80Fe20 islands (dots and wires) by means of Brillouin light scattering spectroscopy is reported. Dipolar-dominated spin wave modes laterally quantized in a single island with quantized wavevector values determined by the size of the island are studied. In the case of wires the frequencies of the modes and the transferred wavevector interval, where each mode is observed, are calculated. The results of the calculations are in a good agreement with the experimental data. In the case of circular dots the frequencies of the lowest observed modes decrease with increasing distance between the dots, thus indicating an essential dynamic magnetic dipole interaction between the dots with small interdot distances.

Annual Report 1999
(2000)

An experimental study of spin wave quantization in arrays of micron size magnetic Ni80Fe20 wires by means of Brillouin light scattering spectroscopy is reported. Dipolar-dominated Damon-Eshbach spin wave modes laterally quantized in a single wire with quantized wavevector values determined by the width of the wire are studied. The frequency splitting between quantized modes, which decreases with increasing mode number, depends on the wire sizes and is up to 1.5 GHz. The transferred wavevector interval, where each mode is observed, is calculated using a light scattering theory for confined geometries. The frequen-cies of the modes are calculated, taking into account finite size effects. The results of the calculations are in a good agreement with the experimental data.

Collisions of Spin Wave Envelope Solitons and Self-Focused Spin Wave Packets in Magnetic Films
(1999)

Head-on collisions between two-dimensional self-focused spin wave packets and between quasi-one-dimensional spin wave envelope solitons have been directly observed for the first time in yttrium-iron garnet (YIG) films by means of a space- and time-resolved Brillouin light scattering technique. We show that quasi-one-dimensional envelope solitons formed in narrow film strips ("waveguides") retain their shapes after collision, while the two-dimensional self-focused spin wave packets formed in wide YIG films are destroyed in collision.

High frequency switching of single domain, uniaxial magnetic particles is discussed in terms of transition rates controlled by a small transverse bias field. It is shown that fast switching times can be achieved using bias fields an order of magnitude smaller than the effective anisotropy field. Analytical expressions for the switching time are derived in special cases and general configurations of practical interest are examined using numerical simulations.

We present detailed studies of the enhanced coercivity of exchange-bias bilayer Fe/MnPd, both experimentally and theoretically. We have demonstrated that the existence of large higher-order anisotropies due to exchange coupling between different Fe and MnPd layers can account for the large increase of coercivity in Fe/MnPd system. The linear dependence of coercivity on inverse Fe thickness are well explained by a phenomenological model by introducing higher-order anisotropy terms into the total free energy of the system.

Static and dynamic properties of patterned magnetic permalloy films are investigated. In square lattices of circular shaped permalloy dots an anisotropic coupling mechanism has been found, which is identified as being due to intrinsically unsaturated parts of the dots caused by spatial variations of demagnetizing field. In arrays of magnetic wires a quantization of the surface spin wave mode in several dispersionless modes is observed and quantitatively described. For large wavevectors the frequency separation between the modes becomes smaller and the frequencies converge to the dispersion of the dipole-exchange surface mode of a continuous film.

Annual Report 1997
(1998)

Annual Report 1998
(1999)

We report on the exchange bias effect as a function of the in-plane direction of the applied field in two-fold symmetric, epitaxial Ni80Fe20/Fe50Mn50 bilayers grown on Cu(110) single crystal substrates. An enhancement of the exchange bias field, Heb, up to a factor of two is observed if the external field is nearly, but not fully aligned perpendicular to the symmetry direction of the exchange bias field. From the measurement of the ex-change bias field as a function of the in-plane angle of the applied field, the unidirectional, uniaxial and four-fold anisotropy contributions are determined with high precision. The symmetry direction of the unidirec-tional anisotropy switches with increasing NiFe thickness from [110] to [001].

Epitaxial growth of metastable Pd(001) at high deposition temperatures up to a critical thickness of 6 monolayers on bcc-Fe(001) is reported, the critical thickness being depending dramatically on the deposition temperature. For larger thicknesses the Pd film undergoes a roughening transition with strain relaxation by forming a top polycrystalline layer. These results allow to make a correlation between previ-ously reported unusual magnetic properties of Fe/Pd double layers and the crystallographic structure of the Pd overlayer.

An overview of the current status of the study of spin wave excitations in arrays of magnetic dots and wires is given. We describe both the status of theory and recent inelastic light scattering experiments addressing the three most important issues: the modification of magnetic properties by patterning due to shape aniso-tropies, anisotropic coupling between magnetic islands, and the quantization of spin waves due to the in-plane confinement of spin waves in islands.

We investigate the temperature dependence of the magnetization reversal process and of spinwaves in epi-taxially grown (001)-oriented [Fem/Aun]30 multilayers (m = 1, 2; n = 1- 6). Both polar magneto-optic Kerrr effect and Brillouin light scattering measurements reveal that all investigated multilayers, apart from the [Fe2/Au1]30-sample, are magnetized perpendicular to the film plane. The out-of-plane anisotropy constants are obtained. At high temperature, the magnetization curves are well described by an alternating stripe domain structure with free mobile domain walls, and at low temperature by a thermal activation model for the domain wall motion.

Hexagonal BN films have been deposited by rf-magnetron sputtering with simultaneous ion plating. The elastic properties of the films grown on silicon substrates under identical coating conditions have been de-termined by Brillouin light scattering from thermally excited surface phonons. Four of the five independent elastic constants of the deposited material are found to be c11 = 65 GPa, c13 = 7 GPa, c33 = 92 GPa and c44 = 53 GPa exhibiting an elastic anisotropy c11/c33 of 0.7. The Young's modulus determined with load indenta-tion is distinctly larger than the corresponding value taken from Brillouin light scattering. This discrepancy is attributed to the specific morphology of the material with nanocrystallites embedded in an amorphous matrix.

We report on the observation of spin wave quantization in square arrays of micron size circular magnetic Ni80Fe20 dots by means of Brillouin light scattering spectroscopy. For a large wavevector interval several discrete, dispersionless modes with a frequency splitting of up to 2.5 GHz were observed. The modes are identified as magnetostatic surface spin waves laterally quantized due to in- plane confinement in each single dot. The frequencies of the lowest observed modes decrease with increasing distance between the dots, thus indicating an essential dynamic magnetic dipole interaction between the dots with small interdot distances.

The quasienergy spectrum of a periodically driven quantum system is constructed from classical dynamics by means of the semiclassical initial value representation using coherent states. For the first time, this method is applied to explicitly time dependent systems. For an anharmonic oscillator system with mixed chaotic and regular classical dynamics, the entire quantum spectrum (both regular and chaotic states) is reproduced semiclassically with surprising accuracy. In particular, the method is capable to account for the very small tunneling splittings.

The dispersions of dipolar (Damon-Eshbach modes) and exchange dominated spin waves are calculated for in-plane magnetized thin and ultrathin cubic films with (111) crystal orientation and the results are compared with those obtained for the other principal planes. The properties of these magnetic excitations are examined from the point of view of Brillouin light scattering experiments. Attention is paid to study the spin-wave frequency variation as a function of the magnetization direction in the film plane for different film thicknesses. Interface anisotropies and the bulk magnetocrystalline anisotropy are considered in the calculation. A quantitative comparison between an analytical expression obtained in the limit of small film thickness and wave vector and the full numerical calculation is given.

Brillouin light scattering investigations of exchange biased (110)-oriented NiFe/FeMn bilayers
(1997)

All contributing magnetic anisotropies in (110)-oriented exchange biased Ni 80 Fe 20 /Fe 50 Mn 50 double layers prepared by molecular beam epitaxy on Cu(110) single crystals have been determined by means of Brillouin light scattering. Upon covering the Ni 80 Fe 20 films by Fe 50 Mn 50 , a unidirectional anisotropy contribution appears, which is consistent with the measured exchange bias field. The uniaxial and fourfold in-plane anisotropy contributions are largely modified by an amount, which scales with the Ni 80 Fe 20 thickness, indicating an interface effect. The strong uniaxial anisotropy contribution shows an in-plane switching of the easy axis from [110] to [001] with increasing Ni 80 Fe 20 -layer thickness. The large mode width of the spin wave excitations, which exceeds the linewidth of uncovered Ni 80 Fe 20 films by a factor of more than six, indicates large spatial variations of the exchange coupling constant. (C) 1998 American Institute of Physics.

The first observation of self-focusing of dipolar spin waves in garnet film media is reported. In particular, we show that the quasi-stationary diffraction of a finite-aperture spin wave beam in a focusing medium leads to the concentration of the wave power in one focal point rather than along a certain line (channel). The obtained results demonstrate the wide applicability of non-linear spin wave media to study non-linear wave phenomena using an advanced combined microwave-Brillouin light scattering technique for a two-dimensional mapping of the spin wave amplitudes.

Static magnetic and spin wave properties of square lattices of permalloy micron dots with thicknesses of 500 Å and 1000 Å and with varying dot separations have been investigated. A magnetic fourfold anisotropy was found for the lattice with dot diameters of 1 micrometer and a dot separation of 0.1 micrometer. The anisotropy is attributed to an anisotropic dipole-dipole interaction between magnetically unsaturated parts of the dots. The anisotropy strength (order of 100000 erg/cm^3 ) decreases with increasing in-plane applied magnetic field.

Static magnetic and spin wave properties of square lattices of permalloy micron dots with thicknesses of 500 Å and 1000 Å and with varying dot separations have been investigated. The spin wave frequencies can be well described taking into account the demagnetization factor of each single dot. A magnetic four-fold anisotropy was found for the lattice with dot diameters of 1 micrometer and a dot separation of 0.1 micrometer. The anisotropy is attributed to an anisotropic dipole-dipole interaction between magnetically unsaturated parts of the dots. The anisotropy strength (order of 100000 erg/cm^3 ) decreases with increasing in-plane applied magnetic field.

We report on Brillouin light scattering investigations of the elastic properties in Co/Ni superlattices which exhibit localized electronic eigenstates near the Fermi level causing an oscillation of the resistivity as a function of the superlattice periodicity A. No oscillations of the Rayleigh and Sezawa mode as a function of A could be observed within an error margin of +- 2% indicating that the localized electronic states do not contribute to the elastic constants.