### Refine

#### Document Type

- Report (2)
- Doctoral Thesis (1)

#### Keywords

- optimization (3) (remove)

#### Faculty / Organisational entity

- Fraunhofer (ITWM) (3) (remove)

Test rig optimization
(2014)

Designing good test rigs for fatigue life tests is a common task in the auto-
motive industry. The problem to find an optimal test rig configuration and
actuator load signals can be formulated as a mathematical program. We in-
troduce a new optimization model that includes multi-criteria, discrete and
continuous aspects. At the same time we manage to avoid the necessity to
deal with the rainflow-counting (RFC) method. RFC is an algorithm, which
extracts load cycles from an irregular time signal. As a mathematical func-
tion it is non-convex and non-differentiable and, hence, makes optimization
of the test rig intractable.
The block structure of the load signals is assumed from the beginning.
It highly reduces complexity of the problem without decreasing the feasible
set. Also, we optimize with respect to the actuators’ positions, which makes
it possible to take torques into account and thus extend the feasible set. As
a result, the new model gives significantly better results, compared with the
other approaches in the test rig optimization.
Under certain conditions, the non-convex test rig problem is a union of
convex problems on cones. Numerical methods for optimization usually need
constraints and a starting point. We describe an algorithm that detects each
cone and its interior point in a polynomial time.
The test rig problem belongs to the class of bilevel programs. For every
instance of the state vector, the sum of functions has to be maximized. We
propose a new branch and bound technique that uses local maxima of every
summand.

Optimal control methods for the calculation of invariant excitation signals for multibody systems
(2010)

Input signals are needed for the numerical simulation of vehicle multibody systems. With these input data, the equations of motion can be integrated numerically and some output quantities can be calculated from the simulation results. In this work we consider the corresponding inverse problem: We assume that some reference output signals are available, typically gained by measurement and focus on the task to derive the input signals that produce the desired reference output in a suitable sense. If the input data is invariant, i.e., independent of the specific system, it can be transferred and used to excite other system variants. This problem can be formulated as optimal control problem. We discuss solution approaches from optimal control theory, their applicability to this special problem class and give some simulation results.

No doubt: Mathematics has become a technology in its own right, maybe even a key technology. Technology may be defined as the application of science to the problems of commerce and industry. And science? Science maybe defined as developing, testing and improving models for the prediction of system behavior; the language used to describe these models is mathematics and mathematics provides methods to evaluate these models. Here we are! Why has mathematics become a technology only recently? Since it got a tool, a tool to evaluate complex, "near to reality" models: Computer! The model may be quite old - Navier-Stokes equations describe flow behavior rather well, but to solve these equations for realistic geometry and higher Reynolds numbers with sufficient precision is even for powerful parallel computing a real challenge. Make the models as simple as possible, as complex as necessary - and then evaluate them with the help of efficient and reliable algorithms: These are genuine mathematical tasks.