### Refine

#### Year of publication

#### Document Type

- Article (193) (remove)

#### Language

- English (193) (remove)

#### Keywords

- AG-RESY (32)
- PARO (24)
- SKALP (14)
- resonances (8)
- Wannier-Stark systems (7)
- lifetimes (7)
- HANDFLEX (6)
- Quantum mechanics (6)
- motion planning (5)
- quantum mechanics (5)

#### Faculty / Organisational entity

Radar cross section reducing (RCSR) metasurfaces or coding metasurfaces were primarily designed for normally incident radiation in the past. It is evident that the performance of coding metasurfaces for RCSR can be significantly improved by additional backscattering reduction of obliquely incident radiation, which requires a valid analytic conception tool. Here, we derive an analytic current density distribution model for the calculation of the backscatter far-field of obliquely incident radiation on a coding metasurface for RCSR. For demonstration, we devise and fabricate a metasurface for a working frequency of 10.66GHz and obtain good agreement between the measured, simulated, and analytically calculated backscatter far-fields. The metasurface significantly reduces backscattering for incidence angles between −40∘ and 40∘ in a spectral working range of approximately 1GHz.

Exploiting Direct Laser Writing for Hydrogel Integration into Fragile Microelectromechanical Systems
(2019)

The integration of chemo-responsive hydrogels into fragile microelectromechanical systems (MEMS) with reflective surfaces in the micron to submicron range is presented. Direct laser writing (DLW) for 3D microstructuring of chemoresponsive “smart” hydrogels on sensitive microstructures is demonstrated and discussed in detail, by production of thin hydrogel layers and discs with a controllable lateral size of 2 to 5 µm and a thickness of some hundred nm. Screening results of polymerizing laser settings for precision microstructuring were determined by controlling crosslinking and limiting active chain diffusion during polymerization with macromers. Macromers are linear polymers with a tunable amount of multifunctional crosslinker moieties, giving access to a broad range of different responsive hydrogels. To demonstrate integration into fragile MEMS, the gel was deposited by DLW onto a resonator with a 200 nm thick sensing plate with high precision. To demonstrate the applicability for sensors, proof of concept measurements were performed. The polymer composition was optimized to produce thin reproducible layers and the feasibility of 3D structures with the same approach is demonstrated.

3D joint kinematics can provide important information about the quality of movements. Optical motion capture systems (OMC) are considered the gold standard in motion analysis. However, in recent years, inertial measurement units (IMU) have become a promising alternative. The aim of this study was to validate IMU-based 3D joint kinematics of the lower extremities during different movements. Twenty-eight healthy subjects participated in this study. They performed bilateral squats (SQ), single-leg squats (SLS) and countermovement jumps (CMJ). The IMU kinematics was calculated using a recently-described sensor-fusion algorithm. A marker based OMC system served as a reference. Only the technical error based on algorithm performance was considered, incorporating OMC data for the calibration, initialization, and a biomechanical model. To evaluate the validity of IMU-based 3D joint kinematics, root mean squared error (RMSE), range of motion error (ROME), Bland-Altman (BA) analysis as well as the coefficient of multiple correlation (CMC) were calculated. The evaluation was twofold. First, the IMU data was compared to OMC data based on marker clusters; and, second based on skin markers attached to anatomical landmarks. The first evaluation revealed means for RMSE and ROME for all joints and tasks below 3°. The more dynamic task, CMJ, revealed error measures approximately 1° higher than the remaining tasks. Mean CMC values ranged from 0.77 to 1 over all joint angles and all tasks. The second evaluation showed an increase in the RMSE of 2.28°– 2.58° on average for all joints and tasks. Hip flexion revealed the highest average RMSE in all tasks (4.87°– 8.27°). The present study revealed a valid IMU-based approach for the measurement of 3D joint kinematics in functional movements of varying demands. The high validity of the results encourages further development and the extension of the present approach into clinical settings.

The coordination of multiple external representations is important for learning, but yet a difficult task for students, requiring instructional support. The subject in this study covers a typical relation in physics between abstract mathematical equations (definitions of divergence and curl) and a visual representation (vector field plot). To support the connection across both representations, two instructions with written explanations, equations, and visual representations (differing only in the presence of visual cues) were designed and their impact on students’ performance was tested. We captured students’ eye movements while they processed the written instruction and solved subsequent coordination tasks. The results show that students instructed with visual cues (VC students) performed better, responded with higher confidence, experienced less mental effort, and rated the instructional quality better than students instructed without cues. Advanced eye-tracking data analysis methods reveal that cognitive integration processes appear in both groups at the same point in time but they are significantly more pronounced for VC students, reflecting a greater attempt to construct a coherent mental representation during the learning process. Furthermore, visual cues increase the fixation count and total fixation duration on relevant information. During problem solving, the saccadic eye movement pattern of VC students is similar to experts in this domain. The outcomes imply that visual cues can be beneficial in coordination tasks, even for students with high domain knowledge. The study strongly confirms an important multimedia design principle in instruction, that is, that highlighting conceptually relevant information shifts attention to relevant information and thus promotes learning and problem solving. Even more, visual cues can positively influence students’ perception of course materials.

Modern applications in the realms of wireless communication and mobile broadband Internet increase the demand for compact antennas with well defined directivity. Here, we present an approach for the design and implementation of hybrid antennas consisting of a classic feeding antenna that is near-field-coupled to a subwavelength resonator. In such a combined structure, the composite antenna always radiates at the resonance frequency of the subwavelength oscillator as well as at the resonance frequency of the feeding antenna. While the classic antenna serves as impedance-matched feeding element, the subwavelength resonator induces an additional resonance to the composite antenna. In general, these near-field coupled structures are known for decades and are lately published as near-field resonant parasitic antennas. We describe an antenna design consisting of a high-frequency electric dipole antenna at fd=25 GHz that couples to a low-frequency subwavelength split-ring resonator, which emits electromagnetic waves at fSRR=10.41 GHz. The radiating part of the antenna has a size of approximately 3.2mm×8mm×1mm and thus is electrically small at this frequency with a product k⋅a=0.5 . The input return loss of the antenna was moderate at −18 dB and it radiated at a spectral bandwidth of 120 MHz. The measured main lobe of the antenna was observed at 60∘ with a −3 dB angular width of 65∘ in the E-plane and at 130∘ with a −3 dB angular width of 145∘ in the H-plane

Cyclic indentation is a technique used to characterize materials by indenting repeatedly on the same location. This technique allows information to be obtained on how the plastic material response changes under repeated loading. We explore the processes underlying this technique using a combined experimental and simulative approach. We focus on the loading–unloading hysteresis and the dependence of the hysteresis width ha,p on the cycle number. In both approaches, we obtain a power-law demonstrating ha,p with respect to the hardening exponent e. A detailed analysis of the atomistic simulation results shows that changes in the dislocation network under repeated indentation are responsible for this behavior.

The fifth-generation mobile telecommunication network is expected to support multi-access edge computing (MEC), which intends to distribute computation tasks and services from the central cloud to the edge clouds. Toward ultra-responsive, ultra-reliable, and ultra-low-latency MEC services, the current mobile network security architecture should enable a more decentralized approach for authentication and authorization processes. This paper proposes a novel decentralized authentication architecture that supports flexible and low-cost local authentication with the awareness of context information of network elements such as user equipment and virtual network functions. Based on a Markov model for backhaul link quality as well as a random walk mobility model with mixed mobility classes and traffic scenarios, numerical simulations have demonstrated that the proposed approach is able to achieve a flexible balance between the network operating cost and the MEC reliability.

We isolated an encysted ciliate from a geothermal field in Iceland. The morphological features of this isolate fit the descriptions of Dexiotricha colpidiopsis (Kahl, 1926) Jankowski, 1964 very well. These comprise body shape and size in vivo, the number of somatic kineties, and the positions of macronucleus and contractile vacuole. Using state-of-the-art taxonomic methods, the species is redescribed, including phylogenetic analyses of the small subunit ribosomal RNA (SSU rRNA) gene as molecular marker. In the phylogenetic analyses, D. colpidiopsis clusters with the three available SSU rRNA gene sequences of congeners, suggesting a monophyly of the genus Dexiotricha. Its closest relative in phylogenetic analyses is D. elliptica, which also shows a high morphological similarity. This is the first record of a Dexiotricha species from a hot spring, indicating a wide temperature tolerance of this species at least in the encysted state. The new findings on D. colpidiopsis are included in a briefly revision of the scuticociliate genus Dexiotricha and an identification key to the species.
Słowa kluczowe: Dexiotricha, hot spring, morphology, phylogeny, SSU rRNA gene

Initiated by a task in tunable microoptics, but not limited to this application, a microfluidic droplet array in an upright standing module with 3 × 3 subcells and droplet actuation via electrowetting is presented. Each subcell is filled with a single (of course transparent) water droplet, serving as a movable iris, surrounded by opaque blackened decane. Each subcell measures 1 × 1 mm ² and incorporates 2 × 2 quadratically arranged positions for the droplet. All 3 × 3 droplets are actuated synchronously by electrowetting on dielectric (EWOD). The droplet speed is up to 12 mm/s at 130 V (Vrms) with response times of about 40 ms. Minimum operating voltage is 30 V. Horizontal and vertical movement of the droplets is demonstrated. Furthermore, a minor modification of the subcells allows us to exploit the flattening of each droplet. Hence, the opaque decane fluid sample can cover each water droplet and render each subcell opaque, resulting in switchable irises of constant opening diameter. The concept does not require any mechanically moving parts or external pumps.

Biological soil crusts (biocrusts) are a common element of the Queensland (Australia) dry savannah ecosystem and are composed of cyanobacteria, algae, lichens, bryophytes, fungi and heterotrophic bacteria. Here we report how the CO2 gas exchange of the cyanobacteria-dominated biocrust type from Boodjamulla National Park in the north Queensland Gulf Savannah responds to the pronounced climatic seasonality and on their quality as a carbon sink using a semi-automatic cuvette system. The dominant cyanobacteria are the filamentous species Symplocastrum purpurascens together with Scytonema sp. Metabolic activity was recorded between 1 July 2010 and 30 June 2011, during which CO2 exchange was only evident from November 2010 until mid-April 2011, representative of 23.6 % of the 1-year recording period. In November at the onset of the wet season, the first month (November) and the last month (April) of activity had pronounced respiratory loss of CO2. The metabolic active period accounted for 25 % of the wet season and of that period 48.6 % was net photosynthesis (NP) and 51.4 % dark respiration (DR). During the time of NP, net photosynthetic uptake of CO2 during daylight hours was reduced by 32.6 % due to water supersaturation. In total, the biocrust fixed 229.09 mmol CO2 m−2 yr−1, corresponding to an annual carbon gain of 2.75 g m−2 yr−1. Due to malfunction of the automatic cuvette system, data from September and October 2010 together with some days in November and December 2010 could not be analysed for NP and DR. Based on climatic and gas exchange data from November 2010, an estimated loss of 88 mmol CO2 m−2 was found for the 2 months, resulting in corrected annual rates of 143.1 mmol CO2 m−2 yr−1, equivalent to a carbon gain of 1.7 g m−2 yr−1. The bulk of the net photosynthetic activity occurred above a relative humidity of 42 %, indicating a suitable climatic combination of temperature, water availability and light intensity well above 200 µmol photons m−2 s−1 photosynthetic active radiation. The Boodjamulla biocrust exhibited high seasonal variability in CO2 gas exchange pattern, clearly divided into metabolically inactive winter months and active summer months. The metabolic active period commences with a period (of up to 3 months) of carbon loss, likely due to reestablishment of the crust structure and restoration of NP prior to about a 4-month period of net carbon gain. In the Gulf Savannah biocrust system, seasonality over the year investigated showed that only a minority of the year is actually suitable for biocrust growth and thus has a small window for potential contribution to soil organic matter.

We report the design, fabrication and experimental investigation of a spectrally wide-band terahertz spatial light modulator (THz-SLM) based on an array of 768 actuatable mirrors with each having a length of 220 μm and a width of 100 μm. A mirror length of several hundred micrometers is required to reduce diffraction from individual mirrors at terahertz frequencies and to increase the pixel-to-pixel modulation contrast of the THz-SLM. By means of spatially selective actuation, we used the mirror array as reconfigurable grating to spatially modulate terahertz waves in a frequency range from 0.97 THz to 2.28 THz. Over the entire frequency band, the modulation contrast was higher than 50% with a peak modulation contrast of 87% at 1.38 THz. For spatial light modulation, almost arbitrary spatial pixel sizes can be realized by grouping of mirrors that are collectively switched as a pixel. For fabrication of the actuatable mirrors, we exploited the intrinsic residual stress in chrome-copper-chrome multi-layers that forces the mirrors into an upstanding position at an inclination angle of 35°. By applying a bias voltage of 37 V, the mirrors were pulled down to the substrate. By hysteretic switching, we were able to spatially modulate terahertz radiation at arbitrary pixel modulation patterns.

The extraction kinetics of polyphenols, which are leached from red vine leaves, are studied and evaluated using a laboratory robot and nonconventional processing techniques such as ultrasonic (US)-, microwave (MW)-, and pulsed electric field (PEF)-assisted extraction processes. The robotic high-throughput screening reveals optimal extraction conditions at a pH value of 2.5, a temperature of 56 °C, and a solvent mixture of methanol:water:HCl of 50:49:1 v/v/v. Nonconventional processing techniques, such as MW- and US-assisted extraction, have the fastest kinetics and produce the highest polyphenol yield. The non-conventional techniques yield is 2.29 g/L (MW) resp. 2.47 g/L (US) for particles that range in size from 450 to 2000 µm and 2.20 g/L (MW) resp. 2.05 g/L (US) for particles that range from 2000 to 4000 µm. PEF has the lowest yield of polyphenols with 0.94 g/L (450–2000 µm), resp. 0.64 g/L (2000–4000 µm) in comparison to 1.82 g/L (2000 to 4000 µm) in a standard stirred vessel (50 °C). When undried red vine leaves (2000 to 4000 µm) are used the total phenol content is 1.44 g/L with PEF.

A measurement technique, i.e. reflectance anisotropy/difference spectroscopy (RAS/RDS), which had originally been developed for in-situ
epitaxial growth control, is employed here for in-situ real-time etch-depth control during reactive ion etching (RIE) of cubic crystalline III/V
semiconductor samples. Temporal optical Fabry-Perot oscillations of the genuine RAS signal (or of the average reflectivity) during etching due
to the ever shrinking layer thicknesses are used to monitor the current etch depth. This way the achievable in-situ etch-depth resolution has
been around 15 nm. To improve etch-depth control even further, i.e. down to below 5 nm, we now use the optical equivalent of a mechanical
vernier scale– by employing Fabry-Perot oscillations at two different wavelengths or photon energies of the RAS measurement light – 5%
apart, which gives a vernier scale resolution of 5%. For the AlGaAs(Sb) material system a 5 nm resolution is an improvement by a factor of 3
and amounts to a precision in in-situ etch-depth control of around 8 lattice constants.

Previously in this journal we have reported on fundamental transversemode selection (TMS#0) of broad area semiconductor lasers
(BALs) with integrated twice-retracted 4f set-up and film-waveguide lens as the Fourier-transform element. Now we choose and
report on a simpler approach for BAL-TMS#0, i.e., the use of a stable confocal longitudinal BAL resonator of length L with a
transverse constriction.The absolute value of the radius R of curvature of both mirror-facets convex in one dimension (1D) is R = L
= 2f with focal length f.The round trip length 2L = 4f againmakes up for a Fourier-optical 4f set-up and the constriction resulting
in a resonator-internal beam waist stands for a Fourier-optical low-pass spatial frequency filter. Good TMS#0 is achieved, as long
as the constriction is tight enough, but filamentation is not completely suppressed.
1. Introduction
Broad area (semiconductor diode) lasers (BALs) are intended
to emit high optical output powers (where “high” is relative
and depending on the material system). As compared to
conventional narrow stripe lasers, the higher power is distributed
over a larger transverse cross-section, thus avoiding
catastrophic optical mirror damage (COMD). Typical BALs
have emitter widths of around 100 ????m.
Thedrawback is the distribution of the high output power
over a large number of transverse modes (in cases without
countermeasures) limiting the portion of the light power in
the fundamental transverse mode (mode #0), which ought to
be maximized for the sake of good light focusability.
Thus techniques have to be used to support, prefer, or
select the fundamental transverse mode (transverse mode
selection TMS#0) by suppression of higher order modes
already upon build-up of the laser oscillation.
In many cases reported in the literature, either a BAL
facet, the

In this study, the dependence of the cyclic deformation behavior on the surface morphology of metastable austenitic HSD® 600 TWinning Induced Plasticity (TWIP) steel was investigated. This steel—with the alloying concept Mn-Al-Si—shows a fully austenitic microstructure with deformation-induced twinning at ambient temperature. Four different surface morphologies were analyzed: as-received with a so-called rolling skin, after up milling, after down milling, and a reference morphology achieved by polishing. The morphologies were characterized by X-Ray Diffraction (XRD), Focused Ion Beam (FIB), Scanning Electron Microscopy (SEM) as well as confocal microscopy methods and show significant differences in initial residual stresses, phase fractions, topographies and microstructures. For specimens with all variants of the morphologies, fatigue tests were performed in the Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) regime to characterize the cyclic deformation behavior and fatigue life. Moreover, this study focused on the frequency-dependent self-heating of the specimens caused by cyclic plasticity in the HCF regime. The results show that both surface morphology and specimen temperature have a significant influence on the cyclic deformation behavior of HSD® 600 TWIP steel in the HCF regime.

We report on generation of pulsed broadband terahertz radiation utilizing the inverse spin hall effect in Fe/Pt bilayers on MgO and sapphire substrates. The emitter was optimized with respect to layer thickness, growth parameters, substrates and geometrical arrangement. The experimentally determined optimum layer thicknesses were in qualitative agreement with simulations of the spin current induced in the ferromagnetic layer. Our model takes into account generation of spin polarization, spin diffusion and accumulation in Fe and Pt and electrical as well as optical properties of the bilayer samples. Using the device in a counterintuitive orientation a Si lens was attached to increase the collection efficiency of the emitter. The optimized emitter provided a bandwidth of up to 8 THz which was mainly limited by the low-temperature-grown GaAs (LT-GaAS) photoconductive antenna used as detector and the pulse length of the pump laser. The THz pulse length was as short as 220 fs for a sub 100 fs pulse length of the 800 nm pump laser. Average pump powers as low as 25 mW (at a repetition rate of 75 MHz) have been used for terahertz generation. This and the general performance make the spintronic terahertz emitter compatible with established emitters based on optical rectification in nonlinear crystals.

Postmortem Analysis of Decayed Online Social Communities: Cascade Pattern Analysis and Prediction
(2018)

Recently, many online social networks, such as MySpace, Orkut, and Friendster, have faced inactivity decay of their members, which contributed to the collapse of these networks. The reasons, mechanics, and prevention mechanisms of such inactivity decay are not fully understood. In this work, we analyze decayed and alive subwebsites from the Stack Exchange platform. The analysis mainly focuses on the inactivity cascades that occur among the members of these communities. We provide measures to understand the decay process and statistical analysis to extract the patterns that accompany the inactivity decay. Additionally, we predict cascade size and cascade virality using machine learning. The results of this work include a statistically significant difference of the decay patterns between the decayed and the alive subwebsites. These patterns are mainly cascade size, cascade virality, cascade duration, and cascade similarity. Additionally, the contributed prediction framework showed satisfactorily prediction results compared to a baseline predictor. Supported by empirical evidence, the main findings of this work are (1) there are significantly different decay patterns in the alive and the decayed subwebsites of the Stack Exchange; (2) the cascade’s node degrees contribute more to the decay process than the cascade’s virality, which indicates that the expert members of the Stack Exchange subwebsites were mainly responsible for the activity or inactivity of the Stack Exchange subwebsites; (3) the Statistics subwebsite is going through decay dynamics that may lead to it becoming fully-decayed; (4) the decay process is not governed by only one network measure, it is better described using multiple measures; (5) decayed subwebsites were originally less resilient to inactivity decay, unlike the alive subwebsites; and (6) network’s structure in the early stages of its evolution dictates the activity/inactivity characteristics of the network.

The scales of white beetles strongly scatter light within a thin disordered network of
chitin filaments. There is no comparable artificial material achieving such a high scat-
tering strength within a thin layer of low refractive index material. Several analyses
investigated the scattering but could not explain the underlying concept. Here a model
system is described, which has the same optical properties as the white beetles’ scales
in the visible wavelength range. With some modification, it also explains the behavior
of the structures in the near infrared range. The comparison of the original structure and
the model system is done by finite-difference time-domain calculations. The calcula-
tions show excellent agreement with the beetles’ scales with respect to the reflectance,
the time-of-flight, and the intensity distribution in the far-field.

Relating mathematical concepts to graphical representations is a challenging task for students. In this paper, we introduce two visual strategies to qualitatively interpret the divergence of graphical vector field representations. One strategy is based on the graphical interpretation of partial derivatives, while the other is based on the flux concept. We test the effectiveness of both strategies in an instruction-based eye-tracking study with N = 41 physics majors. We found that students’ performance improved when both strategies were introduced (74% correct) instead of only one strategy (64% correct), and students performed best when they were free to choose between the two strategies (88% correct). This finding supports the idea of introducing multiple representations of a physical concept to foster student understanding.Relevant eye-tracking measures demonstrate that both strategies imply different visual processing of the vector field plots, therefore reflecting conceptual differences between the strategies. Advanced analysis methods further reveal significant differences in eye movements between the best and worst performing students. For instance, the best students performed predominantly horizontal and vertical saccades, indicating correct interpretation of partial derivatives. They also focused on smaller regions when they balanced positive and negative flux. This mixed method research leads to new insights into student visual processing of vector field representations, highlights the advantages and limitations of eye-tracking methodologies in this context, and discusses implications for teaching and for future research. The introduction of saccadic direction analysis expands traditional methods, and shows the potential to discover new insights into student understanding and learning difficulties.

III/V semiconductor quantum dots (QD) are in the focus of optoelectronics research for about 25 years now. Most of the work
has been done on InAs QD on GaAs substrate. But, e.g., Ga(As)Sb (antimonide) QD on GaAs substrate/buffer have also gained
attention for the last 12 years.There is a scientific dispute on whether there is a wetting layer before antimonide QD formation, as
commonly expected for Stransky-Krastanov growth, or not. Usually ex situ photoluminescence (PL) and atomic force microscope
(AFM) measurements are performed to resolve similar issues. In this contribution, we show that reflectance anisotropy/difference
spectroscopy (RAS/RDS) can be used for the same purpose as an in situ, real-time monitoring technique. It can be employed not
only to identify QD growth via a distinct RAS spectrum, but also to get information on the existence of a wetting layer and its
thickness. The data suggest that for antimonide QD growth the wetting layer has a thickness of 1 ML (one monolayer) only.

Cyanobacteria of biological soil crusts (BSCs) represent an important part of circumpolar
and Alpine ecosystems, serve as indicators for ecological condition and climate
change, and function as ecosystem engineers by soil stabilization or carbon and nitrogen
input. The characterization of cyanobacteria from both polar regions remains
extremely important to understand geographic distribution patterns and community
compositions. This study is the first of its kind revealing the efficiency of combining
denaturing gradient gel electrophoresis (DGGE), light microscopy and culture-based
16S rRNA gene sequencing, applied to polar and Alpine cyanobacteria dominated
BSCs. This study aimed to show the living proportion of cyanobacteria as an extension
to previously published meta-transcriptome
data of the same study sites.
Molecular fingerprints showed a distinct clustering of cyanobacterial communities
with a close relationship between Arctic and Alpine populations, which differed from
those found in Antarctica. Species richness and diversity supported these results,
which were also confirmed by microscopic investigations of living cyanobacteria
from the BSCs. Isolate-based
sequencing corroborated these trends as cold biome
clades were assigned, which included a potentially new Arctic clade of Oculatella.
Thus, our results contribute to the debate regarding biogeography of cyanobacteria
of cold biomes.

Indentation into a metastable austenite may induce the phase transformation to the bcc phase. We study this process using
atomistic simulation. At temperatures low compared to the equilibrium transformation temperature, the indentation triggers the
transformation of the entire crystallite: after starting the transformation, it rapidly proceeds throughout the simulation crystallite.
The microstructure of the transformed sample is characterized by twinned grains. At higher temperatures, around the equilibrium
transformation temperature, the crystal transforms only locally, in the vicinity of the indent pit. In addition, the indenter
produces dislocation plasticity in the remaining austenite. At intermediate temperatures, the crystal continuously transforms
throughout the indentation process.

Influence of the Crystal Surface on the Austenitic and Martensitic Phase Transition in Pure Iron
(2018)

Using classical molecular dynamics simulations, we studied the influence that free
surfaces exert on the austenitic and martensitic phase transition in iron. For several single-indexed
surfaces—such as (100)bcc and (110)bcc as well as (100)fcc and (110)fcc surfaces—appropriate
pathways exist that allow for the transformation of the surface structure. These are the Bain,
Mao, Pitsch, and Kurdjumov–Sachs pathways, respectively. Tilted surfaces follow the pathway
of the neighboring single-indexed plane. The austenitic transformation temperature follows the
dependence of the specific surface energy of the native bcc phase; here, the new phase nucleates at
the surface. In contrast, the martensitic transformation temperature steadily decreases when tilting
the surface from the (100)fcc to the (110)fcc orientation. This dependence is caused by the strong
out-of-plane deformation that (110)fcc facets experience under the transformation; here, the new
phase also nucleates in the bulk rather than at the surface.

For modeling approaches in systems biology, knowledge of the absolute abundances of cellular proteins is essential. One way to gain this knowledge is the use of quantification concatamers (QconCATs), which are synthetic proteins consisting of proteotypic peptides derived from the target proteins to be quantified. The QconCAT protein is labeled with a heavy isotope upon expression in E. coli and known amounts of the purified protein are spiked into a whole cell protein extract. Upon tryptic digestion, labeled and unlabeled peptides are released from the QconCAT and the native proteins, respectively, and both are quantified by LC-MS/MS. The labeled Q-peptides then serve as standards for determining the absolute quantity of the native peptides/proteins. Here we have applied the QconCAT approach to Chlamydomonas reinhardtii for the absolute quantification of the major proteins and protein complexes driving photosynthetic light reactions in the thylakoid membranes and carbon fixation in the pyrenoid. We found that with 25.2 attomol/cell the Rubisco large subunit makes up 6.6% of all proteins in a Chlamydomonas cell and with this exceeds the amount of the small subunit by a factor of 1.56. EPYC1, which links Rubisco to form the pyrenoid, is eight times less abundant than RBCS, and Rubisco activase is 32-times less abundant than RBCS. With 5.2 attomol/cell, photosystem II is the most abundant complex involved in the photosynthetic light reactions, followed by plastocyanin, photosystem I and the cytochrome b6/f complex, which range between 2.9 and 3.5 attomol/cell. The least abundant complex is the ATP synthase with 2 attomol/cell. While applying the QconCAT approach, we have been able to identify many potential pitfalls associated with this technique. We analyze and discuss these pitfalls in detail and provide an optimized workflow for future applications of this technique.

Poor posture in childhood and adolescence is held responsible for the occurrence
of associated disorders in adult age. This study aimed to verify whether body
posture in adolescence can be enhanced through the improvement of neuromuscular
performance, attained by means of targeted strength, stretch, and body perception
training, and whether any such improvement might also transition into adulthood. From
a total of 84 volunteers, the posture development of 67 adolescents was checked
annually between the age of 14 and 20 based on index values in three posture
situations. 28 adolescents exercised twice a week for about 2 h up to the age of 18, 24
adolescents exercised continually up to the age of 20. Both groups practiced other
additional sports for about 1.8 h/week. Fifteen persons served as a non-exercising
control group, practicing optional sports of about 1.8 h/week until the age of 18,
after that for 0.9 h/week. Group allocation was not random, but depended on the
participants’ choice. A linear mixed model was used to analyze the development
of posture indexes among the groups and over time and the possible influence of
anthropometric parameters (weight, size), of optional athletic activity and of sedentary
behavior. The post hoc pairwise comparison was performed applying the Scheffé test.
The significance level was set at 0.05. The group that exercised continually (TR20)
exhibited a significant posture parameter improvement in all posture situations from
the 2nd year of exercising on. The group that terminated their training when reaching
adulthood (TR18) retained some improvements, such as conscious straightening of the
body posture. In other posture situations (habitual, closed eyes), their posture results
declined again from age 18. The effect sizes determined were between Eta² = 0.12 and
Eta² = 0.19 and represent moderate to strong effects. The control group did not exhibit
any differences. Anthropometric parameters, additional athletic activities and sedentary
behavior did not influence the posture parameters significantly. An additional athletic
training of 2 h per week including elements for improved body perception seems to
have the potential to improve body posture in symptom free male adolescents and
young adults.

To investigate whether participants can activate only one spatially oriented number line at a time or
multiple number lines simultaneously, they were asked to solve a unit magnitude comparison task
(unit smaller/larger than 5) and a parity judgment task (even/odd) on two-digit numbers. In both these
primary tasks, decades were irrelevant. After some of the primary task trials (randomly), participants
were asked to additionally solve a secondary task based on the previously presented number. In
Experiment 1, they had to decide whether the two-digit number presented for the primary task was
larger or smaller than 50. Thus, for the secondary task decades were relevant. In contrast, in Experiment
2, the secondary task was a color judgment task, which means decades were irrelevant. In Experiment
1, decades’ and units’ magnitudes influenced the spatial association of numbers separately. In contrast,
in Experiment 2, only the units were spatially associated with magnitude. It was concluded that
multiple number lines (one for units and one for decades) can be activated if attention is focused on
multiple, separate magnitude attributes.

The size congruity effect involves interference between numerical magnitude and physical size of visually presented numbers: congruent numbers (either both small or both large in numerical magnitude and physical size) are responded to faster than incongruent ones (small numerical magnitude/large physical size or vice versa). Besides, numerical magnitude is associated with lateralized response codes, leading to the Spatial Numerical Association of Response Codes (SNARC) effect: small numerical magnitudes are preferably responded to on the left side and large ones on the right side. Whereas size congruity effects are ascribed to interference between stimulus dimensions in the decision stage, SNARC effects are understood as (in)compatibilities in stimulus-response combinations. Accordingly, size congruity and SNARC effects were previously found to be independent in parity and in physical size judgment tasks. We investigated their dependency in numerical magnitude judgment tasks. We obtained independent size congruity and SNARC effects in these tasks and replicated this observation for the parity judgment task. The results confirm and extend the notion that size congruity and SNARC effects operate in different representational spaces. We discuss possible implications for number representation.

Neuronal inhibition is mediated by glycine and/or GABA. Inferior colliculus (IC) neurons receive glycinergic and GABAergic
inputs, whereas inhibition in hippocampus (HC) predominantly relies on GABA. Astrocytes heterogeneously
express neurotransmitter transporters and are expected to adapt to the local requirements regarding neurotransmitter
homeostasis. Here we analyzed the expression of inhibitory neurotransmitter transporters in IC and HC astrocytes using
whole-cell patch-clamp and single-cell reverse transcription-PCR. We show that most astrocytes in both regions expressed
functional glycine transporters (GlyTs). Activation of these transporters resulted in an inward current (IGly) that
was sensitive to the competitive GlyT1 agonist sarcosine. Astrocytes exhibited transcripts for GlyT1 but not for
GlyT2. Glycine did not alter the membrane resistance (RM) arguing for the absence of functional glycine receptors (GlyRs).
Thus, IGly was mainly mediated by GlyT1. Similarly, we found expression of functional GABA transporters (GATs) in all IC
astrocytes and about half of the HC astrocytes. These transporters mediated an inward current (IGABA) that was sensitive to
the competitive GAT-1 and GAT-3 antagonists NO711 and SNAP5114, respectively. Accordingly, transcripts for GAT-1 and
GAT-3 were found but not for GAT-2 and BGT-1. Only in hippocampal astrocytes, GABA transiently reduced
RM demonstrating the presence of GABAA receptors (GABAARs). However, IGABA was mainly not contaminated
by GABAAR-mediated currents as RM changes vanished shortly after GABA application. In both regions, IGABA
was stronger than IGly. Furthermore, in HC the IGABA/IGly ratio was larger compared to IC. Taken together, our
results demonstrate that astrocytes are heterogeneous across and within distinct brain areas. Furthermore, we
could show that the capacity for glycine and GABA uptake varies between both brain regions.

We studied the development of cognitive abilities related to intelligence and creativity
(N = 48, 6–10 years old), using a longitudinal design (over one school year), in order
to evaluate an Enrichment Program for gifted primary school children initiated by
the government of the German federal state of Rhineland-Palatinate (Entdeckertag
Rheinland Pfalz, Germany; ET; Day of Discoverers). A group of German primary school
children (N = 24), identified earlier as intellectually gifted and selected to join the
ET program was compared to a gender-, class- and IQ- matched group of control
children that did not participate in this program. All participants performed the Standard
Progressive Matrices (SPM) test, which measures intelligence in well-defined problem
space; the Creative Reasoning Task (CRT), which measures intelligence in ill-defined
problem space; and the test of creative thinking-drawing production (TCT-DP), which
measures creativity, also in ill-defined problem space. Results revealed that problem
space matters: the ET program is effective only for the improvement of intelligence
operating in well-defined problem space. An effect was found for intelligence as
measured by SPM only, but neither for intelligence operating in ill-defined problem space
(CRT) nor for creativity (TCT-DP). This suggests that, depending on the type of problem
spaces presented, different cognitive abilities are elicited in the same child. Therefore,
enrichment programs for gifted, but also for children attending traditional schools,
should provide opportunities to develop cognitive abilities related to intelligence,
operating in both well- and ill-defined problem spaces, and to creativity in a parallel,
using an interactive approach.

Based on the Lindblad master equation approach we obtain a detailed microscopic model of photons in a dye-filled cavity, which features condensation of light. To this end we generalise a recent non-equilibrium approach of Kirton and Keeling such that the dye-mediated contribution to the photon-photon interaction in the light condensate is accessible due to an interplay of coherent and dissipative dynamics. We describe the steady-state properties of the system by analysing the resulting equations of motion of both photonic and matter degrees of freedom. In particular, we discuss the existence of two limiting cases for steady states: photon Bose-Einstein condensate and laser-like. In the former case, we determine the corresponding dimensionless photon-photon interaction strength by relying on realistic experimental data and find a good agreement with previous theoretical estimates. Furthermore, we investigate how the dimensionless interaction strength depends on the respective system parameters.

Areal optical surface topography measurement is an emerging technology for industrial quality control. However, neither calibration procedures nor the utilization of material measures are standardized. State of the art is the calibration of a set of metrological characteristics with multiple calibration samples (material measures). Here, we propose a new calibration sample (artefact) capable of providing the entire set of relevant metrological characteristics within only one single sample. Our calibration artefact features multiple material measures and is manufactured with two-photon laser lithography (direct laser writing, DLW). This enables a holistic calibration of areal topography measuring instruments with only one series of measurements and without changing the sample.

Background: Aneuploidy, or abnormal chromosome numbers, severely alters cell physiology and is widespread in
cancers and other pathologies. Using model cell lines engineered to carry one or more extra chromosomes, it has
been demonstrated that aneuploidy per se impairs proliferation, leads to proteotoxic as well as replication stress
and triggers conserved transcriptome and proteome changes.
Results: In this study, we analysed for the first time miRNAs and demonstrate that their expression is altered in
response to chromosome gain. The miRNA deregulation is independent of the identity of the extra chromosome
and specific to individual cell lines. By cross-omics analysis we demonstrate that although the deregulated miRNAs
differ among individual aneuploid cell lines, their known targets are predominantly associated with cell development,
growth and proliferation, pathways known to be inhibited in response to chromosome gain. Indeed, we show that up
to 72% of these targets are downregulated and the associated miRNAs are overexpressed in aneuploid cells, suggesting
that the miRNA changes contribute to the global transcription changes triggered by aneuploidy. We identified
hsa-miR-10a-5p to be overexpressed in majority of aneuploid cells. Hsa-miR-10a-5p enhances translation of a
subset of mRNAs that contain so called 5’TOP motif and we show that its upregulation in aneuploids provides
resistance to starvation-induced shut down of ribosomal protein translation.
Conclusions: Our work suggests that the changes of the microRNAome contribute on one hand to the adverse
effects of aneuploidy on cell physiology, and on the other hand to the adaptation to aneuploidy by supporting
translation under adverse conditions.
Keywords: Aneuploidy, Cancer, miRNA, miR-10a-5p, Trisomy

Ecophysiological characterizations of photoautotrophic communities are not only necessary to identify the response of carbon fixation related to different climatic factors, but also to evaluate risks connected to changing environments. In biological soil crusts (BSCs), the description of ecophysiological features is difficult, due to the high variability in taxonomic composition and variable methodologies applied. Especially for BSCs in early successional stages, the available datasets are rare or focused on individual constituents, although these crusts may represent the only photoautotrophic component in many heavily disturbed ruderal areas, such as parking lots or building areas with increasing surface area worldwide. We analyzed the response of photosynthesis and respiration to changing BSC water contents (WCs), temperature and light in two early successional BSCs. We investigated whether the response of these parameters was different between intact BSC and the isolated dominating components. BSCs dominated by the cyanobacterium Nostoc commune and dominated by the green alga Zygogonium ericetorum were examined. A major divergence between the two BSCs was their absolute carbon fixation rate on a chlorophyll basis, which was significantly higher for the cyanobacterial crust. Nevertheless, independent of species composition, both crust types and their isolated organisms had convergent features such as high light acclimatization and a minor and very late-occurring depression in carbon uptake at water suprasaturation. This particular setup of ecophysiological features may enable these communities to cope with a high variety of climatic stresses and may therefore be a reason for their success in heavily disturbed areas with ongoing human impact. However, the shape of the response was different for intact BSC compared to separated organisms, especially in absolute net photosynthesis (NP) rates. This emphasizes the importance of measuring intact BSCs under natural conditions for collecting reliable data for meaningful analysis of BSC ecosystem services.

The core muscles play a central role in stabilizing the head during headers in soccer. The objective of this study was to examine the influence of a fatigued core musculature on the acceleration of the head during jump headers and run headers. Acceleration of the head was measured in a pre-post-design in 68 soccer players (age: 21.5 ± 3.8 years, height: 180.0 ± 13.9 cm, weight: 76.9 ± 8.1 kg). Data were recorded by means of a telemetric 3D acceleration sensor and with a pendulum header. The treatment encompassed two exercises each for the ventral, lateral, and dorsal muscle chains. The acceleration of the head between pre- and post-test was reduced by 0.3 G (p = 0.011) in jump headers and by 0.2 G (p = 0.067) in run headers. An additional analysis of all pretests showed an increased acceleration in run headers when compared to stand headers (p < 0.001) and jump headers (p < 0.001). No differences were found in the sub-group comparisons: semi-professional vs. recreational players, offensive vs. defensive players. Based on the results, we conclude that the acceleration of the head after fatiguing the core muscles does not increase, which stands in contrast to postulated expectations. More tests with accelerated soccer balls are required for a conclusive statement.

Motivation: Mathematical models take an important place in science and engineering.
A model can help scientists to explain dynamic behavior of a system and to understand
the functionality of system components. Since length of a time series and number of
replicates is limited by the cost of experiments, Boolean networks as a structurally simple
and parameter-free logical model for gene regulatory networks have attracted interests
of many scientists. In order to fit into the biological contexts and to lower the data
requirements, biological prior knowledge is taken into consideration during the inference
procedure. In the literature, the existing identification approaches can only deal with a
subset of possible types of prior knowledge.
Results: We propose a new approach to identify Boolean networks fromtime series data
incorporating prior knowledge, such as partial network structure, canalizing property,
positive and negative unateness. Using vector form of Boolean variables and applying
a generalized matrix multiplication called the semi-tensor product (STP), each Boolean
function can be equivalently converted into a matrix expression. Based on this, the
identification problem is reformulated as an integer linear programming problem to
reveal the system matrix of Boolean model in a computationally efficient way, whose
dynamics are consistent with the important dynamics captured in the data. By using
prior knowledge the number of candidate functions can be reduced during the inference.
Hence, identification incorporating prior knowledge is especially suitable for the case of
small size time series data and data without sufficient stimuli. The proposed approach is
illustrated with the help of a biological model of the network of oxidative stress response.
Conclusions: The combination of efficient reformulation of the identification problem
with the possibility to incorporate various types of prior knowledge enables the
application of computational model inference to systems with limited amount of time
series data. The general applicability of thismethodological approachmakes it suitable for
a variety of biological systems and of general interest for biological and medical research.

The design of the fifth generation (5G) cellular network should take account of the emerging services with divergent quality of service requirements. For instance, a vehicle-to-everything (V2X) communication is required to facilitate the local data exchange and therefore improve the automation level in automated driving applications. In this work, we inspect the performance of two different air interfaces (i.e., LTE-Uu and PC5) which are proposed by the third generation partnership project (3GPP) to enable the V2X communication. With these two air interfaces, the V2X communication can be realized by transmitting data packets either over the network infrastructure or directly among traffic participants. In addition, the ultra-high reliability requirement in some V2X communication scenarios can not be fulfilled with any single transmission technology (i.e., either LTE-Uu or PC5). Therefore, we discuss how to efficiently apply multi-radio access technologies (multi-RAT) to improve the communication reliability. In order to exploit the multi-RAT in an efficient manner, both the independent and the coordinated transmission schemes are designed and inspected. Subsequently, the conventional uplink is also extended to the case where a base station can receive data packets through both the LTE-Uu and PC5 interfaces. Moreover, different multicast-broadcast single-frequency network (MBSFN) area mapping approaches are also proposed to improve the communication reliability in the LTE downlink. Last but not least, a system level simulator is implemented in this work. The simulation results do not only provide us insights on the performances of different technologies but also validate the effectiveness of the proposed multi-RAT scheme.

Arctic, Antarctic and alpine biological soil crusts (BSCs) are formed by adhesion of soil particles to exopolysaccharides (EPSs) excreted by cyanobacterial and green algal communities, the pioneers and main primary producers in these habitats. These BSCs provide and inﬂuence many ecosystem services such as soil erodibility, soil formation and nitrogen (N) and carbon (C) cycles. In cold environments degradation rates are low and BSCs continuously increase soil organic C; therefore, these soils are considered to be CO2 sinks. This work provides a novel, nondestructive and highly comparable method to investigate intact BSCs with a focus on cyanobacteria and green algae and their contribution to soil organic C. A new terminology arose,basedonconfocallaserscanningmicroscopy(CLSM) 2-D biomaps, dividing BSCs into a photosynthetic active layer (PAL) made of active photoautotrophic organisms and a photosynthetic inactive layer (PIL) harbouring remnants of cyanobacteria and green algae glued together by their remaining EPSs. By the application of CLSM image analysis (CLSM–IA) to 3-D biomaps, C coming from photosynthetic activeorganismscouldbevisualizedasdepthproﬁleswithC peaks at 0.5 to 2mm depth. Additionally, the CO2 sink character of these cold soil habitats dominated by BSCs could be highlighted, demonstrating that the ﬁrst cubic centimetre of soil consists of between 7 and 17% total organic carbon, identiﬁed by loss on ignition.

In this paper, we demonstrate the power of functional data models for a statistical analysis of stimulus-response experiments which is a quite natural way to look at this kind of data and which makes use of the full information available. In particular, we focus on the detection of a change in the mean of the response in a series of stimulus-response curves where we also take into account dependence in time.

Software defined radios can be implemented on general purpose processors (CPUs), e.g. based on a PC. A processor offers high flexibility: It can not only be used to process the data samples, but also to control receiver functions, display a waterfall or run demodulation software. However, processors can only handle signals of limited bandwidth due to their comparatively low processing speed. For signals of high bandwidth the SDR algorithms have to be implemented as custom designed digital circuits on an FPGA chip. An FPGA provides a very high processing speed, but also lacks flexibility and user interfaces. Recently the FPGA manufacturer Xilinx has
introduced a hybrid system on chip called Zynq, that combines both approaches. It features a dual ARM Cortex-A9 processor and an FPGA, that offer the flexibility of a processor with the processing speed of an FPGA on a single chip. The Zynq is therefore very interesting for use in SDRs. In this paper the
application of the Zynq and its evaluation board (Zedboard) will be discussed. As an example, a direct sampling receiver has been implemented on the Zedboard using a high-speed 16 bit ADC with 250 Msps.

In this paper we consider the problem of decomposing a given integer matrix A into
a positive integer linear combination of consecutive-ones matrices with a bound on the
number of columns per matrix. This problem is of relevance in the realization stage
of intensity modulated radiation therapy (IMRT) using linear accelerators and multileaf
collimators with limited width. Constrained and unconstrained versions of the problem
with the objectives of minimizing beam-on time and decomposition cardinality are considered.
We introduce a new approach which can be used to find the minimum beam-on
time for both constrained and unconstrained versions of the problem. The decomposition
cardinality problem is shown to be NP-hard and an approach is proposed to solve the
lexicographic decomposition problem of minimizing the decomposition cardinality subject
to optimal beam-on time.

Self-adaptation allows software systems to autonomously adjust their behavior during run-time by handling all possible
operating states that violate the requirements of the managed system. This requires an adaptation engine that receives adaptation
requests during the monitoring process of the managed system and responds with an automated and appropriate adaptation
response. During the last decade, several engineering methods have been introduced to enable self-adaptation in software systems.
However, these methods lack addressing (1) run-time uncertainty that hinders the adaptation process and (2) the performance
impacts resulted from the complexity and the large number of the adaptation space. This paper presents CRATER, a framework
that builds an external adaptation engine for self-adaptive software systems. The adaptation engine, which is built on Case-based
Reasoning, handles the aforementioned challenges together. This paper is braced with an experiment illustrating the benefits of
this framework. The experimental results shows the potential of CRATER in terms handling run-time uncertainty and adaptation
remembrance that enhances the performance for large number of adaptation space.

In this paper we construct a numerical solver for the Saint Venant equations. Special attention
is given to the balancing of the source terms, including the bottom slope and variable cross-
sectional profiles. Therefore a special discretization of the pressure law is used, in order to
transfer analytical properties to the numerical method. Based on this approximation a well-
balanced solver is developed, assuring the C-property and depth positivity. The performance
of this method is studied in several test cases focusing on accurate capturing of steady states.

Hardware prototyping is an essential part in the hardware design flow. Furthermore, hardware prototyping usually relies on system-level design and hardware-in-the-loop simulations in order to develop, test and evaluate intellectual property cores. One common task in this process consist on interfacing cores with different port specifications. Data width conversion is used to overcome this issue. This work presents two open source hardware cores compliant with AXI4-Stream bus protocol, where each core performs upsizing/downsizing data width conversion.

Recently convex optimization models were successfully applied
for solving various problems in image analysis and restoration.
In this paper, we are interested in relations between
convex constrained optimization problems
of the form
\({\rm argmin} \{ \Phi(x)\) subject to \(\Psi(x) \le \tau \}\)
and their penalized counterparts
\({\rm argmin} \{\Phi(x) + \lambda \Psi(x)\}\).
We recall general results on the topic by the help of an epigraphical projection.
Then we deal with the special setting \(\Psi := \| L \cdot\|\) with \(L \in \mathbb{R}^{m,n}\)
and \(\Phi := \varphi(H \cdot)\),
where \(H \in \mathbb{R}^{n,n}\) and \(\varphi: \mathbb R^n \rightarrow \mathbb{R} \cup \{+\infty\} \)
meet certain requirements which are often fulfilled in image processing models.
In this case we prove by incorporating the dual problems
that there exists a bijective function
such that
the solutions of the constrained problem coincide with those of the
penalized problem if and only if \(\tau\) and \(\lambda\) are in the graph
of this function.
We illustrate the relation between \(\tau\) and \(\lambda\) for various problems
arising in image processing.
In particular, we point out the relation to the Pareto frontier for joint sparsity problems.
We demonstrate the performance of the
constrained model in restoration tasks of images corrupted by Poisson noise
with the \(I\)-divergence as data fitting term \(\varphi\)
and in inpainting models with the constrained nuclear norm.
Such models can be useful if we have a priori knowledge on the image rather than on the noise level.

Modern society relies on convenience services and mobile communication. Cloud computing is the current trend to make data and applications available at any time on every device. Data centers concentrate computation and storage at central locations, while they claim themselves green due to their optimized maintenance and increased energy efﬁciency. The key enabler for this evolution is the microelectronics industry. The trend to power efﬁcient mobile devices has forced this industry to change its design dogma to: ”keep data locally and reduce data communication whenever possible”. Therefore we ask: is cloud computing repeating the aberrations of its enabling industry?

We consider a variant of the generalized assignment problem (GAP) where the amount of space used in each bin is restricted to be either zero (if the bin is not opened) or above a given lower bound (a minimum quantity). We provide several complexity results for different versions of the problem and give polynomial time exact algorithms and approximation algorithms for restricted cases.
For the most general version of the problem, we show that it does not admit a polynomial time approximation algorithm (unless P=NP), even for the case of a single bin. This motivates to study dual approximation algorithms that compute solutions violating the bin capacities and minimum quantities by a constant factor. When the number of bins is fixed and the minimum quantity of each bin is at least a factor \(\delta>1\) larger than the largest size of an item in the bin, we show how to obtain a polynomial time dual approximation algorithm that computes a solution violating the minimum quantities and bin capacities by at most a factor \(1-\frac{1}{\delta}\) and \(1+\frac{1}{\delta}\), respectively, and whose profit is at least as large as the profit of the best solution that satisfies the minimum quantities and bin capacities strictly.
In particular, for \(\delta=2\), we obtain a polynomial time (1,2)-approximation algorithm.

We consider the maximum flow problem with minimum quantities (MFPMQ), which is a variant of the maximum flow problem where
the flow on each arc in the network is restricted to be either zero or above a given lower bound (a minimum quantity), which
may depend on the arc. This problem has recently been shown to be weakly NP-complete even on series-parallel graphs.
In this paper, we provide further complexity and approximability results for MFPMQ and several special cases.
We first show that it is strongly NP-hard to approximate MFPMQ on general graphs (and even bipartite graphs) within any positive factor.
On series-parallel graphs, however, we present a pseudo-polynomial time dynamic programming algorithm for the problem.
We then study the case that the minimum quantity is the same for each arc in the network and show that, under this restriction, the problem is still
weakly NP-complete on general graphs, but can be solved in strongly polynomial time on series-parallel graphs.
On general graphs, we present a \((2 - 1/\lambda) \)-approximation algorithm for this case, where \(\lambda\) denotes the common minimum quantity of all arcs.

In recent years, more and more publications and material for studying and teaching, e. g. for Web-based teaching (WBT), appear "online" and digital libraries are built to manage such publications and online materials. Therefore, the most important concerns are related to the problem of durable, sustained storage and the management of content together with its metadata existing in heterogeneous styles and formats. In this paper, we present specific techniques and their use to support metadata-based catalog services. Such semistructured metadata (represented as XML fragments), which belong to online learning resources, need efficient XML-based query support, scalable result set processing, and comprehensive facilities for personalization purposes. We discuss the associated problems, subsequently derive the concepts of a suitable architecture, and finally outline the realization by means of our prototype system that is based on the J2EE component model.

In many robotic applications, the teaching of points in space is necessary to register the robot coordinate system with the one of the application. Robot-human interaction is awkward and dangerous for the human because of the possibly large size and power of the robot, so robot movements must be predictable and natural. We present a novel hybrid control algorithm which provides the needed precision in small scale movements while allowing for fast and intuitive large scale translations.

This paper analyzes the problem of sensor-based colli-sion detection for an industrial robotic manipulator. A method to perform collision tests based on images taken from several stationary cameras in the work cell is pre-sented. The collision test works entirely based on the im-ages, and does not construct a representation of the Carte-sian space. It is shown how to perform a collision test for all possible robot configurations using only a single set of images taken simultaneously.

Virtual Robot Programming for Deformable Linear Objects: System concept and Prototype Implementation
(2002)

In this paper we present a method and system for robot programming using virtual reality techniques. The proposed method allows intuitive teaching of a manipulation task with haptic feedback in a graphical simulation system. Based on earlier work, our system allows even an operator who lacks specialized knowledge of robotics to automatically generate a robust sensor-based robot program that is ready to execute on different robots, merely by demonstrating the task in virtual reality.

It is difficult for robots to handle a vibrating deformable object. Even for human beings it is a high-risk operation to, for example, insert a vibrating linear object into a small hole. However, fast manipulation using a robot arm is not just a dream; it may be achieved if some important features of the vibration are detected online. In this paper, we present an approach for fast manipulation using a force/torque sensor mounted on the robot's wrist. Template matching method is employed to recognize the vibrational phase of the deformable objects. Therefore, a fast manipulation can be performed with a high success rate, even if there is acute vibration. Experiments inserting a deformable object into a hole are conducted to test the presented method. Results demonstrate that the presented sensor-based online fast manipulation is feasible.

We present a system concept allowing humans to work safely in the same environment as a robot manipulator. Several cameras survey the common workspace. A look-up-table-based fusion algorithm is used to back-project directly from the image spaces of the cameras to the manipulator?s con-figuration space. In the look-up-tables both, the camera calibration and the robot geometry are implicitly encoded. For experiments, a conven-tional 6 axis industrial manipulator is used. The work space is surveyed by four grayscale cameras. Due to the limits of present robot controllers, the computationally expensive parts of the system are executed on a server PC that communicates with the robot controller via Ethernet.

This paper deals with the handling of deformable linear objects (DLOs), such as hoses, wires or leaf springs. It investigates the a priori knowledge about the 6-dimensional force/torque signal for a changing contact situation between a DLO and a rigid polyhedral obstacle. The result is a complete list, containing for each contact change the most significant combination of force/torque signal components together with a description of the expected signal curve. This knowledge enables the reliable detection of changes in the DLO contact situation and with it the implementation of sensor-based manipulation skills for all possible contact changes.

Corporate environmental reporting makes good business and environmental sense. A big challenge for companies is to utilize the technical benefit of state of the art IT, especially of Internet-technologies and Internet-services. In this paper an approach of internet-based environmental reports by companies is presented. Three different levels are discussed: The first level deals with the basics of corporate environmental reports (CER) by companies. Illustrating the order within the emerging field of CERs a morphological box is suggested (section 1). Building on this, general requirements for corporate environmental reports are outlined (section 2). On the second level, the general reporting requirements are specified by IT-relevant challenges, seen as starting points for internet-based environmental reports (section 3). The immense technical benefit of using the Internet towards efficient, integrated, interactive, hypermedia-featured, dialog-oriented, and customised environmental reporting is analysed (section 4). On the basis of the technical benefit analysis, the state of the art of internet-based CERs is presented (section 5). The third level refers to the IT-application turning from the basics, IT-challenges and technical benefit to consequences for environmental reporting companies in practice. Thereby a fundamental framework for internet-based CERs is sketched (section 6). Grounded on this framework a basic architecture of an IT-implementation is explained (section 7).

The development of complex software systems is driven by many diverse and sometimes contradictory requirements such as correctness and maintainability of resulting products, development costs, and time-to-market. To alleviate these difficulties, we propose a development method for distributed systems that integrates different basic approaches. First, it combines the use of the formal description technique SDL with software reuse concepts. This results in the definition of a use-case driven, incremental development method with SDL-patterns as the main reusable artifacts. Experience with this approach has shown that there are several other factors of influence, such as the quality of reuse artifacts or the experience of the development team. Therefore, we further combined our SDL-pattern approach with an improvement methodology known from the area of experimental software engineering. In order to demonstrate the validity of this integrating approach, we sketch some representative outcomings of a case study.

Software development organizations are recognizing the increasing importance of investing in the build-up of core competencies for their competitiveness in software system development. This is supported by reuse and experience repository systems that assist in capturing and reusing all kinds of software artifacts (e. g., code, patterns, frameworks) and processes as well as experiences related to these artifacts and processes. To justify such an investment and guide its improvement, it must be evaluated according to the business case, that is, a measurement program has to be developed that is oriented towards the business goals of such a reuse and experience repository system. In this paper, we suggest an approach to iteratively build up measurement programs for gaining feedback and, thereby, controlling and improving such a reuse and experience repository system. The focus is placed on guidelines for the evolution of such measurement programs over time, rather than providing directly applicable metrics or questionnaires. In order to illustrate the feasibility of the approach, examples of running measurement programs at different stages of evolutions are given.

Comprehensive reuse and systematic evolution of reuse artifacts as proposed by the Quality Improvement Paradigm (QIP) do not only require tool support for mere storage and retrieval. Rather, an integrated management of (potentially reusable) experience data as well as project-related data is needed. This paper presents an approach exploiting object-relational database technology to implement QIP-driven reuse repositories. Requirements, concepts, and implementational aspects are discussed and illustrated through a running example, namely the reuse and continuous improvement of SDL patterns for developing distributed systems. Our system is designed to support all phases of a reuse process and the accompanying improvement cycle by providing adequate functionality. Its implementation is based on object-relational database technology along with an infrastructure well suited for these purposes.

A harmonic oscillator subject to a parametric pulse is examined. The aim of the paper is to present a new theory for analysing transitions due to parametric pulses. The new theoretical notions which are introduced relate the pulse parameters in a direct way with the transition matrix elements. The harmonic oscillator transitions are expressed in terms of asymptotic properties of a companion oscillator, the Milne (amplitude) oscillator. A traditional phase-amplitude decomposition of the harmonic-oscillator solutions results in the so-called Milne's equation for the amplitude, and the phase is determined by an exact relation to the amplitude. This approach is extended in the present analysis with new relevant concepts and parameters for pulse dynamics of classical and quantal systems. The amplitude oscillator has a particularly nice numerical behavior. In the case of strong pulses it does not possess any of the fast oscillations induced by the pulse on the original harmonic oscillator. Furthermore, the new dynamical parameters introduced in this approach relate closely to relevant characteristics of the pulse. The relevance to quantum mechanical problems such as reflection and transmission from a localized well and mechanical problems of controlling vibrations is illustrated.

A simple method of calculating the Wannier-Stark resonances in 2D lattices is suggested. Using this method we calculate the complex Wannier-Stark spectrum for a non-separable 2D potential realized in optical lattices and analyze its general structure. The dependence of the lifetime of Wannier-Stark states on the direction of the static field (relative to the crystallographic axis of the lattice) is briefly discussed.

The performance of napkins is nowadays improved substantially by embedding granules of a superabsorbent into the cellulose matrix. In this paper a continuous model for the liquid transport in such an Ultra Napkin is proposed. Its mean feature is a nonlinear diffusion equation strongly coupled with an ODE describing a reversible absorbtion process. An efficient numerical method based on a symmetrical time splitting and a finite difference scheme of ADI-predictor-corrector type has been developed to solve these equations in a three dimensional setting. Numerical results are presented that can be used to optimize the granule distribution.

The paper studies the dynamics of transitions between the levels of a Wannier-Stark ladder induced by a resonant periodic driving. The analysis of the problem is done in terms of resonance quasienergy states, which take into account the metastable character of the Wannier-Stark states. It is shown that the periodic driving creates from a localized Wannier-Stark state an extended Bloch-like state with a spatial length varying in time as ~ t^1/2. Such a state can find applications in the field of atomic optics because it generates a coherent pulsed atomic beam.

The analyticity property of the one-dimensional complex Hamiltonian system H(x,p)=H_1(x_1,x_2,p_1,p_2)+iH_2(x_1,x_2,p_1,p_2) with p=p_1+ix_2, x=x_1+ip_2 is exploited to obtain a new class of the corresponding two-dimensional integrable Hamiltonian systems where H_1 acts as a new Hamiltonian and H_2 is a second integral of motion. Also a possible connection between H_1 and H_2 is sought in terms of an auto-B"acklund transformation.

The paper studies quantum states of a Bloch particle in presence of external ac and dc fields. Provided the period of the ac field and the Bloch period are commensurate, an effective scattering matrix is introduced, the complex poles of which are the system quasienergy spectrum. The statistics of the resonance width and the Wigner delay time shows a close relation of the problem to random matrix theory of chaotic scattering.

The paper studies metastable states of a Bloch electron in the presence of external ac and dc fields. Provided resonance condition between period of the driving frequency and the Bloch period, the complex quasienergies are numerically calculated for two qualitatively different regimes (quasiregular and chaotic) of the system dynamics. For the chaotic regime an effect of quantum stabilization, which suppresses the classical decay mechanism, is found. This effect is demonstrated to be a kind of quantum interference phenomenon sensitive to the resonance condition.

A novel method is presented which allows a fast computation of complex energy resonance states in Stark systems, i.e. systems in a homogeneous field. The technique is based on the truncation of a shift-operator in momentum space. Numerical results for space periodic and non-periodic systems illustrate the extreme simplicity of the method.

For periodically driven systems, quantum tunneling between classical resonant stability islands in phase space separated by invariant KAM curves or chaotic regions manifests itself by oscillatory motion of wave packets centered on such an island, by multiplet splittings of the quasienergy spectrum, and by phase space localisation of the quasienergy states on symmetry related ,ux tubes. Qualitatively di,erent types of classical resonant island formation | due to discrete symmetries of the system | and their quantum implications are analysed by a (uniform) semiclassical theory. The results are illustrated by a numerical study of a driven non-harmonic oscillator.

The Wannier-Bloch resonance states are metastable states of a quantum particle in a space-periodic potential plus a homogeneous field. Here we analyze the states of quantum particle in space- and time-periodic potential. In this case the dynamics of the classical counterpart of the quantum system is either quasiregular or chaotic depending on the driving frequency. It is shown that both the quasiregular and the chaotic motion can also support quantum resonances. The relevance of the obtained result to the problem a of crystal electron under simultaneous influence of d.c. and a.c. electric fields is briefly discussed. PACS: 73.20Dx, 73.40Gk, 05.45.+b

A new method for calculating Stark resonances is presented and applied for illustration to the simple case of a one-particle, one-dimensional model Hamiltonian. The method is applicable for weak and strong dc fields. The only need, also for the case of many particles in multi-dimensional space, are either the short time evolution matrix elements or the eigenvalues and Fourier components of the eigenfunctions of the field-free Hamiltonian.

We study the statistics of the Wigner delay time and resonance width for a Bloch particle in ac and dc fields in the regime of quantum chaos. It is shown that after appropriate rescaling the distributions of these quantities have universal character predicted by the random matrix theory of chaotic scattering.

We present an entropy concept measuring quantum localization in dynamical systems based on time averaged probability densities. The suggested entropy concept is a generalization of a recently introduced [PRL 75, 326 (1995)] phase-space entropy to any representation chosen according to the system and the physical question under consideration. In this paper we inspect the main characteristics of the entropy and the relation to other measures of localization. In particular the classical correspondence is discussed and the statistical properties are evaluated within the framework of random vector theory. In this way we show that the suggested entropy is a suitable method to detect quantum localization phenomena in dynamical systems.

The Filter-Diagonalization Method is applied to time periodic Hamiltonians and used to find selectively the regular and chaotic quasienergies of a driven 2D rotor. The use of N cross-correlation probability amplitudes enables a selective calculation of the quasienergies from short time propagation to the time T (N). Compared to the propagation time T (1) which is required for resolving the quasienergy spectrum with the same accuracy from auto-correlation calculations, the cross-correlation time T (N) is shorter by the factor N , that is T (1) = N T (N).

The global dynamical properties of a quantum system can be conveniently visualized in phase space by means of a quantum phase space entropy in analogy to a Poincare section in classical dynamics for two-dimensional time independent systems. Numerical results for the Pullen Edmonds systems demonstrate the properties of the method for systems with mixed chaotic and regular dynamics.

Cloudy inhomogenities in artificial fabrics are graded by a fast method which is based on a Laplacian pyramid decomposition of the fabric image. This band-pass representation takes into account the scale character of the cloudiness. A quality measure of the entire cloudiness is obtained as a weighted mean over the variances of all scales.

Using an experience factory is one possible concept for supporting and improving reuse in software development. (i.e., reuse of products, processes, quality models, ...). In the context of the Sonderforschungsbereich 501: "Development of Large Systems with Generic methods" (SFB501), the Software Engineering Laboratory (SE Lab) runs such an experience factory as part of the infrastructure services it offers. The SE Lab also provides several tools to support the planning, developing, measuring, and analyzing activities of software development processes. Among these tools, the SE Lab runs and maintains an experience base, the SFB-EB. When an experience factory is utilized, support for experience base maintenance is an important issue. Furthermore, it might be interesting to evaluate experience base usage with regard to the number of accesses to certain experience elements stored in the database. The same holds for the usage of the tools provided by the SE LAB. This report presents a set of supporting tools that were designed to aid in these tasks. These supporting tools check the experience base's consistency and gather information on the usage of SFB-EB and the tools installed in the SE Lab. The results are processed periodically and displayed as HTML result reports (consistency checking) or bar charts (usage profiles).

Load balancing is one of the central problems that have to be solved in parallel computation. Here, the problem of distributed, dynamic load balancing for massive parallelism is addressed. A new local method, which realizes a physical analogy to equilibrating liquids in multi-dimensional tori or hypercubes, is presented. It is especially suited for communication mechanisms with low set-up to transfer ratio occurring in tightly-coupled or SIMD systems. By successive shifting single load elements to the direct neighbors, the load is automatically transferred to lightly loaded processors. Compared to former methods, the proposed Liquid model has two main advantages. First, the task of load sharing is combined with the task of load balancing, where the former has priority. This property is valuable in many applications and important for highly dynamic load distribution. Second, the Liquid model has high efficiency. Asymptotically, it needs O(D . K . Ldiff ) load transfers to reach the balanced state in a D-dimensional torus with K processors per dimension and a maximum initial load difference of Ldiff . The Liquid model clearly outperforms an earlier load balancing approach, the nearest-neighbor-averaging. Besides a survey of related research, analytical results within a formal framework are derived. These results are validated by worst-case simulations in one-and two-dimensional tori with up to two thousand processors.

We present a parallel path planning method that is able to automatically handle multiple goal configurations as input. There are two basic approaches, goal switching and bi-directional search, which are combined in the end. Goal switching dynamically selects a fa-vourite goal depending on some distance function. The bi-directional search supports the backward search direction from the goal to the start configuration, which is probably faster. The multi-directional search with goal switching combines the advantages of goal switching and bi-directional search. Altogether, the planning system is enabled to select one of the pref-erable goal configuration by itself. All concepts are experimentally validated for a set of benchmark problems consisting of an industrial robot arm with six degrees of freedom in a 3D environment.

Manipulating deformable linear objects - Vision-based recognition of contact state transitions -
(1999)

A new and systematic approach to machine vision-based robot manipulation of deformable (non-rigid) linear objects is introduced. This approach reduces the computational needs by using a simple state-oriented model of the objects. These states describe the relation of the object with respect to an obstacle and are derived from the object image and its features. Therefore, the object is segmented from a standard video frame using a fast segmentation algorithm. Several object features are presented which allow the state recognition of the object while being manipulated by the robot.

Comprehensive reuse and systematic evolution of reuse artifacts as proposed by the Quality Improvement Paradigm (QIP) do not only require tool support for mere storage and retrieval. Rather, an integrated management of (potentially reusable) experience data as well as project-related data is needed. This paper presents an approach exploiting object-relational database technology to implement the QIP-driven reuse repository of the SFB 501. Requirements, concepts, and implementational aspects are discussed and illustrated through a running example, namely the reuse and continuous improvement of SDL patterns for developing distributed systems. Based on this discussion, we argue that object-relational database management systems (ORDBMS) are best suited to implement such a comprehensive reuse repository. It is demonstrated how this technology can be used to support all phases of a reuse process and the accompanying improvement cycle. Although the discussions of this paper are strongly related to the requirements of the SFB 501 experience base, the basic realization concepts, and, thereby, the applicability of ORDBMS, can easily be extended to similar applications, i. e., reuse repositories in general.

This paper presents a new approach to parallel motion planning for industrial robot arms with six degrees of freedom in an on-line given 3D environment. The method is based on the A*-search algorithm and needs no essential off-line computations. The algorithm works in an implicitly descrete configuration space. Collisions are detected in the cartesian workspace by hierarchical distance computation based on the given CAD model. By decomposing the 6D configuration space into hypercubes and cyclically mapping them onto multiple processing units, a good load distribution can be achieved. We have implemented the parallel motion planner on a workstation cluster with 9 PCs and tested the planner for several benchmark environments. With optimal discretisation, the new approach usually shows linear, and sometimes even superlinear speedups. In on-line provided environments with static obstacles, the parallel planning times are only a few seconds.

A practical distributed planning and control system for industrial robots is presented. The hierarchical concept consists of three independent levels. Each level is modularly implemented and supplies an application interface (API) to the next higher level. At the top level, we propose an automatic motion planner. The motion planner is based on a best-first search algorithm and needs no essential off-line computations. At the middle level, we propose a PC-based robot control architecture, which can easily be adapted to any industrial kinematics and application. Based on a client/server-principle, the control unit estab-lishes an open user interface for including application specific programs. At the bottom level, we propose a flexible and modular concept for the integration of the distributed motion control units based on the CAN bus. The concept allows an on-line adaptation of the control parameters according to the robot's configuration. This implies high accuracy for the path execution and improves the overall system performance.

The task of handling non-rigid one-dimensional objects by a robot manipulation system is investigated. To distinguish between different non-rigid object behaviors, five classes of deformable objects from a robotic point of view are proposed. Additionally, an enumeration of all possible contact states of one-dimensional objects with polyhedral obstacles is provided. Finally, the qualitative motion behavior of linear objects is analyzed for stable point contacts. Experiments with different materials validate the analytical results.

We present a parallel control architecture for industrial robot cells. It is based on closed functional components arranged in a flat communication hierarchy. The components may be executed by different processing elements, and each component itself may run on multiple processing elements. The system is driven by the instructions of a central cell control component. We set up necessary requirements for industrial robot cells and possible parallelization levels. These are met by the suggested robot control architecture. As an example we present a robot work cell and a component for motion planning, which fits well in this concept.

This paper is based on a path planning approach we reported earlier for industrial robot arms with 6 degrees of freedom in an on-line given 3D environment. It has on-line capabilities by searching in an implicit and descrete configuration space and detecting collisions in the Cartesian workspace by distance computation based on the given CAD model. Here, we present different methods for specifying the C-space discretization. Besides the usual uniform and heuristic discretization, we investigate two versions of an optimal discretization for an user-predefined Cartesian resolution. The different methods are experimentally evaluated. Additionally, we provide a set of 3- dimensional benchmark problems for a fair comparison of path planner. For each benchmark, the run-times of our planner are between only 3 and 100 seconds on a Pentium PC with 133 MHz.

In this paper, the problem of path planning for robot manipulators with six degrees of freedom in an on-line provided three-dimensional environment is investigated. As a basic approach, the best-first algorithm is used to search in the implicit descrete configuration space. Collisions are detected in the Cartesian workspace by hierarchical distance computation based on the given CAD model. The basic approach is extended by three simple mechanisms and results in a heuristic hierarchical search. This is done by adjusting the stepsize of the search to the distance between the robot and the obstacles. As a first step, we show encouraging experimental results with two degrees of freedom for five typical benchmark problems.

This paper presents a new approach to parallel path planning for industrial robot arms with six degrees of freedom in an on-line given 3D environment. The method is based a best-first search algorithm and needs no essential off-line computations. The algorithm works in an implicitly discrete configuration space. Collisions are detected in the Cartesian workspace by hierarchical distance computation based on polyhedral models of the robot and the obstacles. By decomposing the 6D configuration space into hypercubes and cyclically mapping them onto multiple processing units, a good load distribution can be achieved. We have implemented the parallel path planner on a workstation cluster with 9 PCs and tested the planner for several benchmark environments. With optimal discretisation, the new approach usually shows very good speedups. In on-line provided environments with static obstacles, the parallel planning times are only a few seconds.

The paper presents a novel approach to parallel motion planning for robot manipulators in 3D workspaces. The approach is based on a randomized parallel search algorithm and focuses on solving the path planning problem for industrial robot arms working in a reasonably cluttered workspace. The path planning system works in the discretized configuration space which needs not to be represented explicitly. The parallel search is conducted by a number of rule-based sequential search processes, which work to nd a path connecting the initial configuration to the goal via a number of randomly generated subgoal configurations. Since the planning performs only on-line collision tests with proper proximity information without using pre-computed information, the approach is suitable for planning problems with multirobot or dynamic environments. The implementation has been carried out on the parallel virtual machine (PVM) of a cluster of SUN4 workstations and SGI machines. The experimental results have shown that the approach works well for a 6-dof robot arm in a reasonably cluttered environment, and that parallel computation increases the efficiency of motion planning significantly.

This paper presents a new approach to parallel motion planning for industrial robot arms with six degrees of freedom in an on-line given 3D environment. The method is based on the A-search algorithm and needs no essential off-line computations. The algorithm works in an implicitly descrete configuration space. Collisions are detected in the Cartesian workspace by hierarchical distance computation based on the given CAD model. By decomposing the 6D configuration space into hypercubes and cyclically mapping them onto multiple processing units, a good load distribution can be achieved. We have implemented the parallel motion planner on a workstation cluster with 9 PCs and tested the planner for several benchmark environments. With optimal discretisation, the new approach usually shows linear speedups. In on-line provided environments with static obstacles, the parallel planning times are only a few seconds.

This paper discusses the problem of automatic off-line programming and motion planning for industrial robots. At first, a new concept consisting of three steps is proposed. The first step, a new method for on-line motion planning is introduced. The motion planning method is based on the A*-search algorithm and works in the implicit configuration space. During searching, the collisions are detected in the explicitly represented Cartesian workspace by hierarchical distance computation. In the second step, the trajectory planner has to transform the path into a time and energy optimal robot program. The practical application of these two steps strongly depends on the method for robot calibration with high accuracy, thus, mapping the virtual world onto the real world, which is discussed in the third step.

We describe a hybrid case-based reasoning system supporting process planning for machining workpieces. It integrates specialized domain dependent reasoners, a feature-based CAD system and domain independent planning. The overall architecture is built on top of CAPlan, a partial-order nonlinear planner. To use episodic problem solving knowledge for both optimizing plan execution costs and minimizing search the case-based control component CAPlan/CbC has been implemented that allows incremental acquisition and reuse of strategical problem solving experience by storing solved problems as cases and reusing them in similar situations. For effective retrieval of cases CAPlan/CbC combines domain-independent and domain-specific retrieval mechanisms that are based on the hierarchical domain model and problem representation.

Structured domains are characterized by the fact that there is an intrinsic dependency between certain key elements in the domain. Considering these dependencies leads to better performance of the planning systems, and it is an important factor for determining the relevance of the cases stored in a case-base. However, testing for cases that meet these dependencies, decreases the performance of case-based planning, as other criterions need also to be consider for determining this relevance. We present a domain-independent architecture that explicitly represents these dependencies so that retrieving relevant cases is ensured without negatively affecting the performance of the case-based planning process.

We present an approach to systematically describing case-based reasoning systems bydifferent kinds of criteria. One main requirement was the practical relevance of these criteria and their usability for real-life applications. We report on the results we achieved from a case study carried out in the INRECA1 Esprit project.

We consider wavelet estimation of the time-dependent (evolutionary) power spectrum of a locally stationary time series. Allowing for departures from stationary proves useful for modelling, e.g., transient phenomena, quasi-oscillating behaviour or spectrum modulation. In our work wavelets are used to provide an adaptive local smoothing of a short-time periodogram in the time-freqeuncy plane. For this, in contrast to classical nonparametric (linear) approaches we use nonlinear thresholding of the empirical wavelet coefficients of the evolutionary spectrum. We show how these techniques allow for both adaptively reconstructing the local structure in the time-frequency plane and for denoising the resulting estimates. To this end a threshold choice is derived which is motivated by minimax properties w.r.t. the integrated mean squared error. Our approach is based on a 2-d orthogonal wavelet transform modified by using a cardinal Lagrange interpolation function on the finest scale. As an example, we apply our procedure to a time-varying spectrum motivated from mobile radio propagation.

A straightforward formulation of a mathematical problem is mostly not ad-equate for resolution theorem proving. We present a method to optimize suchformulations by exploiting the variability of first-order logic. The optimizingtransformation is described as logic morphisms, whose operationalizations aretactics. The different behaviour of a resolution theorem prover for the sourceand target formulations is demonstrated by several examples. It is shown howtactical and resolution-style theorem proving can be combined.

We show how to buildup mathematical knowledge bases usingframes. We distinguish three differenttypes of knowledge: axioms, definitions(for introducing concepts like "set" or"group") and theorems (for relating theconcepts). The consistency of such know-ledge bases cannot be proved in gen-eral, but we can restrict the possibilit-ies where inconsistencies may be impor-ted to very few cases, namely to the oc-currence of axioms. Definitions and the-orems should not lead to any inconsisten-cies because definitions form conservativeextensions and theorems are proved to beconsequences.

In most cases higher-order logic is based on the (gamma)-calculus in order to avoid the infinite set of so-called comprehension axioms. However, there is a price to be paid, namelyan undecidable unification algorithm. If we do not use the(gamma) - calculus, but translate higher-order expressions intofirst-order expressions by standard translation techniques, we haveto translate the infinite set of comprehension axioms, too. Ofcourse, in general this is not practicable. Therefore such anapproach requires some restrictions such as the choice of thenecessary axioms by a human user or the restriction to certainproblem classes. This paper will show how the infinite class ofcomprehension axioms can be represented by a finite subclass,so that an automatic translation of finite higher-order prob-lems into finite first-order problems is possible. This trans-lation is sound and complete with respect to a Henkin-stylegeneral model semantics.

Extending existing calculi by sorts is astrong means for improving the deductive power offirst-order theorem provers. Since many mathemat-ical facts can be more easily expressed in higher-orderlogic - aside the greater power of higher-order logicin principle - , it is desirable to transfer the advant-ages of sorts in the first-order case to the higher-ordercase. One possible method for automating higher-order logic is the translation of problem formulationsinto first-order logic and the usage of first-order the-orem provers. For a certain class of problems thismethod can compete with proving theorems directlyin higher-order logic as for instance with the TPStheorem prover of Peter Andrews or with the Nuprlproof development environment of Robert Constable.There are translations from unsorted higher-order lo-gic based on Church's simple theory of types intomany-sorted first-order logic, which are sound andcomplete with respect to a Henkin-style general mod-els semantics. In this paper we extend correspond-ing translations to translations of order-sorted higher-order logic into order-sorted first-order logic, thus weare able to utilize corresponding first-order theoremprover for proving higher-order theorems. We do notuse any (lambda)-expressions, therefore we have to add so-called comprehension axioms, which a priori makethe procedure well-suited only for essentially first-order theorems. However, in practical applicationsof mathematics many theorems are essentially first-order and as it seems to be the case, the comprehen-sion axioms can be mastered too.

In this paper we generalize the notion of method for proofplanning. While we adopt the general structure of methods introducedby Alan Bundy, we make an essential advancement in that we strictlyseparate the declarative knowledge from the procedural knowledge. Thischange of paradigm not only leads to representations easier to under-stand, it also enables modeling the important activity of formulatingmeta-methods, that is, operators that adapt the declarative part of exist-ing methods to suit novel situations. Thus this change of representationleads to a considerably strengthened planning mechanism.After presenting our declarative approach towards methods we describethe basic proof planning process with these. Then we define the notion ofmeta-method, provide an overview of practical examples and illustratehow meta-methods can be integrated into the planning process.