Refine
Year of publication
Document Type
- Doctoral Thesis (119)
- Article (27)
- Master's Thesis (1)
- Review (1)
Is part of the Bibliography
- no (148)
Keywords
- Streptococcus pneumoniae (8)
- Apoptosis (4)
- Ackerschmalwand (3)
- Resistenz (3)
- Affinitätschromatographie (2)
- Arabidopsis (2)
- Beta-Lactam-Resistenz (2)
- Biogeographie (2)
- Blattschneiderameisen (2)
- Bottom-up (2)
Faculty / Organisational entity
- Fachbereich Biologie (148) (remove)
Membrane proteins are of high pharmacological interest as they are involved in a variety of vital functions. However, to make them accessible to in vitro studies, they often need to be extracted from their natural lipid environment and stabilized with the aid of membrane-mimetic systems. Such membrane mimics can consist of diverse amphiphilic molecules. Small-molecule amphiphiles that can solubilize lipid bilayers, so-called detergents, have been invaluable tools for membrane-protein research in recent decades. Herein, novel small-molecule glyco-amphiphiles embodying three distinct design principles are introduced, and their biophysical and physicochemical properties are investigated. In doing so, the major aims consist in establishing new promising amphiphiles and in determining structure–efficacy relationships for their synthesis and application.
First, the software package D/STAIN was introduced to facilitate the analysis of demicellization curves obtained by isothermal titration calorimetry. The robustness of the underlying algorithm was demonstrated by analyzing demicellization curves representing large variations in amphiphile concentrations and thermodynamic parameters.
Second, the interactions of diastereomeric cyclopentane maltoside amphiphiles (CPMs) with lipid bilayers and membrane proteins were investigated. To this end, lipid model membranes, cellular membranes, and model membrane proteins were treated with different stereoisomer CPMs. These investigations pointed out the importance of stereochemical configuration in the solubilization of lipid bilayers, in the extraction of membrane proteins, and, ultimately, in the stabilization of the latter. Ultimately, CPM C12 could be identified as a particularly stabilizing agent.
Third, the influence of a polymerizable group attached to detergent-like amphiphiles was characterized regarding their micellization, micellar properties, and ability to solubilize lipid membranes. This revealed that such chemical modifications can have different degrees of impact regarding the investigated properties. In particular, micellization was influenced substantially, whereas the sizes of the resulting micelles varied slightly. The polymerizable amphiphiles were shown to solubilize artificial and natural lipid membranes and, consequently, to extract membrane proteins.
Last, the self-assembly of diglucoside amphiphiles bearing either a hydrocarbon or a lipophobic fluorocarbon chain to form native nanodiscs was investigated. It was shown that the presence of a fluorocarbon hydrophobic chain conveys superior stabilization properties onto the amphiphile and the resulting nanodiscs. Moreover, the kinetics of lipid exchange were fundamentally altered by the presence of the fluorocarbon amphiphiles in the nanodisc rim.
On a route from whole genome duplication to aneuploidy and cancer: consequences and adaptations
(2022)
Whole genome duplication (WGD) is commonly accepted as an intermediate state between healthy cells and aneuploid cancer cells. Usually, cells after WGD get removed from the replicating pool by p53-dependent cell cycle arrest or apoptosis. Cells, which are able to bypass these mechanisms exhibit chromosomal instability (CIN) and DNA damage, promoting the formation of highly aneuploid karyotypes. In general, WGD favors several detrimental consequences such as increased drug resistance, transformation and metastasis formation. Therefore, it is of special interest to investigate the limiting factors and consequences of tetraploid proliferation as well as the adaptations to WGD. In the past it has been difficult to study the consequences of such large-scale genomic changes and how cells adapt to tetraploidy in order to survive. Our lab established protocols to generate tetraploids as well as isolated post-tetraploid/aneuploid single cells clones derived from euploid parental cell lines after induction of cytokinesis failure. This system enables to study the consequences and adaptations of WGD in newly generated tetraploid cells and evolved post-tetraploid clones in comparison to their isogenic parental cell line.
Using newly generated tetraploids from HCT116 cells, we identified USP28 and SPINT2 as novel factors limiting the proliferation after WGD. Using mass spectrometry and immunoprecipitation, we revealed an interaction between USP28 and NuMA1 upon WGD, which affects centrosome coalescence of supernumerary centrosomes, an important process that enhances survival of tetraploids. Furthermore, we validated the occurrence of DNA damage in tetraploid cells and found that USP28 depletion diminished the DNA damage dependent checkpoint activation. SPINT2 influences the proliferation after WGD by regulating the transcription of CDKN1A via histone acetylation. Following proliferating tetraploid cells, we confirmed the activation of the DNA damage response (DDR) by immunoblotting and microscopic approaches. Furthermore, we show that the DDR in the arising post-tetraploid clones is reduced. Further experiments verified the appearance of severe mitotic aberrations, replication stress and accumulation of reactive oxygen species in newly generated tetraploids as well as in the aneuploid cancer cells contributing to the occurrence of DNA damage. Using various drug treatments, we observed an increased dependency on the spindle assembly checkpoint in aneuploid cancer cells compared to their diploid parental cell line. Additionally, siRNA knock down experiments revealed the kinesin motor protein KIF18A as an essential protein in aneuploid cells.
Taken together, the results point out cellular consequences of proliferation after tetraploidization as well as the cellular adaptations needed to cope with the increased amount of DNA.
The scaffolding protein family Fe65, composed of Fe65, Fe65L1, and Fe65L2, was identified as an interaction partner of the amyloid precursor protein (APP), which plays a key function in Alzheimer’s disease. All three Fe65 family members possess three highly conserved interaction domains, forming complexes with diverse binding partners that can be assigned to different cellular functions, such as transactivation of genes in the nucleus, modulation of calcium homeostasis and lipid metabolism, and regulation of the actin cytoskeleton. In this article, we rule out putative new intracellular signaling mechanisms of the APP-interacting protein Fe65 in the regulation of actin cytoskeleton dynamics in the context of various neuronal functions, such as cell migration, neurite outgrowth, and synaptic plasticity.
Multi-omics analysis as a tool to investigate causes and consequences of impaired genome integrity
(2022)
Impaired genome integrity has severe consequences for the viability of any cell. Unrepaired DNA lesions can lead to genomically unstable cells, which will often become predisposed for malignant growth and tumorigenesis, where genomic instability turns into a driving factor through the selection of more aggressive clones. Aneuploidy and polyploidy are both poorly tolerated in somatic cells, but frequently observed hallmarks of cancer. Keeping the genome intact requires the concentrated action of cellular metabolism, cell cycle and DNA damage response.
This study presents multi-omics analysis as a versatile tool to understand the various causes and consequences of impaired genome integrity. The possible computational approaches are demonstrated on three different datasets. First, an analysis of a collection of DNA repair experiments is shown, which features the creation of a high-fidelity dataset for the identification and characterization of DNA damage factors. Additionally, a web-application is presented that allows scientists without a computational background to interrogate this dataset. Further, the consequences of chromosome loss in human cells are analyzed by an integrated analysis of TMT labeled mass spectrometry and sequencing data. This analysis revealed heterogeneous cellular responses to chromosome losses that differ from chromosome gains. My analysis further revealed that cells possess both transcriptional and post-transcriptional mechanisms that compensate for the loss of genes encoded on a monosomic chromosome to alleviate the detrimental consequences of reduced gene expression. In my final project, I present a multi-omics analysis of data obtained from SILAC labeled mass spectrometry and dynamic transcriptome analysis of yeast cells of different ploidy, from haploidy to tetraploid. This analysis revealed that unlike cell volume, the proteome of a cell does not scale linearly with increasing ploidy. While the expression of most proteins followed this scaling, several proteins showed ploidy-dependent regulation that could not be explained by transcriptome expression. Hence, this ploidy-dependent regulation occurs mostly on a post-transcriptional level. The analysis uncovered that ribosomal and translation related proteins are downregulated with increasing ploidy, emphasizing a remodeling of the cellular proteome in response to increasing ploidy to ensure survival of cells after whole genome doubling. Altogether this study intends to show how state-of-the-art multi-omics analysis can uncover cellular responses to impaired genome integrity in a highly diverse field of research.
Like many other bacteria, the opportunistic pathogen P. aeruginosa encodes a broad network of enzymes that regulate the intracellular concentration of the second messenger c-di-GMP. One of these enzymes is the phosphodiesterase NbdA that consists of three domains: a membrane anchored, putative sensory MHYT domain, a non-functional diguanylate cyclase domain with degenerated GGDEF motif and an active PDE domain with EAL motif. Analysis of the nbdA open reading frame by 5’-RACE PCR revealed an erroneous annotation of nbdA in the Pseudomonas database with the ORF 170 bp shorter than previously predicted. The newly defined promoter region of nbdA contains recognition sites for the alternative sigma-factor RpoS as well as the transcription factor AmrZ. Promoter analysis within PAO1 wt as well as rpoS and amrZ mutant strains utilizing transcriptional fusions of the nbdA promoter to the reporter gene lacZ revealed transcriptional activation of nbdA by RpoS in stationary growth phase and transcriptional repression by AmrZ. Additionally, no influence of nitrite and neither exogenous nor endogenous NO on nbdA transcription could be shown in this study. However, deletion of the nitrite reductase gene nirS led to a strong increase of nbdA promoter activity which needs to be characterized further. Predicted secondary structures of the 5’-UTR of the nbdA mRNA indicated either an RNA thermometer function of the mRNA or post-transcriptional regulation of nbdA by the RNA binding proteins RsmA and RsmF. Nevertheless, translational studies using fusions of the 5’ UTR of nbdA to the reporter gene bgaB did not verify either of these hypotheses. In general, nbdA translational levels were very low and neither the production of the reporter BgaB nor genomically encoded NbdA could be detected on a western blot. Overproduction of NbdA variants induced many phenotypic changes in motility and biofilm formation. But strains overproducing variants containing the MHYT domain revealed greatly elongated cells and were impaired in surface growth, indicating a misbalance in the membrane protein homeostasis. Therefore, these phenotypes have to be interpreted very critically. Microscopic studies with fluorescently tagged NbdA revealed either a diffuse fluorescent signal of NbdA or the formation of fluorescent foci which were located mainly at the cell poles. Co-localization studies with the polar flagellum and the chemotaxis protein CheA showed that NbdA is not generally localizing to the flagellated cell pole. NbdA localization indicates the control of a specific local c-di-GMP pool in the cell which is most likely involved in MapZ mediated chemotactic flagellar motor switching.
The handling of oxygen sensitive samples and growth of obligate anaerobic organisms
requires the stringent exclusion of oxygen, which is omnipresent in our normal atmospheric
environment. Anaerobic workstations (aka. Glove boxes) enable the handling of
oxygen sensitive samples during complex procedures, or the long-term incubation of
anaerobic organisms. Depending on the application requirements, commercial workstations
can cost up to 60.000 €. Here we present the complete build instructions for a highly
adaptive, Arduino based, anaerobic workstation for microbial cultivation and sample handling,
with features normally found only in high cost commercial solutions. This build can
automatically regulate humidity, H2 levels (as oxygen reductant), log the environmental
data and purge the airlock. It is built as compact as possible to allow it to fit into regular
growth chambers for full environmental control. In our experiments, oxygen levels during
the continuous growth of oxygen producing cyanobacteria, stayed under 0.03 % for 21 days
without needing user intervention. The modular Arduino controller allows for the easy
incorporation of additional regulation parameters, such as CO2 concentration or air pressure.
This paper provides researchers with a low cost, entry level workstation for anaerobic
sample handling with the flexibility to match their specific experimental needs.
Botrytis cinerea is a world-wide occurring plant pathogen, causing pre- and post-harvest gray mold rot on a large number of fruit, vegetable, and flower crops. B. cinerea is closely related to Botrytis pseudocinerea, another broad host range species which often occurs in sympatry with B. cinerea, and to several host-specific species including Botrytis fabae and Botrytis calthae. B. cinerea populations have been shown to be genetically heterogeneous, and attempts have been made to correlate genetic markers to virulence and host adaptation. Here, we present the development of a multilocus sequence typing (MLST) scheme, with 10 genes selected for high variability and phylogenetic congruence, to evaluate the genetic diversity of B. cinerea, B. fabae, and B. pseudocinerea. Using PacBio-assisted simultaneous mass sequencing of PCR products, MLST analysis of about 100 strains from diverse geographical origins and years of isolation was performed, which resulted in high-resolution strain differentiation and robust species separation. Several B. cinerea strains formed an as yet unknown population, referred to as group B, which was well separated from all other B. cinerea strains. Furthermore, the gene cluster for biosynthesis of the phytotoxin botcinic acid was missing in B. cinerea B strains. B. cinerea strains from the monocot Iris pseudacorus were found to form a genetically distinct population, and contained an intact gene cluster for production of the red pigment bikaverin, which is usually degenerated in B. cinerea. Remarkably, these strains were much more aggressive on Iris than other B. cinerea strains, which is the first unequivocal example for host specialization in B. cinerea. Our data reveal new insights into the genetic diversity of B. cinerea and provide evidence for intraspecific differentiation and different degrees of host adaptation of this polyphagous necrotrophic pathogen.
Most mitochondrial proteins are synthesized in the cytosol and targeted to the mitochondrial
surface in a post-translational manner. The surface of the endoplasmic reticulum (ER) plays an
active role in this targeting reaction. ER-associated chaperones interact with certain mitochondrial
membrane protein precursors and transfer them onto receptor proteins of the mitochondrial surface
in a process termed ER-SURF. ATP-driven proteins in the membranes of mitochondria (Msp1, ATAD1)
and the ER (Spf1, P5A-ATPase) serve as extractors for the removal of mislocalized proteins. If the
re-routing to mitochondria fails, precursors can be degraded by ER or mitochondria-associated degradation
(ERAD or MAD respectively) in a proteasome-mediated reaction. This review summarizes the
current knowledge about the cooperation of the ER and mitochondria in the targeting and quality
control of mitochondrial precursor proteins.
To render membrane proteins amenable to in vitro functional and structural studies, they need to be extracted from cellular membranes and stabilised using membrane-mimetic systems. Amphiphilic copolymers gain considerable interest, because they are able to coextract
membrane proteins and their surrounding lipids from complex cellular membranes to form polymer-bounded nanodiscs. The latter harbour a native-like lipid-bilayer core stabilised by a copolymer rim. Accordingly, these membrane mimics are supposed to provide superior
stability to embedded membrane proteins as compared with conventional detergent micelles.
Herein, the formation of nanodiscs by the most commonly used styrene/maleic acid (SMA)copolymer, termed SMA(2:1), was elucidated in detail. To this end, the equilibrium solubilisation efficiencies towards model and cellular membranes were quantified and
compared with those of the more hydrophobic SMA(3:1) and the more hydrophilic diisobutylene/maleic acid (DIBMA) copolymers. It was shown that, from a thermodynamic viewpoint, SMA(2:1) is the most efficient membrane solubiliser in terms of lipid- and proteinextraction
yields. Solvent properties (pH, ionic strength) or membrane characteristics (lateral pressure, charge, or thickness) can affect the polymers’ solubilisation efficiency to a certain extent. In addition, the lipid transfer behaviour of SMA(2:1) nanodiscs was studied.
Notwithstanding their high effective negative charge, SMA(2:1) nanodiscs exchange phospholipids more rapidly among each other than vesicles or protein-bounded nanodiscs, thus rendering them highly dynamic nano-assemblies. Two alternative electroneutral polymers, namely SMA(2:1)-SB and DIBMA-SB, were introduced in this thesis. They were generated by polymer backbone modifications of SMA(2:1) and DIBMA, respectively. The derivatised polymers were shown to quantitatively solubilise model and biological membranes and, like DIBMA, only had a mild effect on lipidbilayer integrity. Along these lines, DIBMA-SB preserved membrane-protein complexes of distinct structural classes and extracted them from various cellular membranes. Importantly, the electroneutral polymers were amenable to protein/lipid interaction studies otherwise masked by unspecific interactions of their anionic counterparts with target lipids or proteins. Taken together, the in-depth characterisation of nanodiscs formed by anionic and electroneutral polymers allows for adjusting the nanodisc properties to specifically suit experimental requirements or address membrane-protein research questions.
Amino acids, apart from being building blocks of proteins, serve various cellular and metabolic functions1,2. Changes in amino acid handling have been observed in a wide range of human pathologies, including diabetes and various metabolic disorders (aminoacidopathies)3–5. Saccharomyces cerevisiae is used as a model to investigate how increase in amino acid content (in the form of amino acid dropout mix: AAM) in growth medium influences cell growth. Intriguingly, it was observed that increasing the concentration of AAM in the media (double or triple times; 2 X AAM and 3 X AAM respectively), severely affects the growth of auxotrophic but not of prototrophic yeast strains in presence of glucose as carbon substrate. Increased concentration of Ehrlich amino acids, which are degraded to fusel acidic/alcoholic compounds, induced the observed slow growth phenotype of BY4742. These phenotypes can be rescued by either re-establishing the functional leucine biosynthetic pathway in BY4742 (leucine auxotroph) or increasing leucine in proportion to the increased AAM. Interestingly, the amino acid dependent growth phenotypes are absent when cells grow in media containing non-fermentable carbon sources. Furthermore, the deletion of ILV2 or ILV3 (genes encoding enzymes involved in the leucine biosynthetic pathway) also rescues the growth phenotype of BY4742 on 2 X AAM and 3 X AAM growth media. It was found that Ilv3 is the potential switching point and links cellular growth to redox homeostasis. The possibility of leucine limitation per se or transport competition between different Ehrlich amino acids and leucine, as a cause for the observed phenotypes, is ruled out. Upregulation of the branched-chain amino acid pathway inhibits cell growth of BY4742 on 2 X AAM. Although we could not detect KIV, the α-keto acid intermediate formed by the Ilv3. It is proposed that KIV itself (or its unknown downstream product) leads to the onset of the observed phenotypes. Different studies suggest that oxidative stress (due to accumulation of branched-chain amino acids (BCaa) and their α-keto acids) contributes to the neurological damage of MSUD patients6–9. It was also observed that the trigger of the BCaa bio-synthesis pathway on 2 X AAM growth conditions also contributes to the significant oxidative stress in the cell. In conclusion, we propose that yeast can be used as a suitable model system to study how accumulation of BCaa and their α-keto acids are lead to oxidative stress that is potentially toxic to cells. Further, this knowledge and the underlying molecular mechanisms will enhance our understanding of MSUD in humans.
About 2.4 Ga ago the Great Oxygenation Event (GOE) started the permanent oxygenation of Earth’s anoxic atmosphere. The oxygen was most likely produced by oxygenic photosynthesis in Cyanobacteria. However, hints for local occurrences of Cyanobacterial life and free oxygen exists for at least 300 Ma prior to the GOE. Different hypotheses were proposed to explain this delay between the evolution of oxygen producers and the start of the GOE. For this thesis, theoretic predictions made by two of those hypotheses were tested in laboratory experiments using ancestral, basal clade Cyanobacteria grown under simulated Archean like conditions.
Cyanobacteria might have evolved in freshwater environments and subsequently had to adapt to the higher salinity of the Archean ocean. In turn, this would have delayed their global expansion required for the GOE. Experiments with the most primitive freshwater Cyanobacterium Gloeobacter violaceus PCC 7421, showed its ability to tolerate and slowly grow in brackish water, thereby providing a route for the evolution of open ocean dwelling, salt tolerant species. The Archean ocean may have presented another hurdle to Cyanobacterial expansion as it contained large amounts of Fe(II), which is presumed to be toxic to Cyanobacteria. This thesis shows that the localised activity of Cyanobacteria could have formed marine oxygen oases in shallow coastal regions. This would have negated the toxicity of Fe(II) and could have produced more net O2 then modern oxic systems. Additionally, the formation of green rust was observed, which seemed to have a toxic effect on Cyanobacterial growth and could be an important factor for the genesis of banded iron formations.
In conclusion, this thesis could show the viability of both, the “freshwater-origin” and “Fe(II)-toxicity”, hypothesis. Nevertheless, how long it took for Cyanobacteria to overcome the restrictions described above to expand into the open ocean is uncertain and needs to be further studied.
Characterization of a bacterial-like signal transduction phosphorelay in Methanosarcina acetivorans
(2021)
Signal transduction systems are of great importance for the adaptation of organisms to new conditions. These systems occur most frequently in bacteria and are well-understood thanks to research. It was not until 10 years after the discovery of two-component systems in bacteria that such a system was reported in archaea. This work provides new insights into signal transduction in archaea, through the characterization of a histidine kinase MA4377 and its multi-component system in the methanogenic archaeon Methanosarcina acetivorans. MA4377 is a hybrid kinase of bacterial origin and was probably integrated into M. acetivorans via horizontal gene transfer. Based on the fused receiver domains, MA4377 is classified as a hybrid kinase that regulates a cell response upon the perception of a signal through a multi-component system. These systems consist of four components, the first of which is the kinase. MA4377 has autophosphorylation activity and is phosphorylated at a conserved histidine residue (His497). While the kinase activity is independent of the redox state of the protein, the PAS domain is mandatory for autokinase activity. Using different protein variants, it could be shown that the two fused receiver domains are not involved in the phosphorelay. Rather, the single receiver domain MA4376 serves as the second component of the system. The signal is ultimately transmitted to a transcription factor (MA4375) of the Msr family. Factors of this family are involved in the regulation of methanogenesis, among other things. MA4377 could thus be involved in a multi-component system regulating methanogenesis. The receiver MA4376 plays a central role here since feedback regulation on the kinase was observed. Further investigations will show to what extent cross-regulation with other kinases takes place and in what way the receiver MA4376 plays a key role in this multi-component system.
The analysis of benthic bacterial community structure has emerged as a powerful alternative to traditional microscopy-based taxonomic approaches to monitor aquaculture disturbance in coastal environments. However, local bacterial diversity and community composition vary with season, biogeographic region, hydrology, sediment texture, and aquafarm-specific parameters. Therefore, without an understanding of the inherent variation contained within community complexes, bacterial diversity surveys conducted at individual farms, countries, or specific seasons may not be able to infer global universal pictures of bacterial community diversity and composition at different degrees of aquaculture disturbance. We have analyzed environmental DNA (eDNA) metabarcodes (V3–V4 region of the hypervariable SSU rRNA gene) of 138 samples of different farms located in different major salmon-producing countries. For these samples, we identified universal bacterial core taxa that indicate high, moderate, and low aquaculture impact, regardless of sampling season, sampled country, seafloor substrate type, or local farming and environmental conditions. We also discuss bacterial taxon groups that are specific for individual local conditions. We then link the metabolic properties of the identified bacterial taxon groups to benthic processes, which provides a better understanding of universal benthic ecosystem function(ing) of coastal aquaculture sites. Our results may further guide the continuing development of a practical and generic bacterial eDNA-based environmental monitoring approach.
Genome-based Approaches for Understanding Nutritional Iron Homeostasis in Chlamydomonas reinhardtii
(2021)
Iron is an essential nutrient for all life forms, including plants, but of limiting availability in many environments, affecting productivity of both food production and carbon capturing. Iron is essential because of its broad function as a catalyst of redox reactions and processes involving O2 chemistry in the catalytic centers of enzymes. Because of the nature of these reactions, excess amounts of the nutrient can be toxic, requiring a fine tuning of the cellular iron content, to both accommodate the essential demand and avoid detrimental effects simultaneously. A question of this project is how plant metabolism is modified in iron-deficient conditions, for which the green alga Chlamydomonas reinhardtii as a microbe is an excellent reference organism. The metabolic flexibility of C. reinhardtii, specifically the capacity for both heterotrophic (on acetate) and autotrophic (on CO2) growth, offers a unique opportunity to distinguish the impact of iron nutrition on photosynthetic versus respiratory metabolism. During steady-state photoheterotrophic Fe-limited growth, where the cells are provided with light, CO2, and acetate, but lack extracellular iron, cells maintain respiration while decreasing photosynthetic contribution to the energetics of the cell. This thesis analyzes the transition from photoautotrophic (light and CO2) to photoheterotrophic cultures in the context of Fe-nutrition by adding a reduced carbon source to phototrophic cultures and assessing the developing changes to the metabolism time-dependently, in various levels of readouts. Based on the transcriptome analysis, all major cellular processes and pathways respond to the availability of acetate, but Fe-limited cells specifically sacrifice photosynthetic capacity towards respiratory activity in the first 12h after the additional carbon source becomes available, allowing to gain mechanistic insights of transitioning between different ways of life, dependent on the nutritional makeup of the environment. Secondly, exposure to high extracellular iron amounts, its opportunities, and the mechanisms of avoiding deleterious effects as a result from it, had been under-investigated before the beginning of this thesis. Physiological and photosynthetic parameters, elemental analysis, transcriptomics, and a mutant depleted of functional acidic vacuoles, proposed to be involved in the storage for transition metals, were utilized to further the understanding of the processes. Altogether, the results presented in this thesis illustrate how C. reinhardtii can be successfully used as a model organism to study a large variety of aspects of cell and molecular biology, including dynamic acclimations to changing environments.
Synaptic transmission is controlled by re-uptake systems that reduce transmitter concentrations in the synaptic cleft and recycle the transmitter into presynaptic terminals. The re-uptake systems are thought to ensure cytosolic concentrations in the terminals that are sufficient for reloading empty synaptic vesicles (SVs). Genetic deletion of glycine transporter 2 (GlyT2) results in severely disrupted inhibitory neurotransmission and ultimately to death. Here we investigated the role of GlyT2 at inhibitory glycinergic synapses in the mammalian auditory brainstem. These synapses are tuned for resilience, reliability, and precision, even during sustained high-frequency stimulation when endocytosis and refilling of SVs probably contribute substantially to efficient replenishment of the readily releasable pool (RRP). Such robust synapses are formed between MNTB and LSO neurons (medial nucleus of the trapezoid body, lateral superior olive). By means of patch-clamp recordings, we assessed the synaptic performance in controls, in GlyT2 knockout mice (KOs), and upon acute pharmacological GlyT2 blockade. Via computational modeling, we calculated the reoccupation rate of empty release sites and RRP replenishment kinetics during 60-s challenge and 60-s recovery periods. Control MNTB-LSO inputs maintained high fidelity neurotransmission at 50 Hz for 60 s and recovered very efficiently from synaptic depression. During 'marathon-experiments' (30,600 stimuli in 20 min), RRP replenishment accumulated to 1,260-fold. In contrast, KO inputs featured severe impairments. For example, the input number was reduced to ~1 (vs. ~4 in controls), implying massive functional degeneration of the MNTB-LSO microcircuit and a role of GlyT2 during synapse maturation. Surprisingly, neurotransmission did not collapse completely in KOs as inputs still replenished their small RRP 80-fold upon 50 Hz | 60 s challenge. However, they totally failed to do so for extended periods. Upon acute pharmacological GlyT2 inactivation, synaptic performance remained robust, in stark contrast to KOs. RRP replenishment was 865-fold in marathon-experiments, only ~1/3 lower than in controls. Collectively, our empirical and modeling results demonstrate that GlyT2 re-uptake activity is not the dominant factor in the SV recycling pathway that imparts indefatigability to MNTB-LSO synapses. We postulate that additional glycine sources, possibly the antiporter Asc-1, contribute to RRP replenishment at these high-fidelity brainstem synapses.
Glycine constitutes the major neurotransmitter at inhibitory synapses of lower brain regions.
A rapid removal of glycine from the synaptic cleft and consequent recycling is crucial for
synaptic transmission in systems with high effort on temporal precision. This is mainly
achieved by glycine translocation via two glycine transporters (GlyTs), namely GlyT1 and
GlyT2. At inhibitory synapses, GlyT2 was found to be specifically expressed by neurons,
supplying the presynapse with glycine needed for vesicle filling. In contrast, GlyT1 is attributed
to astrocytes and primarily mediates the termination of synaptic transmission by glycine
removal from the synaptic cleft. Employing patch-clamp recordings from principal neurons of
the lateral superior olive (LSO) in acute brainstem slices of GlyT1b/c knockout (KO) mice and
wildtype (WT) littermates at postnatal day 20, I analyzed how postsynaptic responses are
changed in a GlyT1-depleted environment. During spontaneous vesicle release I found no
change of postsynaptic responses, contradicting my initial hypothesis of prolonged decay
times. Electrical stimulation of fibers of the medial nucleus of the trapezoid body (MNTB),
which are known to form fast, reliable and highly precise synapses with LSO principal neurons,
revealed that GlyT1 is involved in proper synaptic function during sustained, high frequent
synaptic transmission. Stimulation with 50 Hz led to a stronger decay time and latency
prolongation in GlyT1b/c KO, accelerating to 60% longer decay times and 30% longer latencies.
Additionally, a more pronounced frequency-dependent depression and fidelity decrease was
observed during stimulation with 200 Hz in GlyT1b/c KO, resulting in 67% smaller amplitudes
and only 25% of WT fidelity at the end of the challenge. Basic properties like readily releasable
pool, release probability, and quantal size (q) were not altered in GlyT1b/c KO, but
interestingly q decreased during 50 Hz and 100 Hz challenges to about 84%, which was not
observed in WT. I conclude that stronger accumulation of extracellular glycine due to GlyT1
loss leads to prolonged activation of postsynaptic glycine receptors (GlyRs). As a further
consequence, activation of presynaptic GlyRs in the vicinity of the synaptic cleft might be
enhanced, accompanied by a stronger occurrence of shunting inhibition. Furthermore, I
assume a GlyT1-dependent glycine shuttle, which is absent at GlyT1b/c KO synapses. This
could result in a diminished glycine supply to GlyT2 located at more distant sites, causing a
disturbed replenishment during periods with excess release of glycine. Conclusively, my study
reveals a contribution of astrocytes in fast and reliable synaptic transmission at the MNTB-LSO
synapse, which in turn is crucial for proper sound source localization.
Most of eukaryotes show signs of having sex or sexual recombination, and the other asexual eukaryotes have evidences of evolving from sexual ancestors. Meiotic recombination, or crossover are proved to have two pathways in eukaryotes, whose distribution was well studied in many model eukaryotes. However, the distribution of sex in specific lineage is debating. The distribution and evolution of meiotic recombination pathways in alveolates would provide us clues of lost/gaining of pathways in early eukaryotes and fill the gaps between protist and more complex multicellular organisms (fungi, animals and plants) .
In this dissertation, we designed a customized program with Python, which integrated Blastp and HMMER v3.0, to search for homologs of 51 meiotic genes (11 meiosis-specific and 40 meiosis-related genes ) in the whole genome sequences or EST data of five Ciliates, seven Apicomplexa, two Chromerida, one Perkinsus, one Dinoflagellates and Chrysophytes (golden algae). All candidate homologs were then verified by reciprocal Blastp search against the nonredundant protein sequence database of NCBI and phylogeny analysis of RAxML.
The gene inventory results shows that several eukaryotic meiosis-specific and meiosis-related genes are missing in every group. However, the presents of meiosis initiate protein Spo11 in some putative asexual lineage (Symbiodinium, Colpodean and Chrysophytes) suggest that they might be cryptically sexual. Within alveolates, Apicomplexa are capable of both pathways, while Ciliates and Dinoflagellates using a set of mitotic repair proteins for meiotic recombination. We speculated that the result of the abandonment of the pathway I might due to the abnormal chromosome structure of both Ciliates and Dinoflagellates. Phylogenetic analysis of the distribution of meiotic pathways within alveolates suggest that the reduction of meiotic pathway I in Ciliates and Dinoflagellates are independent. Considering that Apicomplexa are capable of both meiotic pathways, we would infer that those two pathways exist in the common ancestor of alveolates.
Potassium (K) is essential for the processes critical for plant performance, including photosynthesis, carbon assimilation, and response to stress. K also influences translocation of sugars in the phloem and regulates sucrose metabolism. Several plant species synthesize polyols and transport these sugar alcohols from source to sink tissues. Limited knowledge exists about the involvement of K in the above processes in polyol-translocating plants. We, therefore, studied K effects in Plantago major, a species that accumulates the polyol sorbitol to high concentrations. We grew P. major plants on soil substrate adjusted to low-, medium-, or high-potassium conditions. We found that biomass, seed yield, and leaf tissue K contents increased in a soil K-dependent manner. K gradually increased the photosynthetic efficiency and decreased the non-photochemical quenching. Concomitantly, sorbitol levels and sorbitol to sucrose ratio in leaves and phloem sap increased in a K-dependent manner. K supply also fostered plant cold acclimation. High soil K levels mitigated loss of water from leaves in the cold and supported cold-dependent sugar and sorbitol accumulation. We hypothesize that with increased K nutrition, P. major preferentially channels photosynthesis-derived electrons into sorbitol biosynthesis and that this increased sorbitol is supportive for sink development and as a protective solute, during abiotic stress
CRISPR/Cas has become the state-of-the-art technology for genetic manipulation in diverse
organisms, enabling targeted genetic changes to be performed with unprecedented efficiency. Here we report on the first establishment of robust CRISPR/Cas editing in the important necrotrophic plant pathogen Botrytis cinerea based on the introduction of optimized
Cas9-sgRNA ribonucleoprotein complexes (RNPs) into protoplasts. Editing yields were further improved by development of a novel strategy that combines RNP delivery with cotransformation of transiently stable vectors containing telomeres, which allowed temporary
selection and convenient screening for marker-free editing events. We demonstrate that
this approach provides superior editing rates compared to existing CRISPR/Cas-based
methods in filamentous fungi, including the model plant pathogen Magnaporthe oryzae.
Genome sequencing of edited strains revealed very few additional mutations and no evidence for RNP-mediated off-targeting. The high performance of telomere vector-mediated
editing was demonstrated by random mutagenesis of codon 272 of the sdhB gene, a major
determinant of resistance to succinate dehydrogenase inhibitor (SDHI) fungicides by in bulk
replacement of the codon 272 with codons encoding all 20 amino acids. All exchanges were
found at similar frequencies in the absence of selection but SDHI selection allowed the identification of novel amino acid substitutions which conferred differential resistance levels
towards different SDHI fungicides. The increased efficiency and easy handling of RNPbased cotransformation is expected to accelerate molecular research in B. cinerea and
other fungi.
Phospho-regulation of the Shugoshin - Condensin interaction at the centromere in budding yeast
(2020)
Correct bioriented attachment of sister chromatids to the mitotic spindle is essential for chromosome segregation. In budding yeast, the conserved protein shugoshin (Sgo1) contributes to biorientation by recruiting the protein phosphatase PP2A-Rts1 and the condensin complex to centromeres. Using peptide prints, we identified a Serine-Rich Motif (SRM) of Sgo1 that mediates the interaction with condensin and is essential for centromeric condensin recruitment and the establishment of biorientation. We show that the interaction is regulated via phosphorylation within the SRM and we determined the phospho-sites using mass spectrometry. Analysis of the phosphomimic and phosphoresistant mutants revealed that SRM phosphorylation disrupts the shugoshin–condensin interaction. We present evidence that Mps1, a central kinase in the spindle assembly checkpoint, directly phosphorylates Sgo1 within the SRM to regulate the interaction with condensin and thereby condensin localization to centromeres. Our findings identify novel mechanisms that control shugoshin activity at the centromere in budding yeast.
Das Zytosol ist der Hauptort der Proteinbiosynthese. Während viele Proteine im Zytosol
bleiben, muss ein Großteil zu unterschiedlichen Kompartimenten der Zelle transportiert
werden. Die korrekte Lokalisation der Polypeptide ist essentiell für die Homöostase der Zelle.
Werden Proteine fehlgeleitet oder gar nicht transportiert, können diese in der Zelle
aggregieren, was zu Stress bis hin zum Zelltod führen kann. Obwohl der Import
mitochondrialer Proteine über die verschiedenen Membranen der Mitochondrien sehr gut
erforscht ist, war lange unklar, wie diese Proteine zu ihrem Zielorganell transportiert werden.
In den letzten Jahren wurde diese Wissenslücke teilweise gefüllt, neue zytosolische Faktoren
wurden identifiziert und alternative Transportwege aufgedeckt.
Eine solche Entdeckung war der Transportweg namens ER-SURF. Hier werden
mitochondriale Proteine an die Membran des endoplasmatischen Retikulums transportiert, wo
sie vom Co-Chaperon Djp1 gebunden und zu den Mitochondrien gebracht werden. Im Zuge
der Studie zu ER-SURF wurde ein Protein identifiziert, das bisher noch uncharakterisiert war.
Dieses Protein nannten wir Ema19 („Efficient Mitochondria Targeting–Associated Protein
19”). Es ist ein Membranprotein des endoplasmatischen Retikulums, das vier
Transmembrandomänen besitzt.
Ziel dieses Projekts war es, die Funktion von Ema19 für die Zelle zu analysieren. Durch ein
Alignment konnte ich feststellen, dass das Protein bis in den Menschen hoch konserviert ist,
was auf eine wichtige Rolle für die Zelle schließen ließ. Da Ema19 im Zusammenhang mit
dem ER-SURF Transportweg identifiziert wurde, habe ich zunächst eine mögliche Rolle für
den Transport und Import mitochondrialer Proteine in unterschiedlichen Experimenten
getestet. Im Laufe der Arbeit wurde jedoch deutlich, dass Ema19 keine direkte Rolle beim
Import von mitochondrialen Proteinen spielt. Allerdings konnte ich durch mehrere
unabhängige Versuche einen Zusammenhang mit der Lokalisation und dem Abbau
mitochondrialer Proteine feststellen. Fehlt Ema19 in der Zelle, ist vor allem das
mitochondriale Protein Oxa1 mehr am endoplasmatischen Retikulum vorzufinden. Ebenso
konnte ich feststellen, dass Oxa1, sowie das Intermembranraumprotein Erv1, langsamer
abgebaut werden als in Wildtypzellen. Diese Experimente geben erste Hinweise auf eine
mögliche Rolle von Ema19 für den Abbau mitochondrialer Proteine an der ER-Membran.
Nichtsdestotrotz bleiben noch viele Fragen offen und weitere Versuche sind nötig, um diese
Hypothese weiter zu unterstützen.
The plasma membrane transporter SOS1 (SALT-OVERLY SENSITIVE1) is vital for plant survival under salt stress. SOS1 activity is tightly regulated, but little is known about the underlying mechanism. SOS1 contains a cytosolic, autoinhibitory C-terminal tail (abbreviated as SOS1 C-term), which is targeted by the protein kinase SOS2 to trigger its transport activity. Here, to identify additional binding proteins that regulate SOS1 activity, we synthesized the SOS1 C-term domain and used it as bait to probe Arabidopsis thaliana cell extracts. Several 14-3-3 proteins, which function in plant salt tolerance, specifically bound to and interacted with the SOS1 C-term. Compared to wild-type plants, when exposed to salt stress, Arabidopsis plants overexpressing SOS1 C-term showed improved salt tolerance, significantly reduced Na+ accumulation in leaves, reduced induction of the salt-responsive gene WRKY25, decreased soluble sugar, starch, and proline levels, less impaired inflorescence formation and increased biomass. It appears that overexpressing SOS1 C-term leads to the sequestration of inhibitory 14-3-3 proteins, allowing SOS1 to be more readily activated and leading to increased salt tolerance. We propose that the SOS1 C-term binds to previously unknown proteins such as 14-3-3 isoforms, thereby regulating salt tolerance. This finding uncovers another regulatory layer of the plant salt tolerance program
The number of sequenced genomes increases rapidly due to the development of faster, better and new technologies. Thus, there is a great interest in automation, and standardization of the subsequent processing and analysis stages of the generated enormous amount of data. In the current work, genomes of clones, strains and species of Streptococcus were compared, which were sequenced, annotated and analysed with several technologies and methods. For sequencing, the 454- and Illumina-technology were used. The assembly of the genomes mainly was performed by the gsAssembler (Newbler) of Roche, the annotation was performed by the annotation pipeline RAST, the transfer tool RATT or manually. Concerning analysis, sets of deduced proteins of several genomes were compared to each other and common components, the so-called core-genome, of the used genomes of one or closely related species determined. Detailed comparative analysis was performed for the genomes of isolates of two clones to gather single nucleotide variants (SNV) within genes.
This work focusses on the pathogenic organism Streptococcus pneumoniae. This species is a paradigm for transformability, virulence and pathogenicity as well as resistance mechanisms against antibiotics. Its close relatives S. mitis, S. pseudopneumoniae and S. oralis have no pathogenicity potential as high as S. pneumoniae available and are thus of high interest to understand the evolution of S. pneumoniae. Strains of two S. pneumoniae clones were chosen. One is the ST10523 clone, which is associated with patients with cystic fibrosis and is characterized by long-term persistence. This clone is lacking an active hyaluronidase, which is one of the main virulence factors. The lack of two phage clusters possibly contributed to the long persistence in the human host. The clone ST226 shows a high penicillin resistance but interestingly one strain is sensitive against penicillin. Here it could be seen that the penicillin resistance mainly arose from the presence of mosaic-PBPs, while special alleles of MurM and CiaH - both genes are associated with penicillin-resistance – were present in resistant and sensitive strains as well. Penicillin resistance of S. pneumoniae is the result of horizontal gene transfer, where DNA of closely related species, mainly S. mitis or S. oralis, served as donor. The transfer of DNA from the high-level penicillin-resistant strain S. oralis Uo5 to the sensitive strain S. pneumoniae R6 was intentioned to reveal the amount of transferred DNA and whether it is possible to reach the high resistance level of S. oralis Uo5. Altogether, about 19kb of S. oralis DNA were transferred after three successive transformation steps, about 10-fold less than during transfer from S. mitis, which is more closely related to S. pneumoniae, as donor. MurE was identified as new resistance determinant. Since the resistance level of the donor strain could not be reached, it is assumed, that further unknown factors are present which contribute to penicillin resistance. The comparison of S. pneumoniae and its close relatives was performed using deduced protein sequences. 1.041 homologous proteins are common to the four complete genomes of S. pneumoniae R6, S. pseudopneumoniae IS7493, S. mitis B6 and S. oralis Uo5. Most of the virulence and pathogenicity factors described for S. pneumoniae could also be found in commensal species. These observations were confirmed by further investigations by Kilian et al. (Kilian, et al., 2019). After adding 26 complete S. pneumoniae genomes to the analysis, only 104 gene products could be identified as specific for this species. Investigations of a larger number of related streptococci, which were isolated from human and several primates, confirmed the presence of most of the virulence factors of human pneumococci in S. oralis and S. mitis strains from primates. While NanBC is common among S. pneumoniae and is missing in all S. oralis, all S. oralis contain a ß-N-acetyl-hexosaminidase which vice versa is missing in S. pneumoniae. The occurrence of S. oralis also in free-living chimpanzees suggests the assumption, that this species is part of the commensal flora of these Old-World monkeys unlike S. pneumoniae which has evolved with its human host. Compared to S. pneumoniae, S. oralis shows an amazing variability in factors important for biosynthesis of peptidoglycan and teichoic acid (PBP, MurMN, lic-cluster). Some streptococci contain a second PGP3 homologue. Additional analyses with further isolates, especially of wild animals, are necessary to determine host-specific components.
A building-block model reveals new insights into the biogenesis of yeast mitochondrial ribosomes
(2020)
Most of the mitochondrial proteins in yeast are encoded in the nuclear genome, get synthesized by cytosolic ribosomes and are imported via TOM and TIM23 into the matrix or other subcompartments of mitochondria. The mitochondrial DNA in yeast however also encodes a small set of 8 proteins from which most are hydrophobic membrane proteins and build core components of the OXPHOS complexes. They get synthesized by mitochondrial ribosomes which are descendants of bacterial ribosomes and still have some similarities to them. On the other hand, mitochondrial ribosomes experienced various structural and functional changes during evolution that specialized them for the synthesis of the mitochondrial encoded membrane proteins. The mitoribosome contains mitochondria-specific ribosomal proteins and replaced the bacterial 5S rRNA by mitochondria-specific proteins and rRNA extensions. Furthermore, the mitoribosome is tethered to the inner mitochondrial membrane to facilitate a co-translational insertion of newly synthesized proteins. Thus, also the assembly process of mitoribosomes differs from that of bacteria and is to date not well understood.
Therefore, the biogenesis of mitochondrial ribosomes in yeast should be investigated. To this end, a strain was generated in which the gene of the mitochondrial RNA-polymerase RPO41 is under control of an inducible GAL10-promoter. Since the scaffold of ribosomes is built by ribosomal RNAs, the depletion of the RNA-polymerase subsequently leads to a loss of mitochondrial ribosomes. Reinduction of Rpo41 initiates the assembly of new mitoribosomes, which makes this strain an attractive model to study mitoribosome biogenesis.
Initially, the effects of Rpo41 depletion on cellular and mitochondrial physiology was investigated. Upon Rpo41 depletion, growth on respiratory glycerol medium was inhibited. Furthermore, mitochondrial ribosomal 21S and 15S rRNA was diminished and mitochondrial translation was almost completely absent. Also, mitochondrial DNA was strongly reduced due to the fact that mtDNA replication requires RNA primers that get synthesized by Rpo41.
Next, the effect of reinduction of Rpo41 on mitochondria was tested. Time course experiments showed that mitochondrial translation can partially recover from 48h Rpo41 depletion within a timeframe of 4.5h. Sucrose gradient sedimentation experiments further showed that the mitoribosomal constitution was comparable to wildtype control samples during the time course of 4.5h of reinduction, suggesting that the ribosome assembly is not fundamentally altered in Gal-Rpo41 mitochondria. In addition, the depletion time was found to be critical for recovery of mitochondrial translation and mitochondrial RNA levels. It was observed that after 36h of Rpo41 depletion, the rRNA levels and mitochondrial translation recovered to almost 100%, but only within a time course of 10h.
Finally, mitochondria from Gal-Rpo41 cells isolated after different timepoints of reinduction were used to perform complexome profiling and the assembly of mitochondrial protein complexes was investigated. First, the steady state conditions and the assembly process of mitochondrial respiratory chain complexes were monitored. The individual respiratory chain complexes and the super-complexes of complex III, complex IV and complex V were observed. Furthermore, it was seen that they recovered from Rpo41 depletion within 4.5h of reinduction. Complexome profiles of the mitoribosomal small and large subunit discovered subcomplexes of mitoribosomal proteins that were assumed to form prior to their incorporation into assembly intermediates. The complexome profiles after reinduction indeed showed the formation of these subcomplexes before formation of the fully assembled subunit. In the mitochondrial LSU one subcomplex builds the membrane facing protuberance and a second subcomplex forms the central protuberance. In contrast to the preassembled subcomplexes, proteins that were involved in early assembly steps were exclusively found in the fully assembled subunit. Proteins that assemble at the periphery of the mitoribosome during intermediate and late assembly steps where found in soluble form suggesting a pool of unassembled proteins that supply assembly intermediates with proteins.
Taken together, the findings of this thesis suggest a so far unknow building-block model for mitoribosome assembly in which characteristic structures of the yeast mitochondrial ribosome form preassembled subcomplexes prior to their incorporation into the mitoribosome.
Cell division and cell elongation are fundamental processes for growth. In contrast to animal cells, plant cells are surrounded by rigid walls and therefore loosening of the wall is required during elongation. On the other hand, vacuole size has been shown to correlate with cell size and inhibition of vacuolar expansion limits cell growth. However, the specific role of the vacuole during cell elongation is still not fully resolved. Especially the question whether the vacuole is the leading unit during cellular growth or just passively expands upon water uptake remains to be answered. Here, we review recent findings about the contribution of the vacuole to cell elongation. In addition, we also discuss the connection between cell wall status and vacuolar morphology. In particular, we focus on the question whether vacuolar size is dictated by cell size or vice versa and share our personnel view about the sequential steps during cell elongation.
Since plants lack specialized immune cells, each cell has to defend itself independently against a plethora of different pathogens. Therefore, successful plant defense strongly relies on precise and efficient regulation of intracellular processes in every single cell. Smooth trafficking within the plant endomembrane is a prerequisite for a diverse set of immune responses. Pathogen recognition, signaling into the nucleus, cell wall enforcement, secretion of antimicrobial proteins and compounds, as well as generation of reactive oxygen species, all heavily depend on vesicle transport. In contrast, pathogens have developed a variety of different means to manipulate vesicle trafficking to prevent detection or to inhibit specific plant responses. Intriguingly, the plant endomembrane system exhibits remarkable plasticity upon pathogen attack. Unconventional trafficking pathways such as the formation of endoplasmic reticulum (ER) bodies or fusion of the vacuole with the plasma membrane are initiated and enforced as the counteraction. Here, we review the recent findings on unconventional and defense-induced trafficking pathways as the plant´s measures in response to pathogen attack. In addition, we describe the endomembrane system manipulations by different pathogens, with a focus on tethering and fusion events during vesicle trafficking.
Cells depend on the continuous renewal of their proteome composition during the cell cycle and in order to replace aberrant proteins or to react to changing environmental conditions. In higher eukaryotes, protein synthesis is achieved by up to five million ribosomes per cell. With the fast kinetics of translation, the large number of newly made proteins generates a substantial burden for protein homeostasis and requires a highly orchestrated cascade of factors promoting folding, sorting and final maturation. Several of the involved factors directly bind to translating ribosomes for the early processing of emerging nascent polypeptides and the translocation of ribosome nascent chain complexes to target membranes. In plant cells, protein synthesis also occurs in chloroplasts serving the expression of a relatively small set of 60–100 protein-coding genes. However, most of these proteins, together with nucleus-derived subunits, form central complexes majorly involved in the essential processes of photosynthetic light reaction, carbon fixation, metabolism and gene expression. Biogenesis of these heterogenic complexes adds an additional level of complexity for protein biogenesis. In this review, we summarize the current knowledge about co-translationally binding factors in chloroplasts and discuss their role in protein folding and ribosome translocation to thylakoid membranes.
Biological soil crusts (biocrusts) have been recognized as key ecological players in arid and semiarid regions at both local and global scales. They are important biodiversity components, provide critical ecosystem services, and strongly influence soil-plant relationships, and successional trajectories via facilitative, competitive, and edaphic engineering effects. Despite these important ecological roles, very little is known about biocrusts in seasonally dry tropical forests. Here we present a first baseline study on biocrust cover and ecosystem service provision in a human-modified landscape of the Brazilian Caatinga, South America's largest tropical dry forest. More specifically, we explored (1) across a network of 34 0.1 ha permanent plots the impact of disturbance, soil, precipitation, and vegetation-related parameters on biocrust cover in different stages of forest regeneration, and (2) the effect of disturbance on species composition, growth and soil organic carbon sequestration comparing early and late successional communities in two case study sites at opposite ends of the disturbance gradient. Our findings revealed that biocrusts are a conspicuous component of the Caatinga ecosystem with at least 50 different taxa of cyanobacteria, algae, lichens and bryophytes (cyanobacteria and bryophytes dominating) covering nearly 10% of the total land surface and doubling soil organic carbon content relative to bare topsoil. High litter cover, high disturbance by goats, and low soil compaction were the leading drivers for reduced biocrust cover, while precipitation was not associated Second-growth forests supported anequally spaced biocrust cover, while in old-growth-forests biocrust cover was patchy. Disturbance reduced biocrust growth by two thirds and carbon sequestration by half. In synthesis, biocrusts increase soil organic carbon (SOC) in dry forests and as they double the SOC content in disturbed areas, may be capable of counterbalancing disturbance-induced soil degradation in this ecosystem. As they fix and fertilize depauperated soils, they may play a substantial role in vegetation regeneration in the human-modified Caatinga, and may have an extended ecological role due to the ever-increasing human encroachment on natural landscapes. Even though biocrusts benefit from human presence in dry forests, high levels of anthropogenic disturbance could threaten biocrust-provided ecosystem services, and call for further, in-depth studies to elucidate the underlying mechanisms.
Micronuclei-based model system reveals functional consequences of chromothripsis in human cells
(2019)
Cancer cells often harbor chromosomes in abnormal numbers and with aberrant structure. The consequences of these chromosomal aberrations are difficult to study in cancer, and therefore several model systems have been developed in recent years. We show that human cells with extra chromosome engineered via microcell-mediated chromosome transfer often gain massive chromosomal rearrangements. The rearrangements arose by chromosome shattering and rejoining as well as by replication-dependent mechanisms. We show that the isolated micronuclei lack functional lamin B1 and become prone to envelope rupture, which leads to DNA damage and aberrant replication. The presence of functional lamin B1 partly correlates with micronuclei size, suggesting that the proper assembly of nuclear envelope might be sensitive to membrane curvature. The chromosomal rearrangements in trisomic cells provide growth advantage compared to cells without rearrangements. Our model system enables to study mechanisms of massive chromosomal rearrangements of any chromosome and their consequences in human cells.
More than ten years ago, ER-ANT1 was shown to act as an ATP/ADP antiporter and to exist in the endoplasmic reticulum (ER) of higher plants. Because structurally different transporters generally mediate energy provision to the ER, the physiological function of ER-ANT1 was not directly evident.
Interestingly, mutant plants lacking ER-ANT1 exhibit a photorespiratory phenotype. Although many research efforts were undertaken, the possible connection between the transporter and photorespiration also remained elusive. Here, a forward genetic approach was used to decipher the role of ER-ANT1 in the plant context and its association to photorespiration.
This strategy identified that additional absence of a putative HAD-type phosphatase partially restored the photorespiratory phenotype. Localisation studies revealed that the corresponding protein is targeted to the chloroplast. Moreover, biochemical analyses demonstrate that the HAD-type phosphatase is specific for pyridoxal phosphate. These observations, together with transcriptional and metabolic data of corresponding single (ER-ANT1) and double (ER-ANT1, phosphatase) loss-of-function mutant plants revealed an unexpected connection of ER-ANT1 to vitamin B6 metabolism.
Finally, a scenario is proposed, which explains how ER-ANT1 may influence B6 vitamer phosphorylation, by this affects photorespiration and causes several other physiological alterations observed in the corresponding loss-of-function mutant plants.
The Atacama Desert is one of the driest and probably oldest deserts on Earth where only a few extremophile organisms are able to survive. This study investigated two terricolous and two epiphytic lichens from the fog oasis “Las Lomitas” within the National Park Pan de Azúcar which represents a refugium for a few vascular desert plants and many lichens that can thrive on fog and dew alone. Ecophysiological measurements and climate records were combined with molecular data of the mycobiont, their green algal photobionts and lichenicolous fungi to gain information about the ecology of lichens within the fog oasis. Phylogenetic and morphological investigations led to the identification and description of the new lichen species Acarospora conafii sp. nov. as well as the lichenicolous fungi that accompanied them and revealed the trebouxioid character of all lichen photobionts. Their photosynthetic responses were compared during natural scenarios such as reactivation by high air humidity and in situ fog events to elucidate the activation strategies of this lichen community. Epiphytic lichens showed photosynthetic activity that was rapidly induced by fog and high relative air humidity whereas terricolous lichens were only activated by fog.
Regulation of metabolism is complex and involves enzymes and membrane transporters, which form networks to support energy dynamics. Lactate, as a metabolic intermediate from glucose or glycogen breakdown, appears to play a major role as additional energetic substrate, which is shuttled between glycolytic and oxidative cells, both under hypoxic and normoxic conditions. Transport of lactate across the cell membrane is mediated by monocarboxylate transporters (MCTs) in cotransport with H+, which is a substrate, a signal and a modulator of metabolic processes. MCTs form a “transport metabolon” with carbonic anhydrases (CAs), which not only provide a rapid equilibrium between CO2, HCO3– and H+, but, in addition, enhances lactate transport, as found in Xenopus oocytes, employed as heterologous expression system, as well as in astrocytes and cancer cells. Functional interactions between different CA isoforms and MCTs have been found to be isoform-specific, independent of the enzyme’s catalytic activity, and they require physical interaction between the proteins. CAs mediate between different states of metabolic acidosis, induced by glycolysis and oxidative phosphorylation, and play a relay function in coupling pH regulation and metabolism. In the brain, metabolic processes in astrocytes appear to be linked to bicarbonate transport and to neuronal activity. Here, we focus on physiological processes of energy dynamics in astrocytes as well as on the transfer of energetic substrates to neurons.
Biological clocks exist across all life forms and serve to coordinate organismal physiology with periodic environmental changes. The underlying mechanism of these clocks is predominantly based on cellular transcription-translation feedback loops in which clock proteins mediate the periodic expression of numerous genes. However, recent studies point to the existence of a conserved timekeeping mechanism independent of cellular transcription and translation, but based on cellular metabolism. These metabolic clocks were concluded based upon the observation of circadian and ultradian oscillations in the level of hyperoxidized peroxiredoxin proteins. Peroxiredoxins are enzymes found almost ubiquitously throughout life. Originally identified as H2O2 scavengers, recent studies show that peroxiredoxins can transfer oxidation to, and thereby regulate, a wide range of cellular proteins. Thus, it is conceivable that peroxiredoxins, using H2O2 as the primary signaling molecule, have the potential to integrate and coordinate much of cellular physiology and behavior with metabolic changes. Nonetheless, it remained unclear if peroxiredoxins are passive reporters of metabolic clock activity or active determinants of cellular timekeeping. Budding yeast possess an ultradian metabolic clock termed the Yeast Metabolic Cycle (YMC). The most obvious feature of the YMC is a high amplitude oscillation in oxygen consumption. Like circadian clocks, the YMC temporally compartmentalizes cellular processes (e.g. metabolism) and coordinates cellular programs such as gene expression and cell division. The YMC also exhibits oscillations in the level of hyperoxidized peroxiredoxin proteins.
In this study, I used the YMC clock model to investigate the role of peroxiredoxins in cellular timekeeping, as well as the coordination of cell division with the metabolic clock. I observed that cytosolic 2-Cys peroxiredoxins are essential for robust metabolic clock function. I provide direct evidence for oscillations in cytosolic H2O2 levels, as well as cyclical changes in oxidation state of a peroxiredoxin and a model peroxiredoxin target protein during the YMC. I noted two distinct metabolic states during the YMC: low oxygen consumption (LOC) and high oxygen consumption (HOC). I demonstrate that thiol-disulfide oxidation and reduction are necessary for switching between LOC and HOC. Specifically, a thiol reductant promotes switching to HOC, whilst a thiol oxidant prevents switching to HOC, forcing cells to remain in LOC. Transient peroxiredoxin inactivation triggered rapid and premature switching from LOC to HOC. Furthermore, I show that cell division is normally synchronized with the YMC and that deletion of typical 2-Cys peroxiredoxins leads to complete uncoupling of cell division from metabolic cycling. Moreover, metabolic oscillations are crucial for regulating cell cycle entry and exit. Intriguingly, switching to HOC is crucial for initiating cell cycle entry whilst switching to LOC is crucial for cell cycle completion and exit. Consequently, forcing cells to remain in HOC by application of a thiol reductant leads to multiple rounds of cell cycle entry despite failure to complete the preceding cell cycle. On the other hand, forcing cells to remain in LOC by treating with a thiol oxidant prevents initiation of cell cycle entry.
In conclusion, I propose that peroxiredoxins – by controlling metabolic cycles, which are in turn crucial for regulating the progression through cell cycle – play a central role in the coordination of cellular metabolism with cell division. This proposition, thus, positions peroxiredoxins as active players in the cellular timekeeping mechanism.
Untersuchungen zur Struktur und Spezifität der Phycobiliproteinlyase CPES aus Guillardia theta
(2020)
Cryptophyten verwenden neben Chlorophyll zusätzliche Lichtsammelproteine für die Photo-synthese – die Phycobiliproteine (PBP). In Cyanobakterien, Rotalgen und Glaukophyten sind PBP ebenfalls ubiquitär verbreitet. Für den Zweck der Lichtsammlung tragen die PBP- Untereinheiten kovalent gebundene offenkettige Tetrapyrrol-Chromophore an konservierten Cysteinresten. Diese Phycobiline sind in der Lage, grünes Licht zu absorbieren und es für die Photosynthese zur Verfügung zu stellen. Die Fähigkeit zur Photosynthese erlangten Crypto-phyten bei der sekundären Endosymbiose durch Aufnahme einer früheren Rotalge. Die evolutionäre Entwicklung brachte schließlich modifizierte PBP hervor. In Gegensatz zu ande-ren Organismen liegen die PBP in Cryptophyten in löslicher Form im Thylakoidlumen des Plastiden vor. Cryptophyten besitzen lediglich einen Typ an PBP, Guillardia theta verwendet Phycoerythrin PE545. Die α-Untereinheiten sind jeweils mit einem Molekül 15,16-Dihydrobi-liverdin (DHBV) und die β-Untereinheiten mit drei Molekülen Phycoerythrobilin (PEB) chromophoryliert. Die Chromophorylierung cryptophytischer Apo-PBP ist bisher wenig un-tersucht und verstanden. Aus Cyanobakterien ist jedoch bekannt, dass die Chromophorylie-rung häufig mit Hilfe von Phycobiliproteinlyasen (PBP Lyasen) stattfindet, welche die Phyco-bilinübertragung unterstützen.
In der vorliegenden Arbeit erfolgte die funktionelle Charakterisierung der eukaryotischen S-Typ-PBP Lyase GtCPES aus G. theta. Mittels Fluoreszenzspektroskopie und Zink-induzierter Fluoreszenz konnte gezeigt werden, dass GtCPES den Transfer von 3(Z)-PEB auf Cys82 der PBP-β-Untereinheit aus Prochlorococcus marinus MED4 (PmCpeB) vermittelt. An der PEB-Bindung sowie am -Transfer beteiligte Aminosäuren wurden mit Hilfe Zielgerichteter Muta-genese identifiziert. Anhand spektroskopischer Binde- und Transferstudien mit den Protein-varianten wurden drei Aminosäuren in der Ligandenbindetasche ermittelt, die relevant für die Bindung sind (Trp69, Glu136, Glu168). Diese koordinieren vermutlich PEB in der Bindetasche und stabilisieren somit die Konformation. Zusätzlich konnten zwei im PEB-Transfer involvierte Aminosäuren eindeutig identifiziert werden (Trp75, Ser150). Trp75 kommt dabei eine essenzielle Bedeutung für den Transfer zu. Des Weiteren konnte gezeigt werden, dass Met67 für die auf PEB und DHBV beschränkte Substratspezifität von GtCPES verantwortlich ist. Die Variante GtCPES_M67A bindet sowohl PEB als auch das rigide Phycocyanobilin (PCB) stabil unter Bildung eines farbigen Komplexes in vitro und in vivo in Escherichia coli. GtCPES_M67A scheint zudem in der Lage zu sein, PCB auf geeignete Apo-Proteine zu transfe-rieren. Neben der sterischen und elektrostatischen Umgebung entscheidet damit zusätzlich die Substratspezifität der PBP Lyase über die gebundenen Chromophore am PBP.
In cyanobacteria and plants, VIPP1 plays crucial roles in the biogenesis and repair of thylakoid membrane protein complexes and in coping with chloroplast membrane stress. In chloroplasts, VIPP1 localizes in distinct patterns at or close to envelope and thylakoid membranes. In vitro, VIPP1 forms higher-order oligomers of >1 MDa that organize into rings and rods. However, it remains unknown how VIPP1 oligomerization is related to function. Using time-resolved fluorescence anisotropy and sucrose density gradient centrifugation, we show here that Chlamydomonas reinhardtii VIPP1 binds strongly to liposomal membranes containing phosphatidylinositol-4-phosphate (PI4P). Cryo-electron tomography reveals that VIPP1 oligomerizes into rods that can engulf liposomal membranes containing PI4P. These findings place VIPP1 into a group of membrane-shaping proteins including epsin and BAR domain proteins. Moreover, they point to a potential role of phosphatidylinositols in directing the shaping of chloroplast membranes.
Anisotropy of tracer-coupled networks is a hallmark in many brain regions. In the past, the topography of these networks was analyzed using various approaches, which focused on different aspects, e.g., position, tracer signal, or direction of coupled cells. Here, we developed a vector-based method to analyze the extent and preferential direction of tracer spreading. As a model region, we chose the lateral superior olive—a nucleus that exhibits specialized network topography. In acute slices, sulforhodamine 101-positive astrocytes were patch-clamped and dialyzed with the GJ-permeable tracer neurobiotin, which was subsequently labeled with avidin alexa fluor 488. A predetermined threshold was used to differentiate between tracer-coupled and tracer-uncoupled cells. Tracer extent was calculated from the vector means of tracer-coupled cells in four 90° sectors. We then computed the preferential direction using a rotating coordinate system and post hoc fitting of these results with a sinusoidal function. The new method allows for an objective analysis of tracer spreading that provides information about shape and orientation of GJ networks. We expect this approach to become a vital tool for the analysis of coupling anisotropy in many brain regions
The structural integrity of synaptic connections critically depends on the interaction between synaptic cell adhesion molecules (CAMs) and the underlying actin and microtubule cytoskeleton. This interaction is mediated by giant Ankyrins, that act as specialized adaptors to establish and maintain axonal and synaptic compartments. In Drosophila, two giant isoforms of Ankyrin2 (Ank2) control synapse stability and organization at the larval neuromuscular junction (NMJ). Both Ank2-L and Ank2-XL are highly abundant in motoneuron axons and within the presynaptic terminal, where they control synaptic CAMs distribution and organization of microtubules. Here, we address the role of the conserved N-terminal ankyrin repeat domain (ARD) for subcellular localization and function of these giant Ankyrins in vivo. We used a P[acman] based rescue approach to generate deletions of ARD subdomains, that contain putative binding sites of interacting transmembrane proteins. We show that specific subdomains control synaptic but not axonal localization of Ank2-L. These domains contain binding sites to L1-family member CAMs, and we demonstrate that these regions are necessary for the organization of synaptic CAMs and for the control of synaptic stability. In contrast, presynaptic Ank2-XL localization only partially depends on the ARD but strictly requires the presynaptic presence of Ank2-L demonstrating a critical co-dependence of the two isoforms at the NMJ. Ank2-XL dependent control of microtubule organization correlates with presynaptic abundance of the protein and is thus only partially affected by ARD deletions. Together, our data provides novel insights into the synaptic targeting of giant Ankyrins with relevance for the control of synaptic plasticity and maintenance.
We isolated an encysted ciliate from a geothermal field in Iceland. The morphological features of this isolate fit the descriptions of Dexiotricha colpidiopsis (Kahl, 1926) Jankowski, 1964 very well. These comprise body shape and size in vivo, the number of somatic kineties, and the positions of macronucleus and contractile vacuole. Using state-of-the-art taxonomic methods, the species is redescribed, including phylogenetic analyses of the small subunit ribosomal RNA (SSU rRNA) gene as molecular marker. In the phylogenetic analyses, D. colpidiopsis clusters with the three available SSU rRNA gene sequences of congeners, suggesting a monophyly of the genus Dexiotricha. Its closest relative in phylogenetic analyses is D. elliptica, which also shows a high morphological similarity. This is the first record of a Dexiotricha species from a hot spring, indicating a wide temperature tolerance of this species at least in the encysted state. The new findings on D. colpidiopsis are included in a briefly revision of the scuticociliate genus Dexiotricha and an identification key to the species.
Słowa kluczowe: Dexiotricha, hot spring, morphology, phylogeny, SSU rRNA gene
Biological soil crusts (biocrusts) are a common element of the Queensland (Australia) dry savannah ecosystem and are composed of cyanobacteria, algae, lichens, bryophytes, fungi and heterotrophic bacteria. Here we report how the CO2 gas exchange of the cyanobacteria-dominated biocrust type from Boodjamulla National Park in the north Queensland Gulf Savannah responds to the pronounced climatic seasonality and on their quality as a carbon sink using a semi-automatic cuvette system. The dominant cyanobacteria are the filamentous species Symplocastrum purpurascens together with Scytonema sp. Metabolic activity was recorded between 1 July 2010 and 30 June 2011, during which CO2 exchange was only evident from November 2010 until mid-April 2011, representative of 23.6 % of the 1-year recording period. In November at the onset of the wet season, the first month (November) and the last month (April) of activity had pronounced respiratory loss of CO2. The metabolic active period accounted for 25 % of the wet season and of that period 48.6 % was net photosynthesis (NP) and 51.4 % dark respiration (DR). During the time of NP, net photosynthetic uptake of CO2 during daylight hours was reduced by 32.6 % due to water supersaturation. In total, the biocrust fixed 229.09 mmol CO2 m−2 yr−1, corresponding to an annual carbon gain of 2.75 g m−2 yr−1. Due to malfunction of the automatic cuvette system, data from September and October 2010 together with some days in November and December 2010 could not be analysed for NP and DR. Based on climatic and gas exchange data from November 2010, an estimated loss of 88 mmol CO2 m−2 was found for the 2 months, resulting in corrected annual rates of 143.1 mmol CO2 m−2 yr−1, equivalent to a carbon gain of 1.7 g m−2 yr−1. The bulk of the net photosynthetic activity occurred above a relative humidity of 42 %, indicating a suitable climatic combination of temperature, water availability and light intensity well above 200 µmol photons m−2 s−1 photosynthetic active radiation. The Boodjamulla biocrust exhibited high seasonal variability in CO2 gas exchange pattern, clearly divided into metabolically inactive winter months and active summer months. The metabolic active period commences with a period (of up to 3 months) of carbon loss, likely due to reestablishment of the crust structure and restoration of NP prior to about a 4-month period of net carbon gain. In the Gulf Savannah biocrust system, seasonality over the year investigated showed that only a minority of the year is actually suitable for biocrust growth and thus has a small window for potential contribution to soil organic matter.
Die Funktion der c-di-GMP modulierenden Membranproteine NbdA und MucR in Pseudomonas aeruginosa
(2019)
NbdA und MucR sind Multi-Domänenproteine aus Pseudomonas aeruginosa. Beide Proteine besitzen eine ähnliche Domänenorganisation mit einer N-terminalen, membranständigen
MHYT-Domäne sowie einer GGDEF- und einer EAL-Domäne im Cytoplasma. Die
cytosolischen Domänen von MucR sind beide aktiv, während NbdA neben der intakten
EAL-Domäne eine degenerierte GGDEF-Domäne mit dem Motiv AGDEF aufweist. Bioinformatischen
Vorhersagen zufolge soll die MHYT-Domäne eine sensorische Funktion für diatomische Gase wie Stickstoffmonoxid oder Sauerstoff vermitteln. Die phänotypische Charakterisierung der markerlosen PAO1-Deletionsmutanten \(Delta\)nbdA, \(Delta\)mucR und \(Delta\)nbdA \(Delta\)mucR zeigte, dass NbdA und MucR nicht in die NO-induzierte
Dispersion involviert sind. Ebenso konnte in einem neu etablierten heterologen in-vivo-System in E. coli keine NO-sensorische Funktion der Proteine detektiert werden. Im Weiteren wurde festgestellt, dass die MHYT-Domäne keinen ersichtlichen Einfluss auf die
Enzymaktivität von NbdA und MucR unter aeroben Bedingungen hat. Demzufolge fungiert
die Membrandomäne vermutlich weder als Sensor für Sauerstoff, noch für NO. Anhand heterologer Komplementationstests konnte eine PDE-Aktivität des NbdA-Volllängenproteins
nachgewiesen werden. Zudem wurde gezeigt, dass die degenerierte AGDEF-Domäne einen regulatorischen Effekt auf die EAL-Domäne hat, der essentiell für die in-
vivo-Aktivität von NbdA ist. In-vivo-Untersuchungen bestätigten die postulierte DGC-Aktivität von MucR. Weiterhin konnte belegt werden, dass MucR ein bifunktionelles Enzym
ist. Entgegen den Erwartungen scheint es jedoch im Planktonischen als DGC und im
Biofilm als PDE zu fungieren.
Ein weiterer Aspekt dieser Arbeit war die Charakterisierung der homologen Überexpression
von nbdA in P. aeruginosa, welche teilweise unerwartete Phänotypen ergab. Anhand
der homologen Überproduktion einer inaktiven NbdA-Variante stellte sich heraus, dass die
Hemmung der Motilität unabhängig von der Aktivität von NbdA auftritt. Massenspektrometrische
Analysen deuteten daraufhin, dass NbdA lokal c-di-GMP hydrolysiert. Diese
Ergebnisse implizieren, dass NbdA eine Trigger-PDE ist, deren primäre Funktion die Regulation
anderer makromolekularer Zielmoleküle ist. In Pseudomonas fluorescens Pf0-1 ist bekannt, dass das NbdA-Homolog Pfl01_1252 mit den Homologen von MucR (Pfl01_2525) und SadC (Pfl01_4451) interagiert. Ergebnisse einer früheren Arbeit lassen eine Interaktion
von NbdA und SadC ebenso in P. aeruginosa vermuten. Daher ist denkbar, dass sich
NbdA im gleichen Netzwerk wie MucR und SadC befindet und deren Aktivität reguliert.
Linking protistan community shifts along salinity gradients with cellular haloadaptation strategies
(2019)
Salinity is one of the most structuring environmental factors for microeukaryotic communities. Using eDNA barcoding, I detected significant shifts in microeukaryotic community compositions occurring at distinct salinities between brackish and marine conditions in the Baltic Sea. I, furthermore, conducted a metadata analysis including my and other marine and hypersaline community sequence data to confirm the existence of salinity-related transition boundaries and significant changes in alpha diversity patterns along a brackish to hypersaline gradient. One hypothesis for the formation of salinity-dependent transition boundaries between brackish to hypersaline conditions is the use of different cellular haloadaptation strategies. To test this hypothesis, I conducted metatranscriptome analyses of microeukaryotic communities along a pronounced salinity gradient (40 – 380 ‰). Clustering of functional transcripts revealed differences in metabolic properties and metabolic capacities between microeukaryotic communities at specific salinities, corresponding to the transition boundaries already observed in the taxonomic eDNA barcoding approach. In specific, microeukaryotic communities thriving at mid-hypersaline conditions (≤ 150 ‰) seem to predominantly apply the ‘low-salt – organic-solutes-in’ strategy by accumulating compatible solutes to counteract osmotic stress. Indications were found for both the intracellular synthesis of compatible solutes as well as for cellular transport systems. In contrast, communities of extreme-hypersaline habitats (≥ 200 ‰) may preferentially use the ‘high-salt-in’ strategy, i. e. the intracellular accumulation of inorganic ions in high concentrations, which is implied by the increased expression of Mg2+, K+, Cl- transporters and channels.
In order to characterize the ‘low-salt – organic-solutes-in’ strategy applied by protists in more detail, I conducted a time-resolved transcriptome analysis of the heterotrophic ciliate Schmidingerothrix salinarum serving as model organism. S. salinarum was thus subjected to a salt-up shock to investigate the intracellular response to osmotic stress by shifts of gene expression. After increasing the external salinity, an increased expression of two-component signal transduction systems and MAPK cascades was observed. In an early reaction, the expression of transport mechanisms for K+, Cl- and Ca2+ increased, which may enhance the capacity of K+, Cl- and Ca2+ in the cytoplasm to compensate possibly harmful Na+ influx. Expression of enzymes for the synthesis of possible compatible solutes, starting with glycine betaine, followed by ectoine and later proline, could imply that the inorganic ions K+, Cl- and Ca2+ are gradually replaced by the synthesized compatible solutes. Additionally, expressed transporters for choline (precursor of glycine betaine) and proline could indicate an intracellular accumulation of compatible solutes to balance the external salinity. During this accumulation, the up-regulated ion export mechanisms may increase the capacity for Na+ expulsion from the cytoplasm and ion compartmentalization between cell organelles seem to happen.
The results of my PhD project revealed first evidence at molecular level for the salinity-dependent use of different haloadaptation strategies in microeukaryotes and significantly extend existing knowledge about haloadaptation processes in ciliates. The results provide ground for future research, such as (comparative) transcriptome analysis of ciliates thriving in extreme-hypersaline habitats or experiments like qRT-PCR to validate transcriptome results.
Function of two redox sensing kinases from the methanogenic archaeon Methanosarcina acetivorans
(2019)
MsmS is a heme-based redox sensor kinase in Methanosarcina acetivorans consisting of alternating PAS and GAF domains connected to a C-terminal kinase domain. In addition to MsmS, M. acetivorans possesses a second kinase, MA0863 with high sequence similarity. Interestingly, MA0863 possesses an amber codon in its second GAF domain, encoding for the amino acid pyrrolysine. Thus far, no function of this residue has been resolved. In order to examine the heme iron coordination in both proteins, an improved method for the production of heme proteins was established using the Escherichia coli strain Nissle 1917. This method enables the complete reconstitution of a recombinant hemoprotein during protein production, thereby resulting in a native heme coordination. Analysis of the full-length MsmS and MA0863 confirmed a covalently bound heme cofactor, which is connected to one conserved cysteine residue in each protein. In order to identify the coordinating amino acid residues of the heme iron, UV/vis spectra of different variants were measured. These studies revealed His702 in MsmS and the corresponding His666 in MA0863 as the proximal heme ligands. MsmS has previously been described as a heme-based redox sensor. In order to examine whether the same is true for MA0863, redox dependent kinase assays were performed. MA0863 indeed displays redox dependent autophosphorylation activity, which is independent of heme ligands and only observed under oxidizing conditions. Interestingly, autophosphorylation was shown to be independent of the heme cofactor but rather relies on thiol oxidation. Therefore, MA0863 was renamed in RdmS (redox dependent methyltransferase-associated sensor). In order to identify the phosphorylation site of RdmS, thin layer chromatography was performed identifying a tyrosine as the putative phosphorylation site. This observation is in agreement with the lack of a so-called H-box in typical histidine kinases. Due to their genomic localization, MsmS and RdmS were postulated to form two-component systems (TCS) with vicinal encoded regulator proteins MsrG and MsrF. Therefore, protein-protein interaction studies using the bacterial adenylate two hybrid system were performed suggesting an interaction of RdmS and MsmS with the three regulators MsrG/F/C. Due to these multiple interactions these signal transduction pathways should rather be considered multicomponent system instead of two component systems.
Cyanobacteria of biological soil crusts (BSCs) represent an important part of circumpolar
and Alpine ecosystems, serve as indicators for ecological condition and climate
change, and function as ecosystem engineers by soil stabilization or carbon and nitrogen
input. The characterization of cyanobacteria from both polar regions remains
extremely important to understand geographic distribution patterns and community
compositions. This study is the first of its kind revealing the efficiency of combining
denaturing gradient gel electrophoresis (DGGE), light microscopy and culture-based
16S rRNA gene sequencing, applied to polar and Alpine cyanobacteria dominated
BSCs. This study aimed to show the living proportion of cyanobacteria as an extension
to previously published meta-transcriptome
data of the same study sites.
Molecular fingerprints showed a distinct clustering of cyanobacterial communities
with a close relationship between Arctic and Alpine populations, which differed from
those found in Antarctica. Species richness and diversity supported these results,
which were also confirmed by microscopic investigations of living cyanobacteria
from the BSCs. Isolate-based
sequencing corroborated these trends as cold biome
clades were assigned, which included a potentially new Arctic clade of Oculatella.
Thus, our results contribute to the debate regarding biogeography of cyanobacteria
of cold biomes.
For modeling approaches in systems biology, knowledge of the absolute abundances of cellular proteins is essential. One way to gain this knowledge is the use of quantification concatamers (QconCATs), which are synthetic proteins consisting of proteotypic peptides derived from the target proteins to be quantified. The QconCAT protein is labeled with a heavy isotope upon expression in E. coli and known amounts of the purified protein are spiked into a whole cell protein extract. Upon tryptic digestion, labeled and unlabeled peptides are released from the QconCAT and the native proteins, respectively, and both are quantified by LC-MS/MS. The labeled Q-peptides then serve as standards for determining the absolute quantity of the native peptides/proteins. Here we have applied the QconCAT approach to Chlamydomonas reinhardtii for the absolute quantification of the major proteins and protein complexes driving photosynthetic light reactions in the thylakoid membranes and carbon fixation in the pyrenoid. We found that with 25.2 attomol/cell the Rubisco large subunit makes up 6.6% of all proteins in a Chlamydomonas cell and with this exceeds the amount of the small subunit by a factor of 1.56. EPYC1, which links Rubisco to form the pyrenoid, is eight times less abundant than RBCS, and Rubisco activase is 32-times less abundant than RBCS. With 5.2 attomol/cell, photosystem II is the most abundant complex involved in the photosynthetic light reactions, followed by plastocyanin, photosystem I and the cytochrome b6/f complex, which range between 2.9 and 3.5 attomol/cell. The least abundant complex is the ATP synthase with 2 attomol/cell. While applying the QconCAT approach, we have been able to identify many potential pitfalls associated with this technique. We analyze and discuss these pitfalls in detail and provide an optimized workflow for future applications of this technique.
The transfer of substrates between to enzymes within a biosynthesis pathway is an effective way to synthesize the specific product and a good way to avoid metabolic interference. This process is called metabolic channeling and it describes the (in-)direct transfer of an intermediate molecule between the active sites of two enzymes. By forming multi-enzyme cascades the efficiency of product formation and the flux is elevated and intermediate products are transferred and converted in a correct manner by the enzymes.
During tetrapyrrole biosynthesis several substrate transfer events occur and are prerequisite for an optimal pigment synthesis. In this project the metabolic channeling process during the pink pigment phycoerythrobilin (PEB) was investigated. The responsible ferredoxin-dependent bilin reductases (FDBR) for PEB formation are PebA and PebB. During the pigment synthesis the intermediate molecule 15,16-dihydrobiliverdin (DHBV) is formed and transferred from PebA to PebB. While in earlier studies a metabolic channeling of DHBV was postulated, this work revealed new insights into the requirements of this protein-protein interaction. It became clear, that the most important requirement for the PebA/PebB interaction is based on the affinity to their substrate/product DHBV. The already high affinity of both enzymes to each other is enhanced in the presence of DHBV in the binding pocket of PebA which leads to a rapid transfer to the subsequent enzyme PebB. DHBV is a labile molecule and needs to be rapidly channeled in order to get correctly further reduced to PEB. Fluorescence titration experiments and transfer assays confirmed the enhancement effect of DHBV for its own transfer.
More insights became clear by creating an active fusion protein of PebA and PebB and comparing its reaction mechanism with standard FDBRs. This fusion protein was able to convert biliverdin IXα (BV IXα) to PEB similar to the PebS activity, which also can convert BV IXα via DHBV to PEB as a single enzyme. The product and intermediate of the reaction were identified via HPLC and UV-Vis spectroscopy.
The results of this work revealed that PebA and PebB interact via a proximity channeling process where the intermediate DHBV plays an important role for the interaction. It also highlights the importance of substrate channeling in the synthesis of PEB to optimize the flux of intermediates through this metabolic pathway.
Neuronal inhibition is mediated by glycine and/or GABA. Inferior colliculus (IC) neurons receive glycinergic and GABAergic
inputs, whereas inhibition in hippocampus (HC) predominantly relies on GABA. Astrocytes heterogeneously
express neurotransmitter transporters and are expected to adapt to the local requirements regarding neurotransmitter
homeostasis. Here we analyzed the expression of inhibitory neurotransmitter transporters in IC and HC astrocytes using
whole-cell patch-clamp and single-cell reverse transcription-PCR. We show that most astrocytes in both regions expressed
functional glycine transporters (GlyTs). Activation of these transporters resulted in an inward current (IGly) that
was sensitive to the competitive GlyT1 agonist sarcosine. Astrocytes exhibited transcripts for GlyT1 but not for
GlyT2. Glycine did not alter the membrane resistance (RM) arguing for the absence of functional glycine receptors (GlyRs).
Thus, IGly was mainly mediated by GlyT1. Similarly, we found expression of functional GABA transporters (GATs) in all IC
astrocytes and about half of the HC astrocytes. These transporters mediated an inward current (IGABA) that was sensitive to
the competitive GAT-1 and GAT-3 antagonists NO711 and SNAP5114, respectively. Accordingly, transcripts for GAT-1 and
GAT-3 were found but not for GAT-2 and BGT-1. Only in hippocampal astrocytes, GABA transiently reduced
RM demonstrating the presence of GABAA receptors (GABAARs). However, IGABA was mainly not contaminated
by GABAAR-mediated currents as RM changes vanished shortly after GABA application. In both regions, IGABA
was stronger than IGly. Furthermore, in HC the IGABA/IGly ratio was larger compared to IC. Taken together, our
results demonstrate that astrocytes are heterogeneous across and within distinct brain areas. Furthermore, we
could show that the capacity for glycine and GABA uptake varies between both brain regions.
Background: Aneuploidy, or abnormal chromosome numbers, severely alters cell physiology and is widespread in
cancers and other pathologies. Using model cell lines engineered to carry one or more extra chromosomes, it has
been demonstrated that aneuploidy per se impairs proliferation, leads to proteotoxic as well as replication stress
and triggers conserved transcriptome and proteome changes.
Results: In this study, we analysed for the first time miRNAs and demonstrate that their expression is altered in
response to chromosome gain. The miRNA deregulation is independent of the identity of the extra chromosome
and specific to individual cell lines. By cross-omics analysis we demonstrate that although the deregulated miRNAs
differ among individual aneuploid cell lines, their known targets are predominantly associated with cell development,
growth and proliferation, pathways known to be inhibited in response to chromosome gain. Indeed, we show that up
to 72% of these targets are downregulated and the associated miRNAs are overexpressed in aneuploid cells, suggesting
that the miRNA changes contribute to the global transcription changes triggered by aneuploidy. We identified
hsa-miR-10a-5p to be overexpressed in majority of aneuploid cells. Hsa-miR-10a-5p enhances translation of a
subset of mRNAs that contain so called 5’TOP motif and we show that its upregulation in aneuploids provides
resistance to starvation-induced shut down of ribosomal protein translation.
Conclusions: Our work suggests that the changes of the microRNAome contribute on one hand to the adverse
effects of aneuploidy on cell physiology, and on the other hand to the adaptation to aneuploidy by supporting
translation under adverse conditions.
Keywords: Aneuploidy, Cancer, miRNA, miR-10a-5p, Trisomy
Ecophysiological characterizations of photoautotrophic communities are not only necessary to identify the response of carbon fixation related to different climatic factors, but also to evaluate risks connected to changing environments. In biological soil crusts (BSCs), the description of ecophysiological features is difficult, due to the high variability in taxonomic composition and variable methodologies applied. Especially for BSCs in early successional stages, the available datasets are rare or focused on individual constituents, although these crusts may represent the only photoautotrophic component in many heavily disturbed ruderal areas, such as parking lots or building areas with increasing surface area worldwide. We analyzed the response of photosynthesis and respiration to changing BSC water contents (WCs), temperature and light in two early successional BSCs. We investigated whether the response of these parameters was different between intact BSC and the isolated dominating components. BSCs dominated by the cyanobacterium Nostoc commune and dominated by the green alga Zygogonium ericetorum were examined. A major divergence between the two BSCs was their absolute carbon fixation rate on a chlorophyll basis, which was significantly higher for the cyanobacterial crust. Nevertheless, independent of species composition, both crust types and their isolated organisms had convergent features such as high light acclimatization and a minor and very late-occurring depression in carbon uptake at water suprasaturation. This particular setup of ecophysiological features may enable these communities to cope with a high variety of climatic stresses and may therefore be a reason for their success in heavily disturbed areas with ongoing human impact. However, the shape of the response was different for intact BSC compared to separated organisms, especially in absolute net photosynthesis (NP) rates. This emphasizes the importance of measuring intact BSCs under natural conditions for collecting reliable data for meaningful analysis of BSC ecosystem services.
Arctic, Antarctic and alpine biological soil crusts (BSCs) are formed by adhesion of soil particles to exopolysaccharides (EPSs) excreted by cyanobacterial and green algal communities, the pioneers and main primary producers in these habitats. These BSCs provide and influence many ecosystem services such as soil erodibility, soil formation and nitrogen (N) and carbon (C) cycles. In cold environments degradation rates are low and BSCs continuously increase soil organic C; therefore, these soils are considered to be CO2 sinks. This work provides a novel, nondestructive and highly comparable method to investigate intact BSCs with a focus on cyanobacteria and green algae and their contribution to soil organic C. A new terminology arose,basedonconfocallaserscanningmicroscopy(CLSM) 2-D biomaps, dividing BSCs into a photosynthetic active layer (PAL) made of active photoautotrophic organisms and a photosynthetic inactive layer (PIL) harbouring remnants of cyanobacteria and green algae glued together by their remaining EPSs. By the application of CLSM image analysis (CLSM–IA) to 3-D biomaps, C coming from photosynthetic activeorganismscouldbevisualizedasdepthprofileswithC peaks at 0.5 to 2mm depth. Additionally, the CO2 sink character of these cold soil habitats dominated by BSCs could be highlighted, demonstrating that the first cubic centimetre of soil consists of between 7 and 17% total organic carbon, identified by loss on ignition.
The screening of metagenomic datasets led to the identification of new phage-derived members of the heme oxygenase and the ferredoxin-dependent bilin reductase enzyme families.
The novel bilin biosynthesis genes were shown to form mini-cassettes on metagenomic scaffolds and further form distinct clusters in phylogenetic analyses (Ledermann et al., 2016). In this project, it was demonstrated that the discovered sequences actually encode for active enzymes. The biochemical characterization of a member of the heme oxygenases (ΦHemO) revealed that it possesses a regiospecificity for the α-methine bridge in the cleavage of the heme macrocycle. The reaction product biliverdin IXα was shown to function as the substrate for the novel ferredoxin-dependent bilin reductases (PcyX reductases), which catalyze its reduction to PEB via the intermediate 15,16-DHBV. While it was demonstrated that ΦPcyX, a phage-derived member of the PcyX reductases, is an active enzyme, it also became clear that the rate of the reaction is highly dependent on the employed redox partner. It turned out that the ferredoxin from the cyanophage P-SSM2 is to date the most suitable redox partner for the reductases of the PcyX group. Furthermore, the solution of the ΦPcyX crystal structure revealed that it adopts an α/β/α-sandwich fold, typical for the FDBR-family. Activity assays and subsequent HPLC analyses with different variants of the ΦPcyX protein demonstrated that, despite their similarity, PcyX and PcyA reductases must act via different reaction mechanisms.
Another part of this project focused on the biochemical characterization of the FDBR KflaHY2 from the streptophyte alga Klebsormidium flaccidum. Experiments with recombinant KflaHY2 showed that it is an active FDBR which produces 3(Z)-PCB as the main reaction product, like it can be found in reductases of the PcyA group. Moreover, it was shown that under the employed assay conditions the reaction of BV to PCB proceeds in two different ways: Both 3(Z)-PΦB and 18¹,18²-DHBV occur as intermediates. Activity assays with the purified intermediates yielded PCB. Hence, both compounds are suitable substrates for KflaHY2.
The results of this work highlight the importance of the biochemical experiments, as catalytic activity cannot solely be predicted by sequence analysis.
Botrytis cinerea, der Erreger der Graufäule, infiziert hunderte verschiedene Pflanzenspezies und verursacht weltweit enorme landwirtschaftliche Verluste. Dabei tötet er das Wirtsgewebe sehr schnell mithilfe lytischer Enzyme und Nekrose-induzierender Metaboliten und Proteine ab. Das Signal-Mucin Msb2 ist in B. cinerea, wie in anderen pathogenen Pilzen, wichtig für die Oberflächenerkennung, Differenzierung von Appressorien und die Penetration des Pflanzengewebes. Msb2 agiert oberhalb der BMP1 Pathogenitäts-MAPK-Kaskade. In dieser Studie konnte eine direkte Interaktion zwischen Msb2 und BMP1, sowie zwischen den beiden Sensorproteinen Msb2 und Sho1 nachgewiesen werden. Dennoch führte die Deletion von sho1 lediglich zu geringfügigen Defekten im Wachstum, der Hyphendifferenzierung und der Bildung von Infektionsstrukturen. Sho1 zeigte nur einen geringen Einfluss auf die Aktivierung von BMP1. Das Fehlen von Sho1 verursachte keine Virulenzdefekte, während der Doppel-KO von msb2 und sho1 zu einer stärkeren Reduzierung der Läsionsausbreitung im Vergleich zu msb2 Mutanten führte. Es wurden mehrere keimungsregulierte, BMP1 abhängige Gene deletiert und die Mutanten phänotypisch charakterisiert. Keines der Gene für lytische Enzyme oder putative Effektorproteine beeinflusste die Virulenz. Mutanten, denen das für ein Ankyrin-repeat Protein codierende arp1 Gen fehlt, zeigten eine gestörte Oberflächenerkennung, gravierende Wachstumsdefekte und reduzierte Virulenz.
B. cinerea VELVET-Mutanten sind in der lichtabhängigen Differenzierung und der Ausbreitung nekrotischer Läsionen beeinträchtigt. In dieser Arbeit ermöglichte die Charakterisierung mehrerer Mutanten ein besseres Verständnis der molekularen Vorgänge, aufgrund derer der VELVET-Komplex die Entwicklung und Pathogenese in B. cinerea reguliert. Quantitative Vergleiche der in planta Transkriptome und Sekretome führten zur Identifizierung eines für drei VELVET-Mutanten gemeinsamen Sets an herunterregulierten Genen, welche für CAZymes, Proteasen und Virulenz-assoziierte Proteine codieren. Die meisten dieser Gene wurden zusätzlich im Wildtyp während der Infektion verstärkt exprimiert, was zusätzliche Hinweise auf deren Relevanz im Infektionsprozess lieferte. Die drastisch verringerte Expression von Genen für Proteasen konnte mit niedrigerer Proteaseaktivität und der unvollständigen Mazeration des Gewebes an der Infektionsstelle in Verbindung gebracht werden. Der neu etablierte quantitative Sekretom-Vergleich des Wildtyps und der VELVET-Mutanten mithilfe 15N-markierter Proteine korrelierte eindeutig mit den Transkriptomdaten sekretierter Proteine. Damit wurde gezeigt, dass die Abundanz der Proteine maßgeblich von deren mRNA-Level abhängt. Die Unfähigkeit zur Ansäuerung des Wirtsgewebes ist einer der interessantesten phänotypischen Aspekte der VELVET-Mutanten. Während Citrat die dominierende von B. cinerea ausgeschiedene Säure ist, sekretierten VELVET-Mutanten deutlich weniger Citrat. Weder für Oxalat noch für Gluconat konnte eine wichtige Rolle während der Infektion bestätigt werden. Die Läsionsausbreitung der Mutanten wurde sowohl durch Zugabe von Vollmedium, als auch durch künstlich konstant niedrig eingestellte pH-Werte an den Infektionsstellen gefördert, während die Einstellung auf neutrale pH-Werte die Expansion beim B. cinerea Wildtyp stark beeinträchtigte. Damit ist die Ansäuerung in Tomatenblättern ein wichtiger Virulenzmechanismus, der möglicherweise essentiell für die Aktivität der sekretierten Proteine ist.
Überraschenderweise scheint eine Ansäuerung des Gewebes für die erfolgreiche Infektion der Ackerbohne Vicia faba nicht notwendig zu sein. Weder B. cinerea noch der am nächsten verwandte Botrytis fabae, welcher sich als Spezialist auf V. faba aggressiver verhält, zeigten während der erfolgreichen Infektion eine Ansäuerung des Ackerbohnenblattgewebes. B. fabae ist auf wenige Wirtspflanzen der Fabaceae begrenzt. Die Grundlagen der Wirtsspezifität sind bisher unklar. Vergleichende Transkriptom- und Sekretom-Analysen ergaben Hinweise für die molekularen Ursachen der unterschiedlichen Wirtsspektren von B. cinerea und B. fabae. In dieser Arbeit konnte die schlechte Infektion durch B. fabae auf Tomatenblättern mit einer deutlich niedrigeren Proteaseaktivität in Verbindung gebracht werden, während artifiziell konstant niedrige pH-Werte die Läsionsausbreitung kaum förderten. Im Gegensatz zur Infektion von Tomatenblättern wurden jedoch auf V. faba insgesamt deutlich niedrigere Proteaseaktivitäten in den Sekretomen beider Spezies gemessen. Diese Daten weisen darauf hin, dass die beiden Spezies nicht nur generell unterschiedliche Infektionsstrategien anwenden, sondern dass die Virulenzmechanismen zusätzlich vom infizierten Pflanzengewebe abhängig sind.
Grape powdery mildew, Erysiphe necator, is one of the most significant plant pathogens, which affects grape growing regions world-wide. Because of its short generation time and the production of large amounts of conidia throughout the season, E. necator is classified as a moderate to high risk pathogen with respect to the development of fungicide resistance. The number of fungicidal mode of actions available to control powdery mildew is limited and for some of them resistances are already known. Aryl-phenyl-ketones (APKs), represented by metrafenone and pyriofenone, and succinate-dehydrogenase inhibitors (SDHIs), composed of numerous active ingredients, are two important fungicide classes used for the control of E. necator. Over the period 2014 to 2016, the emergence and development of metrafenone and SDHI resistant E. necator isolates in Europe was followed and evaluated. The distribution of resistant isolates was thereby strongly dependent on the European region. Whereas the north-western part is still predominantly sensitive, samples from east European countries showed higher resistance frequencies.
Classical sensitivity tests with obligate biotrophs can be challenging regarding sampling, transport and especially the maintenance of the living strains. Whenever possible, molecular genetic methods are preferred for a more efficient monitoring. Such methods require the knowledge of the resistance mechanisms. The exact molecular target and the resistance mechanism of metrafenone is still unknown. Whole genome sequencing of metrafenone sensitive and resistant wheat powdery mildew isolates, as well as adapted laboratory mutants of Aspergillus nidulans, where performed with the aim to identify proteins potentially linked to the mode of action or which contribute to metrafenone resistance. Based on comparative SNP analysis, four proteins potentially associated with metrafenone resistance were identified, but validation studies could not confirm their role in metrafenone resistance. In contrast to APKs, the mode of action of SDHIs is well understood. Sequencing of the sdh-genes of less sensitive E. necator isolates identified four different target-site mutations, the B-H242R, B-I244V, C-G169D and C-G169S, in sdhB and sdhC, respectively. Based on this information it was possible to develop molecular genetic monitoring methods for the mutations B-H242R and C-G169D. In 2016, the B-H242R was thereby identified as by far the most frequent mutation. Depending on the analysed SDH compound and the sdh-genotype, different sensitivities were observed and revealed a complex cross-resistance pattern.
Growth competition assays without selection pressure, with mixtures of sensitive and resistant E. necator isolates, were performed to determine potential fitness costs associated with fungicide resistance. With the experimental setups used, a clear fitness disadvantage associated with metrafenone resistance was not identified, although a strong variability of fitness was observed among the tested resistant E. necator isolates. For isolates with a reduced sensitivity towards SDHIs, associated fitness costs were dependent on the sdh-genotype analysed. Competition tests with the B-H242R genotypes gave evidence that there are no fitness costs associated with this mutation. In contrast, the C-G169D genotypes were less competitive, indicating a restricted fitness compared to the tested sensitive partners. Competition assays of field isolates, which exhibited several resistances towards different fungicide classes, indicated that there are no fitness costs associated with a multiple resistant phenotype in E. necator. Overall, these results clearly indicate the importance to analyse a representative number of isolates with sensitive and resistant phenotypes.
The cytosolic Fe65 adaptor protein family, consisting of Fe65, Fe65L1 and Fe65L2 is involved in many intracellular signaling pathways linking via its three interaction domains a continuously growing list of proteins by facilitating functional interactions. One of the most important binding partners of Fe65 family proteins is the amyloid precursor protein (APP), which plays an important role in Alzheimer Disease.
To gain deeper insights in the function of the ubiquitously expressed Fe65 and the brain enriched Fe65L1, the goal of my study was I) to analyze their putative synaptic function in vivo, II) to examine structural analysis focusing on a putative dimeric complex of Fe65, III) to consider the involvement of Fe65 in mediating LRP1 and APP intracellular trafficking in murine hippocampal neurons. By utilizing several behavioral analyses of Fe65 KO, Fe65L1 KO and Fe65/Fe65L1 DKO mice I could demonstrate that the Fe65 protein family is essential for learning and memory as well as grip strength and locomotor activity. Furthermore, immunohistological as well as protein biochemical analysis revealed that the Fe65 protein family is important for neuromuscular junction formation in the peripheral nervous system, which involves binding of APP and acting downstream of the APP signaling pathway. Via Co-immunoprecipitation analysis I could verify that Fe65 is capable to form dimers ex vivo, which exclusively occur in the cytosol and upon APP expression are shifted to membrane compartments forming trimeric complexes. The influence of the loss of Fe65 and/or Fe65L1 on APP and/or LRP1 transport characteristics in axons could not be verified, possibly conditioned by the compensatory effect of Fe65L2. However, I could demonstrate that LRP1 affects the APP transport independently of Fe65 by shifting APP into slower types of vesicles leading to changed processing and endocytosis of APP.
The outcome of my thesis advanced our understanding of the Fe65 protein family, especially its interplay with APP physiological function in synapse formation and synaptic plasticity.
Diversitätsgenerierende Retroelemente (DGRs) wurden im Jahre 2002 in Bordetella‐Phagen entdeckt
und stellen eine einzigartige Klasse unter den Retroelementen dar. Durch einen speziellen „Copy‐and‐
Replace“ Mechanismus sind sie in der Lage ein bestimmtes Zielgen zu hypermutieren. Bei diesem
Mutagenic Homing‐Prozess wird die RNA der Templat‐Region (TR) durch die elementeigene reverse
Transkriptase (RT) transkribiert. Die dabei entstandene mutierte cDNA wird anschließend in die
variable Region (VR) des Zielgens inkorporiert und dieses somit diversifiziert. Hierbei steht der
experimentelle Nachweis für die Hypermutation durch die RT noch aus. Zudem spielt das akzessorische
Protein (Avd) eine weitere wichtige Rolle im Mutagenic Homing Prozess, wobei dessen tatsächliche
Funktion noch nicht charakterisiert werden konnte. Bis dato gibt es vor allem Analysen in Bezug auf
das Bordetella‐Phagen DGR, womit sich die Frage nach anderen Systemen und allgemeiner
Anwendbarkeit stellt. Daher war die Analyse des Nostoc sp. PCC 7120 DGR Hauptgegenstand dieser
Arbeit, wobei der Fokus auf der Untersuchung der reversen Transkripase (nRT), sowie der
Charakterisierung des akzessorischen Proteins (nAvd) aus dem Nostoc sp. PCC 7120 DGR lag.
Die nRT konnte überexprimiert werden, wobei sie nur teilweise löslich vorlag. Eine effektive
Aufreinigung der nRT konnte mit den hier getesteten Methoden nicht erzielt werden, sodass andere
Aufreinigungsmethoden erprobt werden müssen. Zudem war die nRT nicht lagerfähig, wodurch eine
regelmäßige neue Proteinpräparation nötig war. In Aktivitätsstudien konnten erste Hinweise auf eine
Aktivität der nRT erhalten werden. Dabei konnten die entstandenen Nukleinsäuren nicht nur
detektiert, sondern auch mittels analytischem Verdau als DNA identifiziert werden. Darüber hinaus
konnte die synthetisierte cDNA mittels PCR amplifiziert und die PCR‐Produkte anschließend
sequenziert werden. Hierbei wurden jedoch keine Adenin‐spezifischen oder sonstigen Mutationen
beobachtet. Somit konnte kein Nachweis für Hypermutation durch die RT erbracht werden. Bei
Untersuchungen bezüglich einer möglichen Interaktion zwischen nRT und nAvd konnte keine erhöhte
nRT‐Aktivität durch die nAvd festgestellt werden.
Die Untersuchungen der nAvd zeigten, dass diese Nukleinsäuren bindet. Hierbei waren Präferenzen
gegenüber verschiedenen Nukleinsäuren zu beobachten. Vor allem RNA/DNA‐Hybride zeigt die
höchste Affinität gegenüber der nAvd, während dsDNA eine höhere Affinität zur nAvd aufweist als
ssRNA. Zudem ist die nAvd in der Lage Nukleinsäuren zu hybridisieren. Hierbei hybridisiert sie ATreiche
DNA‐Moleküle von mittlerer Länge (48 bp) am effizientesten. Ein von der nAvd katalysierter
Strangaustausch konnte nicht beobachtet werden. Weiter konnte gezeigt werden, dass die nAvd selbst
bis 95 °C hitzestabil ist und im Anschluss an Hitzestress weiterhin Nukleinsäuren hybridisieren kann.
Darüber hinaus ist sie befähigt Nukleinsäuren unter Hitzestress zu stabilisieren. Diese Ergebnisse lassen
auf eine Rolle der nAvd als Lotse oder zur Stabilisierung von Nukleinsäuren schließen.
Im Rahmen dieser Arbeit sollten weiterführende Erkenntnisse über die Regulation des Na+/H+-Antiporters AtSOS1 erbracht werden. Die Analyse von Mutanten, die den zytosolischen AtSOS1 C terminus überexprimieren, bestätigte eine im Vergleich zum Wildtyp erhöhte Salztoleranz. Diese Feststellung lässt sich an verschiedenen Beobachtungen festmachen: Unter Salzstressbedingungen i.) akkumulieren die Überexpressionsmutanten deutlich weniger Natrium im Spross, ii.) sie blühen früher, iii.) sie weisen eine geringere Expression des Salz-induzierten Gens wrky25 auf, iv.) sie häufen geringere Mengen „kompatibler Solute“ an und v.) sie speichern weniger Stärke im Vergleich zum Wildtyp.
Zusammenfassend lässt sich festhalten, dass die Überexpression der C-terminalen Domäne des SOS1 zu einer erhöhten Salztoleranz der entsprechenden Mutanten durch erhöhte Aktivierung des endogenen SOS1-Transporters führt. Es lässt sich spekulieren, dass negative Regulatoren des SOS-Signalwegs vom löslichen C-terminus abgefangen werden, wodurch ihre inhibierende Funktion auf das endogene SOS-Netzwerk verloren geht.
Im Gegensatz dazu führt der Verlust des SOS1-Transporters in den sos1 Knockout-Pflanzen zu einer erhöhten Salzsensitivität. Diese Feststellung lässt sich wiederum an verschiedenen Beobachtungen festmachen: Unter Salzstressbedingungen i.) akkumulieren die Knockout-Mutanten deutlich mehr Natrium im Spross sowie vor allem in der Wurzel, ii.) sie blühen verzögert bis gar nicht, iii.) sie weisen eine höhere Expression des Salzstress-Indikatorgens wrky25 auf, iv.) sie häufen große Mengen kompatibler Solute in Form löslicher Zucker an und v.) sie speichern mehr Stärke im Vergleich zum Wildtyp.
In der vorliegenden Arbeit wurden die Interaktionen zwischen dem SOS1 C terminus und den regulatorischen At14-3-3 Proteinen υ, ω, κ und λ, sowie zwischen AtTST1/AtVIK1 und 14-3-3 κ und λ mittels Bimolekularer Fluoreszenz-Komplementation verifiziert. Sie binden den SOS1 C terminus an der Stelle 1112TRQNTMVESSDEEDEDEG1129, den AtTST1 an der Stelle 361DDGAGDDDDSDNDLR375. Beide Bindemotive weisen einen hohen Anteil negativ geladener Aspartat- und Glutamat-Reste auf. Durch die Analyse von At14 3 3 λκ Knockout-Pflanzen wurden diese Proteine als Signalstoffe im Zuckerhaushalt von A. thaliana identifiziert. Ihr Fehlen führt zu einer Veränderung im „sugar sensing“ bzw. „sugar signaling“. Diese Behauptung lässt sich an verschiedenen Beobachtungen festmachen: Unter Hochzucker-Bedingungen i.) akkumulieren die Knockout-Mutanten mehr Biomasse, ii.) sie akkumulieren weniger Zucker und iii.) sie weisen eine gesteigerte Expression der Glukose-reprimierten Gene cab1 und suc2 auf.
The biodiversity of the cyanobacterial lichen flora of Vietnam is chronically understudied. Previous studies often neglected the lichens that inhabit lowlands especially outcrops and sand dunes that are common habitats in Vietnam.
A cyanolichen collection was gathered from lowlands of central and southern Vietnam to study their diversity and distribution. At the same time, cultured photobionts from those lichens were used for olyphasic taxonomic approach.
A total of 66 cyanolichens were recorded from lowland regions in central and southern of Vietnam, doubles the number of cyanolichens for Vietnam. 80% of them are new records for Vietnam in which a new species Pyrenopsis melanophthalma and two new unidentified lichinacean taxa were described.
A notably floristic segregation by habitats was indicated in the communities. Saxicolous Lichinales dominated in coastal outcrops that corresponded to 56% of lichen species richness. Lecanoralean cyanolichens and basidiolichens were found in the lowland forests. Precipitation correlated negatively to species richness in this study, indicating a competitive relationship.
Eleven cyanobacterial strains including 8 baeocyte-forming members of the genus Chroococcidiopsis and 3 heterocyte-forming species of the genera Nostoc and Scytonema were successfully isolated from lichens.
Phylogenetic and morphological analyses indicated that Chroococcidiopsis was the unique photobiont in Peltula. New mophological characters were found in two Chroococcidiopsis strains: (1) the purple content of cells in one photobiont strain that was isolated from a new lichinacean taxon, and (2) the pseudofilamentous feature by binary division from a strain that was isolated from Porocyphus dimorphus.
With respect to heterocyte-forming cyanobiont, Scytonema was confirmed as the photobiont in the ascolichen Heppia lutosa applying the polyphasic method. The genus Scytonema in the basidiolichens Cyphellostereum was morphologically examinated in lichen thalli. For the first time the intracellular haustorial system of basidiolichen genus Cyphellostereum was noted and investigated.
Phylogenetic analysis of photobiont strains Nostoc from Pannaria tavaresii and Parmeliella brisbanensis indicated that a high selectivity occurred in Parmeliella brisbanensis that were from different regions of the world, while low photobiont selectivity occurred among Pannaria tavaresii samples from different geographical regions.
The herewith presented dissertation is therefore an important contribution to the lichen flora of Vietnam and a significant improvement of the actual knowledge about cyanolichens in this country.
Human forest modification is among the largest global drivers of terrestrial degradation
of biodiversity, species interactions, and ecosystem functioning. One of the most
pertinent components, forest fragmentation, has a long history in ecological research
across the globe, particularly in lower latitudes. However, we still know little how
fragmentation shapes temperate ecosystems, irrespective of the ancient status quo of
European deforestation. Furthermore, its interaction with another pivotal component
of European forests, silvicultural management, are practically unexplored. Hence,
answering the question how anthropogenic modification of temperate forests affects
fundamental components of forest ecosystems is essential basic research that has
been neglected thus far. Most basal ecosystem elements are plants and their insect
herbivores, as they form the energetic basis of the tropic pyramid. Furthermore, their
respective biodiversity, functional traits, and the networks of interactions they
establish are key for a multitude of ecosystem functions, not least ecosystem stability.
Hence, the thesis at hand aimed to disentangle this complex system of
interdependencies of human impacts, biodiversity, species traits and inter-species
interactions.
The first step lay in understanding how woody plant assemblages are shaped by
human forest modification. For this purpose, field investigations in 57 plots in the
hyperfragmented cultural landscape of the Northern Palatinate highlands (SW
Germany) were conducted, censusing > 4,000 tree/shrub individuals from 34 species.
Use of novel, integrative indices for different types of land-use allowed an accurate
quantification of biotic responses. Intriguingly, woody tree/shrub communities reacted
strikingly positive to forest fragmentation, with increases in alpha and beta diversity,
as well as proliferation of heat/drought/light adapted pioneer species. Contrarily,
managed interior forests were homogenized/constrained in biodiversity, with
dominance of shade/cold adapted commercial tree species. Comparisons with recently
unmanaged stands (> 40 a) revealed first indications for nascent conversion to oldgrowth
conditions, with larger variability in light conditions and subsequent
community composition. Reactions to microclimatic conditions, the relationship
between associated species traits and the corresponding species pool, as well as
facilitative/constraining effects by foresters were discussed as underlying mechanisms.
Reactions of herbivore assemblages to forest fragmentation and the subsequent
changes in host plant communities were assessed by comprehensive sampling of >
1,000 live herbivores from 134 species in the forest understory. Diversity was –
similarly to plant communities - higher in fragmentation affected habitats, particularly
in edges of continuous control forests. Furthermore, average trophic specialization
showed an identical pattern. Mechanistically, benefits from microclimatic conditions,
host availability, as well as pronounced niche differentiation are deemed responsible.
While communities were heterogeneous, with no segregation across habitats, (smallforest fragments, edges, and interior of control forests), vegetation diversity, herbivore
diversity, as well as trophic specialization were identified to shape community
composition. This probably reflected a gradient from generalistic/species poor vs.
specialist/species rich herbivore assemblages.
Insect studies conducted in forest systems are doomed to incompleteness
without considering ‘the last biological frontier’, the tree canopies. To access their
biodiversity, relationship to edge effects, and their conservational value, the
arboricolous arthropod fauna of 24 beech (Fagus sylvatica) canopies was sampled via
insecticidal knockdown (‘fogging’). This resulted in an exhaustive collection of > 46,000
specimens from 24 major taxonomic/functional groups. Abundance distributions were
markedly negative exponential, indicating high abundance variability in tree crowns.
Individuals of six pertinent orders were identified to species level, returning > 3,100
individuals from 175 species and 52 families. This high diversity did marginally differ
across habitats, with slightly higher species richness in edge canopies. However,
communities in edge crowns were noticeably more heterogeneous than those in the
forest interior, possibly due to higher variability in environmental edge conditions. In
total, 49 species with protective value were identified, of which only one showed
habitat preferences (for near-natural interior forests). Among them, six species (all
beetles, Coleoptera) were classified as ‘priority species’ for conservation efforts. Hence,
beech canopies of the Northern Palatinate highlands can be considered strongholds of
insect biodiversity, incorporating many species of particular protective value.
The intricacy of plant-herbivore interaction networks and their relationship to
forest fragmentation is largely unexplored, particularly in Central Europe. Illumination
of this matter is all the more important, as ecological networks are highly relevant for
ecosystem stability, particularly in the face of additional anthropogenic disturbances,
such as climate change. Hence, plant-herbivore interaction networks (PHNs) were
constructed from woody plants and their associated herbivores, sampled alive in the
understory. Herbivory verification was achieved using no-choice-feeding assays, as well
as literature references. In total, networks across small forest fragments, edges, and
the forest interior consisted of 696 interactions. Network complexity and trophic niche
redundancy were compared across habitats using a rarefaction-like resampling
procedure. PHNs in fragmentation affected forest habitats were significantly more
complex, as well as more redundant in their realized niches, despite being composed of
relatively more specialist species. Furthermore, network robustness to climate change
was quantified utilizing four different scenarios for climate change susceptibility of
involved plants. In this procedure, remaining herbivores in the network were measured
upon successive loss of their host plant species. Consistently, PHNs in edges (and to a
smaller degree in small fragments) withstood primary extinction of plant species
longer, making them more robust. This was attributed to the high prevalence of
heat/drought-adapted species, as well as to beneficial effects of network topography
(complexity and redundancy). Consequently, strong correlative relationships were
found between realized niche redundancy and climate change robustness of PHNs.
This was both the first time that biologically realistic extinctions (instead of e.g.random extinctions) were used to measure network robustness, and that topographical
network parameters were identified as potential indicators for network robustness
against climate change.
In synthesis, in the light of global biotic degradation due to human forest
modification, the necessity to differentiate must be claimed. Ecosystems react
differently to anthropogenic disturbances, and it seems the particular features present
in Central European forests (ancient deforestation, extensive management, and, most
importantly, high richness in open-forest plant species) cause partly opposed patterns
to other biomes. Lenient microclimates and diverse plant communities facilitate
equally diverse herbivore assemblages, and hence complex and robust networks,
opposed to the forest interior. Therefore, in the reality of extensively used cultural
landscapes, fragmentation affected forest ecosystems, particularly forest edges, can be
perceived as reservoir for biodiversity, and ecosystem functionality. Nevertheless, as
practically all forest habitats considered in this thesis are under human cultivation,
recommendations for ecological enhancement of all forest habitats are discussed.
Membrane proteins are generally soluble only in the presence of detergent micelles or other membrane-mimetic systems, which renders the determination of the protein’s molar mass or oligomeric state difficult. Moreover, the amount of bound detergent varies drastically among different proteins and detergents. However, the type of detergent and its concentration have a great influence on the protein’s structure, stability, and functionality and the success of structural and functional investigations and crystallographic trials. Size-exclusion chromatography, which is commonly used to determine the molar mass of water-soluble proteins, is not suitable for detergent-solubilised proteins because
the protein–detergent complex has a different conformation and, thus, commonly exhibits
a different migration behaviour than globular standard proteins. Thus, calibration curves obtained with standard proteins are not useful for membrane-protein analysis. However,
the combination of size-exclusion chromatography with ultraviolet absorbance, static light scattering, and refractive index detection provides a tool to determine the molar mass of protein–detergent complexes in an absolute manner and allows for distinguishing the contributions of detergent and protein to the complex.
The goal of this thesis was to refine the standard triple-detection size-exclusion chromatography measurement and data analysis procedure for challenging membrane-protein samples, non-standard detergents, and difficult solvents such as concentrated denaturant solutions that were thought to elude routine approaches. To this end, the influence of urea on the performance of the method beyond direct influences on detergents and proteins was investigated with the help of the water-soluble bovine serum albumin. On the basis of
the obtained results, measurement and data analysis procedures were refined for different detergents and protein–detergent complexes comprising the membrane proteins OmpLA and Mistic from Escherichia coli and Bacillus subtilis, respectively.
The investigations on mass and shape of different detergent micelles and the compositions of protein–detergent complexes in aqueous buffer and concentrated urea solutions
showed that triple-detection size-exclusion chromatography provides valuable information
about micelle masses and shapes under various conditions. Moreover, it is perfectly suited for the straightforward analysis of detergent-suspended proteins in terms of composition and oligomeric state not only under native but, more importantly, also under denaturing conditions.
Cells and organelles are enclosed by membranes that consist of a lipid bilayer harboring highly
diverse membrane proteins (MPs). These carry out vital functions, and α-helical MPs, in
particular, are of outstanding pharmacological importance, as they comprise more than half of
all drug targets. However, knowledge from MP research is limited, as MPs require membranemimetic
environments to retain their native structures and functions and, thus, are not readily
amenable to in vitro studies. To gain insight into vectorial functions, as in the case of channels
and transporters, and into topology, which describes MP conformation and orientation in the
context of a membrane, purified MPs need to be reconstituted, that is, transferred from detergent
micelles into a lipid-bilayer system.
The ultimate goal of this thesis was to elucidate the membrane topology of Mistic, which is
an essential regulator of biofilm formation in Bacillus subtilis consisting of four α-helices. The
conformational stability of Mistic has been shown to depend on the presence of a hydrophobic
environment. However, Mistic is characterized by an uncommonly hydrophilic surface, and
its helices are significantly shorter than transmembrane helices of canonical integral MPs.
Therefore, the means by which its association with the hydrophobic interior of a lipid bilayer
is accomplished is a subject of much debate. To tackle this issue, Mistic was produced and
purified, reconstituted, and subjected to topological studies.
Reconstitution of Mistic in the presence of lipids was performed by lowering the detergent
concentration to subsolubilizing concentrations via addition of cyclodextrin. To fully exploit
the advantages offered by cyclodextrin-mediated detergent removal, a quantitative model was
established that describes the supramolecular state of the reconstitution mixture and allows
for the prediction of reconstitution trajectories and their cross points with phase boundaries.
Automated titrations enabled spectroscopic monitoring of Mistic reconstitutions in real time.
On the basis of the established reconstitution protocol, the membrane topology of Mistic was
investigated with the aid of fluorescence quenching experiments and oriented circular dichroism
spectroscopy. The results of these experiments reveal that Mistic appears to be an exception
from the commonly observed transmembrane orientation of α-helical MPs, since it exhibits
a highly unusual in-plane topology, which goes in line with recent coarse-grained molecular
dynamics simulations.
Der rasante Anstieg an ß-lactamresistenten Bakterienstämmen stellt ein weltweites medizinisches Problem dar. Für die Bekämpfung von resistenten Stämmen ist es wichtig, den Mechanismus der Resistenzentstehung zu verstehen. Die im Mittelpunkt der vorliegenden Arbeit stehenden S. pneumoniae-Isolate entstammen zwei unterschiedlichen Strategien zur Untersuchung der Entstehung und Verbreitung ß-lactamresistenter Pneumokokken. Die im Fokus des ersten Teils der vorliegenden Arbeit stehende Glycosyltransferase CpoA wurde von Grebe et al. (1997) als Resistenzdeterminante in zwei spontan-resistenten Labormutanten, P104 und P106, entdeckt. Beide wurden ausgehend von dem sensitiven S. pneumoniae R6 auf einer erhöhten Piperacillinkonzentration selektioniert. Berg et al. und Edman et al., beschrieben CpoA biochemisch als a-Galactosyl-Glycosyl-Diacylglycerin-Synthase, die einen Galactosylrest von UDP-Galaktose auf Glycosyldiacylglycerin (GlcDAG) überträgt (Berg et al., 2001; Edman et al., 2003) und so Galactosyl-Glycosyldiacylglycerin (GalGlcDAG), das Hauptglycolipid der Cytoplasmamembran von S. pneumoniae bildet. Durch Detektion der Glycolipide in R6, P104, P106 und R6ΔcpoA konnten diese in vitro Daten in vivo bestätigt werden. Keine der cpoA-Mutanten wies eine detektiertbare Menge an GalGlcDAG auf. Neben der Veränderung des Glycolipidverhältnisses offenbarte die Darstellung der Membranlipide auch eine Änderung des Phospholipidverhältnisses. Die phänotypische Charakterisierung der cpoA-Mutanten zeigte eine pleiotropen Phänotyp, der mit einer verlangsamten Generationszeit, einer verminderten Säuretoleranz, einem erhöhten Bedarf an zweiwertigen Magnesiumionen, dem Verlust der natürlichen Transformierbarkeit, einer verzögerten Triton-induzierte Zelllyse, sowie eine reduzierte Bacitracinresistenz einher ging. Durch eine Microarray-basierte, globale Transkriptomanalyse konnte gezeigt werden, dass vor allem Membranproteine, wie PTS-Systeme und ABC-Transporter, eine unterschiedliche Expressionsstärke im Vergleich zum Parentalstamm R6 aufwiesen. Als Grundlage für den zweiten Teil der vorliegenden Arbeit diente ein von Todorava (2010) durchgeführtes Transformationsexperiment, indem der sensitive S. pneumoniae R6 mit chromosomaler DNA des hochresistenten S. oralis Uo5 transformiert wurde. In sechs Transformationsschritten mit sukzessiv ansteigender Antibiotikakonzentration, konnten sechs Transformanten mit einer stufenweise erhöhten ß-Lactamresistenz generiert werden. Durch die Arbeiten von Todorova et al. (2015), konnte bereits gezeigt werden, dass drei niederaffine PBPs, sowie die Aminosäureligase MurE den Resistenzanstieg der ersten drei Selektionsschritte vermitteln. In dieser Arbeit wurde sich mit den Transformanten der Selektionsschritte vier, fünf und sechs beschäftigt. Durch Genomsequenzierung und anschließende Überprüfung bestimmter Sequenzbereiche konnten die Grenzen des horizontalen Gentransfers aufgewiesen werden. Der Resistenzanstieg in den letzten drei Selektionsschritten wurde nicht durch die Übertragung resistenter Uo5-Gene, sondern einzig durch Punktmutationen vermittelt. Die Charakterisierung, sowie die phänotypischen Auswirkungen der Veränderungen standen nach ihrer Identifizierung im Mittelpunkt der vorliegenden Arbeit. In der Transformante des vierten Selektionsschrittes, PCPC, konnten zwei Punktmutationen identifiziert werden. Eine Punktmutation innerhalb des Histidinkinasegens ciaH des Zweikomponentensystems CiaRH und eine weitere in spr1992, welches für ein hypothetisches Protein codiert. Bei CiaH handelt es sich um die erste nicht-PBP-Resistenzdeterminante, die in S. pneumoniae entdeckt wurde (Guenzi et al., 1994). Es zeigte sich, dass das neu entdeckte ciaH-Allel (ciaH773) eine Hyperaktivität des CiaRH-Systems bewirkt und zur Instabilität neigt. Um das Risiko von sekundären Mutationen zu mindern, wurde die Expression von ciaH773 unter die Kontrolle eines Tetracyclin-induzierbaren Promotors gestellt. Es konnte gezeigt werden, dass ciaH773 einen 11-fachen Anstieg der CiaR-vermittelten Genregulation, sowie eine Erhöhung der ß-Lactamresistenz bewirkt und zum Verlust der natürlichen Transformierbarkeit führt. Neben der Punktmutation in ciaH, konnte im vierten Selektionsschritt noch eine weitere Veränderung in spr1992 identifiziert werden. Beim Genprodukt von spr1992 handelt es sich um hypothetisches Protein. Blastanalysen lassen auf eine regulatorische Funktion von Spr1992 schließen. Die innerhalb dieser Arbeit erzielten Ergebnisse deuten stark auf einen Beitrag der Punktmutation in spr1992 zur CiaR-vermittelten Genregulation, sowie zur Cefotaximresistenz in PCPC hin. Zukünftige Untersuchungen könnten den Zusammenhang von spr1992 mit dem CiaRH-System weiter spezifizieren.Innerhalb des fünften Selektionsschrittes konnte eine 10 bp Deletion in der Serinprotease HtrA detektiert werden, die aufgrund der Lokalisation im ersten Drittel der Serinprotease mit einem Knockout von HtrA vergleichbar ist. Es konnte gezeigt werden, dass die HtrA-Deletion zu einer weiteren Steigerung der CiaRH-vermittelten Genregulation, sowie zu einer Erhöhung der ß-Lactamresistenz führt. Durch Einbringen des ciaH773-Allels in S. pneumoniae R6 und anschließender htrA-Deletion konnte dieser regulatorische Effekt auch im Wildtyp-Hintergrund nachgewiesen werden. Durch anschließend durchgeführte globalen Transkriptomanalysen konnten weitere Einblicke in die regulatorische Funktion von HtrA im Hintergrund eines hyperaktiven CiaRH-Systems gewonnen werden. In PCPCCO, der Transformante des sechsten Selektionsschrittes, konnte eine Punktmutation im Penicillin-bindenden Protein 2b innerhalb des bereits im dritten Selektionsschritt ausgetauschten Uo5-Sequenzbereiches als Resistenzdeterminante identifiziert werden. Durch Einbringen von Q406P in S. pneumoniae R6 konnte das Resistenz vermittelnde Potential dieser Veränderung auch im Wildtyphintergrund nachgewiesen werden. Somit konnte gezeigt werden, dass eine Resistenzdeterminante, die über horizontalen Gentransfer auf S. pneumoniae übertragen wurde, durch eine sekundäre Mutation, das Resistenzniveau ihres Rezipienten weiter steigern kann.
Die hier vorgelegte Arbeit konzentrierte sich auf den vakuolären Ribonukleinsäure- (RNA) Abbau in Arabidopsis thaliana (A. thaliana) und die Integration in den Nukleotid- Metabolismus unter Berücksichtigung von Nukleosidtransportprozessen. Insbesondere die physiologische Bedeutung des Verlustes der RNS2-Aktivität auf die vakuolären RNA-Abbauprozesse sollte untersucht werden. Es konnte gezeigt werden, dass RNS2 den größten Anteil an der vakuolären Ribonuklease- (RNase-) Aktivität ausmacht, wobei die Restaktivität von circa 30 Prozent ein Hinweis auf mindestens eine weitere vakuoläre RNase ist. Die vakuolären Adenylatgehalte, Abbauprodukte der RNA, in RNS2-T-DNA-Insertionslinien zeigten, dass RNS2, ähnlich wie die intrazellulären RNasen in L. esculentum, 2‘,3‘-zyklische Nukleotidmonophosphate (2‘,3‘-cNMPs) produzieren. Ferner konnte gezeigt werden, dass in diesen Linien die vakuolären Enzyme sowohl RNA, als auch 2‘,3‘-cNMPs langsamer abbauen als vakuoläre Enzyme aus Wildtyp-Pflanzen. Die Akkumulation dieses zyklischen Intermediates des RNA-Abbaus lässt darauf schließen, dass die Transphosphorylierung schneller verläuft als die Hydrolyse (Abel & Glund, 1987; Löffler et al., 1992; Nürnberger et al., 1990). Es kann angenommen werden, dass ein weiteres Enzym, wie etwa eine zyklische Phosphodiesterase oder eine weitere Ribonuklease, an der Hydrolyse beteiligt ist. Ein weiterer Abschnitt dieser Arbeit beschäftigt sich mit der wichtigen Frage der Qualität von Vakuolenisolationen. Protoplastenkontaminationen konnten mikroskopisch ausgeschlossen werden. Die chloroplastidäre Verunreinigung war mit circa 5 Prozent gering, die cytosolische Kontamination lag jedoch je nach Isolationsmethode bei bis zu 30 Prozent im Vergleich zu Protoplasten. Es konnte darüber hinaus erstmals durch fluoreszenzmikroskopische Untersuchungen gezeigt werden, dass Vakuolen RNA besitzen. Diese Oligonukleotide sind vornehmlich kleine Fragmente im Größenbereich bis 50 nt.
Next Generation Sequencing ermöglichte eine detaillierte Analyse von cDNA- Bibliotheken, gewonnen aus vakuolärer RNA. Diese Technik wurde unter anderem angewandt, um die Reliabilität des Experimentes zu untersuchen. Es zeigte sich eine große Varianz in der Verteilung der Counts auf die verschiedenen RNA-Loci innerhalb biologischer Replikate und unterschiedlicher Vakuolenisolationsmethoden. Erstmals konnte jedoch gezeigt werden, dass circa 70 Prozent der RNA-Fragmente in der
Vakuole von mRNA stammen. Darüber hinaus gibt es Hinweise, dass der Abbau der wenigen rRNA-Transkripte in diesem Organell verstärkt abläuft.
In A. thaliana existiert mit ENT7 lediglich ein Vertreter, der einen Export von RNA- Abbauprodukten aus der Zelle ermöglicht. Da er den namensgebenden Vertretern aus dem Reich der Säugetiere strukturell und funktionell ähnelt, ist ENT7 ein geeignetes ENT-Protein für zukünftige Kristallisations- und Strukturanalysen. In dieser Arbeit konnte ENT7-eGFP in Pichia pastoris mit großer Ausbeute (2 mg Protein pro Liter Hefekultur) synthetisiert und in stabiler Form gereinigt werden. Es konnte gezeigt werden, dass ENT7 ohne eGFP ebenfalls stabil und als Dimer vorliegt. Durch Bindungsstudien erfolgte der Nachweis der erfolgreichen Bindung an bekannte Substrate. Darüber hinaus stellte sich heraus, dass neben Nukleosiden auch Nukleobasen, aber nicht ATP gebunden werden.
Bei Asthma handelt es sich um eine chronische Entzündung der Atemwege, die durch bronchiale
Hyperreagibilität, reversible Atemwegsobstruktion und airway remodeling gekennzeichnet
ist. Letzteres bezieht sich dabei auf die permanenten strukturellen Veränderungen in den
Atemwegen, die zur Verdickung der Bronchialwand beitragen und für die bei Asthmatikern
auftretende progressive und irreversible Abnahme der Lungenfunktion verantwortlich sind. Die
epithelial zu mesenchymale Transition (EMT), ein physiologischer Prozess bei dem epitheliale
Zellen den motilen und invasiven Phänotyp von Fibroblasten übernehmen, ist dabei eng mit
der Zerstörung der epithelialen Barriere, subepithelialer Fibrose und der Akkumulation von
Myofibroblasten assoziiert, die bei airway remodeling auftreten. Obwohl Wachstumsfaktoren wie der transforming growth factor β (TGF-β) als wichtige Induktoren von EMT gelten, weisen jüngste Ergebnisse auf eine EMT-modifizierende Wirkung von inflammatorischen Mediatoren
hin. Ein Ziel dieser Arbeit war es deshalb, den Effekt der inflammatorischen Zytokine IL-4, IL-
17 und IL-22, die in der Pathogenese von allergischem (IL-4) bzw. nicht-allergischem (IL-17/
-22) Asthma involviert sind, auf die TGF-β induzierte EMT in vitro zu untersuchen. Keines der Zytokine war dabei in der Lage, selbstständig EMT induzieren, allerdings verstärkten und beschleunigten sie den EMT-Prozess in Kombination mit TGF-β, wobei die kombinierte
Stimulation mit allen 3 Zytokinen einen additiven Effekt zeigte. Obwohl die Zytokine allein kurzzeitig die Transkription von EMT-essentiellen Transkriptionsfaktoren förderten, nahm deren Transkriptmenge sowie Proteinabundanz rasch wieder ab. Dieser Effekt wurde durch die zusätzliche Stimulation mit TGF-β jedoch stark verringert, was auf eine essentielle Rolle
des mRNA-stabilisierenden Effektes von TGF-β bei der Induktion von EMT hindeutet.
Obwohl inhalierte Kortikosteroide als goldene Standardtherapie in der Asthmabehandlung gelten, verbleiben 5-10% der Asthmatiker therapieresistent. Desweiteren wird airway
remodeling durch die Langzeit-Behandlung mit Kortikosteroiden nicht unterdrückt, weswegen
neue therapeutische Ansätze entwickelt werden müssen. Naturstoffe mit ihrer strukturellen
Komplexität sowie ihrem breiten Spektrum an biologischen Aktivitäten können dabei als
potentielle Leitstrukturen dienen. In dieser Arbeit wurde das therapeutische Potenzial der Naturstoffe Cyclonerodiol und Oxacyclododecindion bezüglich Asthma-relevanter
Pathomechanismen in vitro untersucht. Cyclonerodiol, das zuvor bereits als Inhibitor des IL-4 Signalweges charakterisiert wurde, hemmte auch den IL-13 Signalweg, der ebenfalls mit
allergischem Asthma assoziiert ist. Auf mRNA- und Proteinebene reduzierte der Naturstoff die Expression inflammatorischer Zytokine und Chemokine, die an der Pathogenese von
allergischem Asthma beteiligt sind. Untersuchungen zum Wirkmechanismus zeigten, dass Cyclonerodiol die Interaktion des Transkriptionsfaktors STAT6 mit den MAP-Kinasen p38
und ERK1/2 und somit die Serin-Phosphorylierung von STAT6 reduziert, wodurch auch die Interaktion mit dem transkriptionellen Coaktivator p300 verringert wird. Oxacyclododecindion,
das bereits als potenter Inhibitor der Expression von inflammatorischen sowie fibrotischen Genen identifiziert wurde, hemmte charakteristische Merkmale von schwerem, Glukokortikoidresistentem
Asthma wie die durch IL-17 induzierte Expression inflammatorischer Gene.
Die Substanz inhibierte zudem die durch TGF-β induzierte EMT wesentlich stärker als das potente Glukokortikoid Dexamethason. Studien zum Wirkmechanismus weisen darauf hin,dass es sich bei Oxacyclododecindion um einen Kinaseinhibitor mit TAK1 als potentieller Zielstruktur handeln könnte.
Die kürzlich entdeckte Klasse der diversitätsgenerierenden Retroelemente (DGRs) kann ihrem
Wirt einen selektiven Vorteil über eine beschleunigte Proteinevolution verschaffen. Dazu
bedient sich das DGR eines nicht proliferativen „copy and replace“ Mechanismus, der
kodierende Sequenzinformation zielgerichtet von einem Templat Repeat über ein RNAIntermediat
zu einem spezifischen Gen transferiert. Die Sequenz wird während dem Prozess
hypermutiert, was vermutlich durch eine Fehleranfälligkeit der DGR-kodierten reversen
Transkriptase (RT) geschieht. Dabei kann die mutierte Sequenz eine höhere Diversität
erreichen, als es für die Antikörper und T-Zell-Rezeptoren des Immunsystems von Vertebraten
beobachtet wurde.
In dieser Arbeit wurde die Verteilung von DGRs in einer Stammsammlung von Cyanobakterien
untersucht. Dafür wurde ein Screening mit degenerierten Primern auf die DGR-kodierte RT
durchgeführt. Es konnten ca. 30 % (34) der analysierbaren Cyanobakterienstämme positiv auf
Präsenz eines DGRs getestet werden. Dazu gehört ein DGR aus Anabaena flos-aquae, von
dem auch die Sequenz ermittelt werden konnte. Dieses neu entdeckte DGR wurde zusammen
mit zwei weiteren DGRs aus Nostoc sp. PCC7120 und Treponema denticola auf Aktivität
untersucht, wobei die letzten beiden Elemente eine DGR-vermittelte Variation gezeigt haben.
Das demonstriert die Funktionsfähigkeit der Elemente, gibt aber zugleich einen Hinweis auf
eine starke Regulation, da die beobachtete Frequenz der Diversifizierung sehr gering war.
Eine Regulation wäre vorteilhaft für den Wirt, da vermutlich ein Großteil der Mutationen die
Funktion der variablen Proteine beeinträchtigt.
Von dem funktionsfähigen DGR aus Nostoc sp. PCC7120 wurde anschließend die Struktur
des RNA-Intermediats bioinformatisch und experimentell aufgeklärt. Dabei handelt es sich um
die erste aufgeklärte Struktur von RNA-Intermediaten aus DGRs. Basierend auf den Daten
konnte eine Konsensus-Struktur für 13 Sequenzen aus Cyanobakterien, grünen
Schwefelbakterien, Purpurbakterien, Treponema denticola und dem Bordetella-Phagen
berechnet werden, in der vier Haarnadelstrukturen konserviert zu sein scheinen. Diese
Strukturelemente könnten auf eine konservierte Funktion des RNA-Intermediats hinweisen
und eine hochaffine Bindestelle für die DGR-kodierte RT bereitstellen bzw. für eine
katalytische Aktivität als Endonuklease benötigt werden.
Damit liefert diese Arbeit einen wichtigen Beitrag für die experimentelle Identifizierung von
DGRs, sowie deren Verteilung und Regulation in Bakterien. Desweiteren bietet die Arbeit
einen Hinweis darauf, dass es sich bei dem RNA-Intermediat nicht nur um eine mobile
Komponente handelt, sondern weitere Funktionen hinzukommen könnten.
Im Verlauf dieser Dissertation konnte gezeigt werden, dass eine erhöhte Expression des tonoplastidären Dicarboxylat Transporters zu einem erhöhten Gehalt an Malat bei gleichzeitig vermindertem Citratgehalt in den Überexpressions-Pflanzen führt. Somit konnte, ähnlich wie in den k.o.-Pflanzen, ein reziprokes Verhalten von Citrat und Malat aufgezeigt werden.
Elektrophysiologische Analysen an Oozyten von X. laevis in Zusammenhang mit Aufnahmeversuchen an Proteoliposomen zeigten weiterhin, dass der Transport von Citrat ebenfalls durch den TDT katalysiert wird. Anhand eines negativen Einwärts-Strom an Oozyten konnte gezeigt werden, dass dieser Citrat-Transport elektrogen ist. Weiterhin konnte gezeigt werden, dass Citrat2-H die transportierte Form von Citrat darstellt. Dieses wird vermutlich zusammen mit drei Protonen transportiert.
Die Dianionen Malat und Succinat, sowie höchstwahrscheinlich auch Fumarat, werden ebenfalls über den TDT transportiert. Unter Standardbedingungen werden diese in die Vakuole importiert. Im Gegenzug wird Citrat aus der Vakuole exportiert. Die trans-stimulierende Wechselwirkung von Malat, Succinat und Fumarat auf den Citrat Transport und vice versa bestärkt den in dieser Arbeit postulierten Antiport der jeweiligen Carboxylate über den Tonoplasten. Dieser ist jedoch nicht obligat, was an dem verringerten Transport von Citrat ohne Gegensubstrat über die Membran gezeigt werden konnte.
Unter Trockenstress und osmotischen Stress konnte ebenfalls gezeigt werden, dass die erhöhte Expression des TDT maßgeblich an der Akkumulation von Malat und der Mobilisierung von Citrat unter den genannten Stressbedingungen beteiligt ist.
Letztlich konnte mittels Säurestressexperimenten nachgewiesen werden, dass die Malatakkumulation, bei gleichzeitigem Citrat Abbau nicht zwingend miteinander gekoppelt sind, unter Säurestress müssen daher weitere regulatorische Effekte auf den Malat-Import bzw. den Citrat-Export vorherrschen.
Für alle Organismen ist es wichtig, sich gegen das Eindringen exogener DNA bzw. RNA wie z.B. Viren oder transposablen Elementen zur Wehr zu setzen um die Integrität ihres eigenen Genoms zu bewahren. Zudem müssen innerhalb eines Organismus oft ganze Genfamilien reguliert werden. Die RNA-Interferenz stellt ein optimales Mittel sowohl für die Abwehr exogener Nukleinsäuren, als auch für die Regulierung endogener Gene dazu bereit. Das Herzstück der RNAi stellen kleine regulatorische siRNAs dar, die Homologie-abhängig Reaktionen in einer Zelle hervorrufen können, wie z.B. das transkriptionelle oder das posttranskriptionelle Silencing. Bei dem Mechanismus der RNAi sind zudem mehrere Komponenten beteiligt um diese siRNAs zu synthetisieren, zu stabilisieren und zu ihrem Zielort zu bringen um dort das Silencing zu vermitteln. Dabei spielen die Enzyme Dicer und RNA abhängige RNA-Polymerasen eine wichtige Rolle in der Synthese. Argonauten, bzw. eine Unterklasse von ihnen, die Piwi-Proteine sind für das eigentliche Silencing des Zielgens wichtig und spielen, wie auch die 2´-O-Methyltransferase Hen1, eine Rolle in der Stabilisierung der siRNAs.
In Paramecium tetraurelia weiß man, dass endogene Genfamilien, wie z.B. die Oberflächen-Antigene RNAi-vermittelt reguliert werden. Zudem ist bekannt, dass man RNAi-Mechanismen, die diesem endogenen Mechanismus ähneln, artifiziell durch das Einbringen einer doppelsträngigen RNA induzieren kann. Dies kann entweder durch das Verfüttern von Bakterien geschehen, die zur Synthese einer dsRNA in ihrem Inneren veranlasst werden und diese anreichern, oder durch die Injektion eines Transgens in den Makronukleus, dessen Transkript ebenfalls zu einer dsRNA umgesetzt wird.
Der Fokus dieser Arbeit lag auf dem exogenen, durch ein injiziertes Transgen induzierten RNAi-Mechanismus in Paramecium tetraurelia und dessen genauere Charakterisierung. Dabei konnte gezeigt werden, dass dieser RNAi-Mechanismus eine Temperaturabhängigkeit aufweist, wie es auch für RNAi-Mechanismen in anderen Organismen beschrieben wurde. Im Rahmen dieser Arbeit konnte jedoch die Ursache diese Temperaturabhängigkeit nicht aufgeklärt werden.
Dafür konnte gezeigt werden, dass zwei Klassen an siRNAs an diesem Mechanismus beteiligt sind. Es konnten neben den schon in der Literatur beschriebenen primären siRNAs auch sekundäre siRNAs nachgewiesen werden, deren Synthese von einer RdRP abhängig ist. Im Rahmen dieser Arbeit konnte der Schluss gezogen werden, das diese RdRP, die für die Synthese der sekundären siRNAs verantwortlich ist, das Homolog Rdr2 ist. Weiter konnte gezeigt werden, dass diese sekundären siRNAs Transitivität induzieren. Dies beschreibt die Amplifikation der siRNAs über das Ausgangsmolekül hinaus. Es konnte dargestellt werden, dass die sekundären siRNAs nicht von dem ursprünglichen Transgen synthetisiert, sondern vielmehr von einem homologen endogenen Transkript, einer mRNA, entstammen und somit als transitiv angesehen werden können.
Ferner konnte gezeigt werden, dass die Nukleotidyltransferase Cid2 ebenfalls in die Akkumulation dieser sekundären siRNAs involviert ist. Es konnte der Schluss gezogen werden, dass dieses Cid2 in einem Komplex mit Rdr2 vorliegt und das Template zur Generierung der sekundären siRNAs stabilisiert und so für Rdr2 zugänglich macht.
Ein weiterer Schwerpunkt dieser Arbeit war die detailliertere Untersuchung der spezifischen Stabilisierung beider siRNA-Klassen. Dabei konnte gezeigt werden, dass mehrere Piwi-Proteine in den Transgen-induzierten Mechanismus involviert sind. Die Paramecium spezifischen Piwis Ptiwi 8, Ptiwi 13 und Ptiwi 14 spielen dabei eine Rolle. Im Rahmen der durchgeführten Analysen konnte gezeigt werden, dass die Ptiwis 8 und 14 in die Akkumulation und damit in die Stabilisierung beider siRNA-Klassen involviert sind. Allerdings scheint dieser Effekt eher auf dem Ptiwi14 zu beruhen. Für das Ptiwi 13 konnte vermutet werden, dass dieses eher in die Akkumulation und spezifischen Stabilisierung der sekundären siRNAs involviert ist. Auch konnte aufgezeigt werden, dass beide Klassen an Transgen-induzierten siRNAs eine Methylgruppe an ihrem 3´ Ende tragen, welche von der 2´-O-Methyltransferase Hen1 abhängig ist und ebenfalls der Stabilisierung der siRNAs dient. Zudem konnte vermutet werden, dass diese Methylierung bereits vor dem Binden der siRNAs an eines der Ptiwis stattfindet und davon unabhängig ist. Somit konnten Rückschlüsse auf den zeitlichen Verlauf des Transgen-induzierten RNAi-Mechanismus gezogen werden.
Über eine Lokalisation dieses Hen1-Proteins konnte ferner gezeigt werden, dass dieses Protein in bzw. an den mit der Keimbahn assoziierten Mikronuklei und dem vegetativen Makronukleus aufzufinden ist. Die Methylierung der siRNAs findet somit in den Kernen statt. Dies lässt den Schluss zu, dass der Transgen-induzierte RNAi-Mechanismus neben der posttranskriptionellen Regulation auch eine transkriptionelle Genregulation direkt am Chromatin vermitteln kann.
Es wurde zuerst das intrinsische Puffersystem der Oozyte charakterisiert, als Grundlage für eine weitere Untersuchung des \(CO_2/HCO_3^{-}\)-Puffersystem. Der \(pK_s\) des intrinsischen Puffersystem betrug 6,9 bei einer totalen Konzentration von 40 mM. Auf Basis des bestimmten \(pK_s\) von 6,9 wurden Carnosin und dessen Derivate als mobile Puffer identifiziert, die die Mobilität der \(H^+\) bestimmen. Aus der apparenten Diffusionskonstanten der \(H^+\) konnte der Anteil an mobilen Puffern am gesamten intrinsischen Puffersystem bestimmt werden, er betrug 37,5% bzw. 15 mM. Intrazelluläre CA erhöhte die Effektivität (Geschwindigkeit) des \(CO_2/HCO_3^{-}\)-Puffersystems, aber nicht die Pufferkapazität im Gleichgewicht. Damit dieser Effekt quantifiziert werden kann, musste die bestehende Definition der Pufferkapazität von Koppel & Spiro aus dem Jahre 1914 um eine zeitliche Komponente erweitert werden. Dafür wurde die Nettoreaktionsgeschwindigkeit r als Maß für die Dynamik eines Puffer oder einer Mischung aus verschiedenen Puffern hergeleitet und durch die numerische Lösung eines Systems an ODEs ausgerechnet . Ohne CA befand sich das \(CO_2/HCO_3^{-}\) bei der Applikation von Butyrat nicht mehr zu jeder Zeit im Gleichgewicht \( ( r\neq 0 ) \), was zu einer erhöhten \(\Delta pH_i/\Delta t\) führte. Nicht nur die Effektivität der Pufferung wurde durch die CA erhöht, auch die apparente Mobilität der Protonen wurde in Anwesenheit von \(CO_2/{HCO_3^{-}}\) erhöht. Weiterhin konnte gezeigt werden, dass \(H^+\) alle theoretisch nötigen Voraussetzungen erfüllt, die es braucht, um als Signalmolekül, ähnlich dem Calcium, fungieren zu können. So wird über die hohe Pufferung und den geringen Anteil an mobilen Puffern (37,5 % in der Oozyte) die Mobilität der \(H^+\) gesenkt, so dass sich Mikrodomänen mit aktiven Konzentrationen ausbilden können. Damit sich unter diesen Umständen eine Mikrodomäne ausbilden kann, ist ein Flux von \(0,8\cdot 10^6 H^+ /s\) nötig. Die Ausbildung von solchen Mikrodomänen kann physiologisch zur lokalen Modulation zellulärer Prozesse führen, da wichtige Bestandteile von Signalkaskaden, wie G-Proteine, pH-sensitiv sind. Die CA spielt für die Signalwirkung der \(H^+\) eine wichtige Rolle, so konnte gezeigt werden, dass CA-Aktivtät zu einer Unterscheidbarkeit von metabolischer und respiratorischer Ansäuerung führt, die ohne CA-Aktivität nicht möglich wäre.
The heart is reported to show a net consumption of lactate. This may contribute up to 15% to the total body lactate disposal. In this work, the consumption of lactate was shown for the first
time on the single cell level with the new FRET-based lactate sensor Laconic.
Research published until today, almost exclusively reports the monocarboxylate transporter 1
(MCT1) as the transporter responsible for myocardial lactate uptake. As this membrane
transporter transports lactate together with H+ in a stoichiometry of 1:1, lactate transport is
coupled to pH regulation. Consequently, interactions of MCT1 and acid/base regulating proteins
(carbonic anhydrases (CAs and sodium bicarbonate co-transporters (NBCs)) are described in
the oocyte expression system, skeletal muscle and cancer cells.
In this work it is shown that activity of extracellular CA increases lactate uptake into mouse
cardiomyocytes by 27% and lactate induced JA/B by 42.8% to 46.2%. This effect is most likely
mediated via NBC/CA interaction because inhibition of extracellular CA reduces HCO3--
dependent acid extruding JA/B by 53.3% to 78.4%. This may link lactate uptake to cellular
respiration. When lactate was applied in medium gassed with 100% N2, lactate induced
acidification was 12.6% faster than in medium gassed with 100% O2. Thus, CO2 produced on
the pathway transferring redox energy from substrates like glucose and lactate to ADP and
phosphate via oxidative phosphorylation, may support further lactate uptake. The findings of
this work suggest an auto regulation of lactate uptake via CO2 release in ventricular mouse
cardiomyocytes.
Schon bei seiner Entdeckung konnte eine Verbindung des Zwei-Komponenten Systems CiaRH mit der natürlichen Kompetenzentwicklung und der β-Laktamresistenz in S. pneumoniae beobachtet werden. Mutationen in der Histidinkinase CiaH bewirken eine sogenannte Hyperaktivierung dieses Systems, welche zu einem vollständigen Verlust der Kompetenz und einem Anstieg der β-Laktamresistenz führen. Der über das CiaRH System vermittelte Kompetenzphänotyp ist dabei abhängig von der Serinprotease HtrA und den csRNAs. Die Serinprotease HtrA reduziert hierbei, durch Proteolyse, die Menge des Kompetenz spezifische Peptid CSP.
In dieser Arbeit konnte nun erstmals gezeigt werden, dass die csRNAs ihre negative Wirkung auf die Kompetenz ausüben, indem sie comC post-transkriptionell reprimieren. Wahrscheinlich wird hierbei die Initiation der Transaltion inhibiert, wobei die Stabilität der mRNA zusätzlich verringert werden könnte. ComC kodiert für das CSP Vorläuferpeptid. Daher üben die csRNAs noch vor der proteolytischen Wirkung von HtrA einen negativen Effekt auf die CSP Produktion aus. Anhand von comC-Translationsfusionen in S. pneumoniae Stämmen mit und ohne csRNAs, sowie in dem Stamm mit hyperaktivem ciaH202-Allel konnte eindeutig gezeigt werden, dass die csRNAs negativ auf die comC-Translation wirken.
Mittels weiterer comC-Translationsfusionen, in Stämmen mit einzelnen csRNAs, ließ sich eine additive Wirkung der einzelnen csRNAs auf die comC-Translation nachweisen. Das bedeutet, dass eine csRNA alleine nicht in der Lage ist die Kompetenz zu reprimieren. Eine Kombination aus csRNA1, csRNA2 und csRNA3 allerdings ist sogar ohne die Anwesenheit von HtrA in der Lage, die Kompetenzentwicklung vollständig zu unterdrücken.
Der Effekt der csRNAs auf die comC-Translation hat Auswirkungen auf die sich entwickelnde Kompetenz, was anhand von β-Galaktosidasemessungen des frühen Kompetenzpromotors PcomX gezeigt wurde. Hier konnte allerdings ein stark positiver Effekt der csRNA4 und csRNA5 auf diesen Promotor beobachtet werden. Weitere Versuche zeigten, dass dieser Effekt auch auf den frühen Kompetenzpromotor PcomC, aber nicht auf den späten Kompetenzpromotor Pcib zu beobachten ist.
Hierbei scheint es sich um einen Regulationsmechanismus der csRNAs zu handeln, welcher die CSP-Produktion erhöht, ohne die Expression der Gene, die für die DNA Aufnahme und den Einbau verantwortlich sind, zu verändern. Der einerseits negative Effekt aller csRNAs auf die comC-Translation und andererseits positive Effekt der csRNA4 und csRNA5 sprechen dafür, dass die csRNAs an der Feinabstimmung der Kompetenzentwicklung beteiligt sind. Tatsächlich lassen sich Unterschiede im Zeitverlauf der Stämme mit einzelnen csRNAs erkennen. Vor allem kann ein Kompetenzpeak, wie im Wildtyp beobachtet, nicht mehr im csRNA-Deletionsstamm nachgewiesen werden.
Die csRNAs scheinen die Kompetenzentwicklung bis zu einem gewissen Grad zu reprimieren. Ist aber der Schwellenwert überschritten, wirkt ein Teil positiv und trägt somit dazu bei, dass die Kompetenzentwicklung ohne Einschränkungen abläuft.
Des Weiteren konnten, durch gezielte Mutationen in der comC mRNA, Bereiche in dieser identifiziert werden, welche für die Bindung der csRNAs an die mRNA essentiell sind. Hierzu gehört zum einen der Bereich zwischen der Shine-Dalgarno Sequenz und dem Startkodon sowie der Bereich direkt nach dem Startkodon AUG. Zum anderen gibt es Hinweise darauf, dass Mutationen, welche die Stabilität der mRNA beeinflussen könnten, die Regulation durch die csRNAs aufheben.
Anhand einer komplementären Veränderung der csRNA4 konnte der negative Effekt dieser csRNA auf die Translation der veränderten comC mRNA wieder hergestellt werden.
Die hier erbrachten Ergebnisse konnten einen weiteren kompetenzregulierenden Faktor identifizieren. Außerdem ergaben sich einige Hinweise, die dazu beitragen können, in weiteren Studien die komplexe Regulation der Kompetenzentwicklung besser zu verstehen.
Ein weiterer Teil dieser Arbeit beschäftigt sich mit dem, ebenfalls schon bei der Entdeckung des CiaRH Systems beschriebenen, Anstieg der β-Laktamresistenz. Für diesen, durch ein hyperaktives CiaRH System vermittelten Anstieg konnte, wie schon bei der Kompetenz, ein wesentlicher Effekt der csRNAs nachgewiesen werden. Eine Deletion aller csRNAs in einem Stamm mit hyperaktivem CiaRH System bewirkt einen Zusammenbruch der Resistenz auf Wildtyp Niveau. Im Gegensatz zur Kompetenz konnte hier aber kein deutlicher Effekt der Serinprotease HtrA beobachtet werden.
Wie schon bei der Kompetenz lag das Augenmerk dieser Arbeit auf dem Effekt der einzelnen csRNAs auf den Anstieg der β-Laktamresistenz. Hier konnte eine größtenteils additive Wirkung der csRNAs nachgewiesen werden. Allerdings wurden Stämme isoliert, in welchen die β-Laktamresistenz um das 10-fache im Vergleich zu dem Stamm mit hyperaktivem CiaRH System anstieg. Hierbei handelt es sich um Stämme, die csRNA4 oder csRNA5 enthalten. Da eine starke Instabilität in diesen Stämmen zu beobachten war, ist davon auszugehen, dass es hier zu Zusatzmutationen kam, welche den Resistenzanstieg bewirken. Allerdings konnte nachgewiesen werden, dass der beobachtete Resistenzanstieg nur im Zusammenhang mit csRNA4 vermittelt wird. Falls es hier zu Zusatzmutationen im Genom kam, wäre deren vermittelter Resistenzanstieg von csRNA4 abhängig.
Da im Falle der β-Laktamresistenz die computerbasierte Zielgensuche keinen geeigneten Kandidaten erbrachte und keines der bekannten csRNA regulierten Gene die Resistenz beeinflusst, wurde hier eine globale Transkriptomanalyse zur Zielgensuche durchgeführt.
Anhand dieser globalen Transkriptomanalyse konnten zwei neue potenzielle CiaR regulierte Gene, pavB und spr0091, identifiziert werden.
Des Weiteren konnten zwei Gene, spr0264 und oxlT, identifiziert werden, deren Translation negativ durch die csRNAs reguliert wird. Hier konnte gezeigt werden, dass der UTP Metabolismus der Zelle betroffen ist. Hierrüber könnte die Menge an UDP verändert werden, welches zur Aktivierung von Vorläuferstufen der Zellwandbiosynthese benötigt wird. Ob diese beiden Transporter an dem Anstieg der Resistenz beteiligt sind, wurde bisher nicht untersucht.
Die innerhalb dieser Arbeit durchgeführten globalen Transkriptomanalysen stellen allerdings eine gute Basis zur weiteren Identifikation von möglichen potenziellen csRNA Zielgenen dar. Hierüber könnte eventuell auch das β-Laktam spezifische Zielgen identifiziert werden. Das der deutliche Effekt der csRNAs, sekundär auf ein schon bekanntes β-Laktamresistenzgen zurückzuführen ist, ist dabei durchaus denkbar.
Die in dieser Arbeit nachgewiesenen Regulationen der csRNAs bezüglich der Kompetenz- und β-Laktamresistenz konnten einen großen Beitrag zum besseren Verständnis dieser Regulations-mechanismen in S. pneumoniae leisten. Des Weiteren bilden die hier ermittelten Ergebnisse eine gute Basis für weitere Experimente.
Der Abbau des essentiellen Penicillin-Bindeproteins 2x in S. pneumoniae durch die Serinprotease HtrA
(2013)
Im Fokus dieser Arbeit stand der Abbau des essentiellen Zellteilungsproteins PBP2x aus S. pneumoniae durch die Serinprotease HtrA. Die PBP2x-Molekülmenge des Wildtypsatmms R6 wurde mit Hilfe einer quantitativen Methode ermittelt und ergab einen Wert von ca. 20.000 Molekülen. Für den Laborstamm C405, der unter anderem die zwei AS-Austausche L403F und T526S innerhalb der Transpep-tidase-Domäne von PBP2x beinhaltet, konnte eine 6,3fach geringere Menge im Vergleich zum Wildtypstamm R6 nachgewiesen werden. Der Laborstamm C606, der vier AS-Austausche in der Transpep-tidase-Domäne von PBP2x aufweist, besitzt sogar eine noch geringere PBP2x-Menge und ist gene-tisch instabil. Die geringe Menge des essentiellen PBP2x in den beiden Stämmen C405 und C606 konnte jeweils auf die proteolytische Aktivität der Serinprotease HtrA zurückgeführt werden. Die alleinige Auswirkung der PBP2x-Mutationen aus C405 und C606 auf die PBP2x-Menge wurden im definierten genetischen Hintergrund des Wildtypstamms R6 untersucht. Dabei konnte bewiesen werden, dass auch hier schon geringere Mengen an PBP2x vorliegen, die Mutationen also direkt Einfluß auf die Struktur von PBP2x haben und somit durch HtrA abgebaut werden. Diese Mutanten besitzen einen temperatursensitiven Resistenzphänotyp, wobei das Wachstum bei 30 °C zu verlängerten Zellen führte.
Innerhalb umfassender Komplementationsstudien wurde die htrA-Expression in unterschiedlichen Stämmen stufenweise erhöht, wobei korrelierend mit den steigenden HtrA-Mengen in den Zellen jeweils stufenweise verringerte PBP2x-Menge erwartet wurden. Die Ergebnisse zeigen eindeutig, dass die Serinprotease HtrA je nach genetischem Hintergrund nur bis zu einem bestimmten Level bzw. überhaupt nicht überexprimiert werden kann. Sobald dieser Level überschritten wird, wehrt sich die Zelle mit gravierenden Mutationen, die sowohl die proteolytische Aktivität, als auch die vollständige Proteinsynthese der Serinprotease HtrA inhibieren.
Im Wildtypstamm R6 wurde die Serinprotease HtrA anhand von Temperaturshiftexperimenten als nicht temperatursensitiv nachgewiesen. Dagegen benötigen Stämme mit verändertem PBP2x bei Hitzestress die Serinprotease HtrA, die durch den Abbau von falsch gefalteten Proteinen ein besseres Wachstum ermöglicht.
Die Auswirkung der verringerten PBP2x-Menge auf die Lokalisation des veränderten und niederaffinen PBP2x aus C405 wurde mittels Fluoreszenzmikroskopie in verschiedenen genetischen Hinter-gründen untersucht. Das GFP-PBP2xC405-Fusionsprotein wurde hierbei durch die Serinprotease HtrA, je nach genetischem Hintergrund, unterschiedlich stark abgebaut, was wiederum in einem höheren Anteil an zytoplasmatisch leuchtenden Zellen resultiert. Sobald die Serinprotease HtrA in diesen Stämmen fehlte, wurde das Fusionsprotein nicht mehr abgebaut und eine korrekte septale bzw. äquato-riale Lokalisation wurde sichtbar. Demnach befindet sich die geringe PBP2x-Menge immer in der Region, in der sie am dringensten benötigt wird - dem Zellseptum.
Das GFP-PBP2x-OT-Fusionsprotein, dem die Transpeptidasedomäne fehlt, wird ebenfalls durch die Serinprotease HtrA abgebaut. Sobald htrA jedoch deletiert wurde, zeigte sich eine septale bzw. äquato-riale Lokalisation des Fusionsproteins. Somit konnte zum ersten Mal eindeutig bewiesen werden, dass ausschließlich die PASTA-Domänen des PBP2x für die Lokalisation dieses essentiellen Enzyms am Zellseptum verantwortlich sind.
Die Größen der detektierten Abbauprodukte der GFP-Fusionsproteine gaben zudem Aufschluss über die ungfähre Position zweier Schnittstellen der Serinprotease HtrA, nämlich kurz nach der Transmembrandomäne von PBP2x und am Ende der N-terminalen Domäne.
Die Rolle des essentiellen PBP2x aus R6 und C405 bei der Zellteilung wurde anhand von Depletionsexperimenten eingehend untersucht. Dabei zeigte sich, dass sich die kontinuierliche Dezimierung des GFP-PBP2x bzw. GFP-PBP2xC405 in allen drei konditionalen Stämmen negativ auf das Wachstum und die Zellmorphologie auswirkte. Die Stämme waren in der Lage mehrere Generationen in Abwesenheit des Induktors zu wachsen, da sich innerhalb der Zelle noch ausreichend synthetisiertes Fusionsprotein aus der Vorkultur befand, bevor sich ein Wachstumsstopp einstellte.
Die Aufreinigung eines proteolytisch aktiven HtrA-Proteins und einer Form mit (S234A) im aktiven Zentrum von HtrA aus S. pneumoniae gelang im Rahmen dieser Arbeit. Die proteolytische Aktivität des HtrA-Proteins konnte anhand von ß-Casein Assays bestätigt werden. Der Abbau des Proteins PBP2xC405 und sogar der PBP2xwt konnten erstmals unter in vitro-Bedingungen als Substrate von HtrA nachgewiesen werden.
Die Daten dieser Arbeit bestärkt die Hypothese, dass ungefaltene PBP2x-Proteine durch die Sec-Translokase exportiert und anschließend in die Membran integriert werden. Dabei führt die Serinprotease HtrA die Proteinqualitätskontrolle durch und baut falsch gefaltete Proteine, oder Proteine, die sich nicht im Komplex befinden, ab.
Diversitätsgenerierende Retroelemente (DGRs) stellen einen neuen Typus Retroelement dar, die gezielt einen Teil einer codierenden Sequenz des Wirtsgenoms über einen Copy and Replace-Mechanismus hypermutieren und somit zur Erzeugung biologischer Diversität beitragen können. Trotz dieser einzigartigen Eigenschaften und dem potentiellen Wert dieser Elemente für Industrie und Forschung konzentrierten sich seit der Beschreibung des ersten DGRs vor über zehn Jahren die meisten Publikationen auf mechanistische Eigenschaften des Prototypen aus dem Bordetella Bakteriophagen. Allerdings sind zahlreiche Fragen zur Funktionsweise dieser Elemente noch immer ungeklärt. Ebenso wurden bisher extensivere, vergleichende Studien, die weitere Vertreter dieser Elemente berücksichtigen, noch nicht durchgeführt.
Die vorliegende Dissertation leistet einen wichtigen Beitrag zum tieferen Verständnis diversitätsgenerierender Retroelemente. Das eigens für diesen Zweck konzipierte Programm DiGReF erlaubte eine umfassende Analyse der Bestände öffentlicher Datenbanken auf DGRs in sequenzierten Genomen. Mit Hilfe dieser Daten konnten weitere Aspekte dieser Elemente aufgeklärt werden, die eine Analyse ihrer Verteilung, ihrer phylogenetischen Beziehungen, ihrer Struktur und eine Charakterisierung der einzelnen Elemente einer DGR-Kassette umfassten. So konnte gezeigt werden, dass das zuvor für wenige Elemente beschriebene Merkmal der Adeninsubstitution eine gemeinsame Eigenschaft aller DGRs ist, während keine C-, T- oder G-Substitionen auftreten. Ebenso fanden sich erste Belege dafür, dass die beiden essentiellen Elemente Template Repeat und reverse Transkriptase nicht notwendigerweise ein gemeinsames Transkript besitzen. Außerdem konnte erstmalig die Gruppe der weitgehend uncharakterisierten akzessorischen Proteine umfassender beschrieben und ein Consensusmotiv ermittelt werden. Für künftige Studien werden die DiGReF-Software und die Ergebnisse dieser Arbeit von grundlegender Bedeutung sein.
Der zweite Teil dieser Arbeit fokussierte sich auf die experimentelle Charakterisierung zweier Kernkomponenten von DGRs, der reversen Transkriptase und den akzessorischen Proteinen. Während die Aufreinigung einer DGR-assoziierten reversen Transkriptase noch weitere experimentelle Arbeiten erfordern wird, konnte das akzessorische Protein Alr3496 aus der Blaualge Nostoc sp. PCC 7120 erfolgreich in rekombinanter Form aufgereinigt werden. Es konnte weiterhin gezeigt werden, dass Alr3496 diverse Nucleinsäuresubstrate bindet, und in der Lage ist, die Hybridisierung von komplementären DNA-Strängen zu katalysieren. Dies legt nahe, dass akzessorische Proteine aus DGR-Elementen eine Rolle als Nucleinsäurechaperone übernehmen.
Cyanobacteria are the only prokaryotes with the ability to conduct oxygenic photosynthesis,
therefore having major influence on the evolution of life on earth. Their diverse morphology
was traditionally the basis for taxonomy and classification. For example, the genus
Chroococcidiopsis has been classified within the order Pleurocapsales, based on a unique
reproduction modus by baeocytes. Recent phylogenetic results suggested a closer
relationship of this genus to the order Nostocales. However, these studies were based
mostly on the highly conserved 16S rRNA and a small selection of Chroococcidiopsis
strains. One aim of this present thesis was to investigate the evolutionary relationships of
the genus Chroococcidiopsis, the Pleurocapsales and remaining cyanobacteria using
16S rRNA, rpoC1 and gyrB gene. Including the single gene, as the multigene analyses of
97 strains clearly showed a separation of the genus Chroococcidiopsis from the
Pleurocapsales. Furthermore, a sister relationship between the genus Chroococcidiopsis
and the order Nostocales was confirmed. Consequently, the monogeneric family
Chroococcidiopsidaceae Geitler ex. Büdel, Donner & Kauff familia nova is justified. The
phylogenetic analyses also revealed the polyphyly of the remaining Pleurocapsales, due to
the fact that the strain Pleurocapsa PCC 7327 was always separated from other strains.
This is supported by differences in their metabolism, ecology and physiology.
A second aim of this study was to investigate the thylakoid arrangement of
Chroococcidiopsis and a selection of cyanobacterial strains. The investigation of 13 strains
with Low Temperature Scanning Electron Microscopy revealed two unknown thylakoidal
arrangements within Chroococcidiopsis (parietal and stacked). This result revised the
knowledge of the thylakoid arrangement in this genus. Previously, only a coiled
arrangement was known for three strains. Based on the data of 66 strains, the feature
thylakoid arrangement was tested as a potential feature for morphological identification of
cyanobacteria. The results showed a strong relationship between the group assignment of
cyanobacteria and their thylakoid arrangements. Hence, it is in general possible to
conclude from this certain phenotypic character the affiliation to a particular family, order
or genus.
The third aim of this study was to investigate biogeographical patterns of the worldwide
distributed genus Chroococcidiopsis. The phylogenetic analysis suggested that the genus do not have biogeographical patterns, which is in contrast with a recent study on hypolithic
living Chroococcidiopsis strains and the majority of phylogeographic analysis of
microorganisms. Further analysis showed no separation of different life-strategies within
the genus. These results could be related to the genetic markers utilized, which may not
contain biogeographical information. Hence the present study can neither exclude nor
prove the possibility of biogeographic and life-strategy patterns in the genus
Chroococcidiopsis.
Future research should be focused on finding appropriate genetic markers investigate of
evolutionary relationships and biogeographical patterns within Chroococcidiopsis.
Das Zwei-Komponenten System CiaRH beeinflusst mit der β-Lactamresistenz, Kompetenz, Autolyse, Bakteriocinproduktion und Virulenz eine Vielzahl an Phänotypen in Streptococcus pneumoniae und ist daher von großer physiologischer Bedeutung. Es setzt sich aus der membrangebundenen Sensorkinase CiaH und dem cytoplasmatisch lokalisierten Response Regulator CiaR zusammen. Das CiaRH System ist unter sehr vielen Wachstumsbedingungen aktiv. CiaH ist allerdings für die Aktivierung von CiaR unter bestimmten Bedingungen verzichtbar. CiaR ist jedoch in seiner phosphorylierten Form aktiv, was die Frage nach einer alternativen Phosphatquelle für CiaR aufwirft. Der sog. Crosstalk durch eine fremde Sensorkinase oder niedermolekulare Phosphodonoren wie Acetylphosphat stellen mögliche Wege zur alternativen Phosphorylierung von CiaR dar.
Um zwischen diesen Möglichkeiten zu unterscheiden, wurden Gene des Acetylphosphat-Stoffwechsels inaktiviert, was zu einer Änderung der Produktion von Acetylphosphat führen sollte. Anschließende Messungen der zellulären Acetylphosphatmenge und der CiaR-abhängigen Promotoraktivitäten in Abwesenheit der Sensorkinase CiaH zeigten klar, dass mit sinkendem Acetylphosphat auch die CiaR-vermittelte Genexpression reduziert wurde. Diese Korrelation legt den Schluss nahe, dass Acetylphosphat tatsächlich den wesentlichen alternativen Phosphodonor für CiaR darstellt. Allerdings wurden auch Hinweise für geringfügigen Crosstalk durch eine andere Sensorkinase erhalten. Im Zuge dieser Experimente ergab sich weiterhin, dass ein Enzym des Acetylphosphat-Stoffwechsels, die Acetatkinase, eine besondere Rolle bei der alternativen Phosphorylierung von CiaR spielt. Eine Reihe von Befunden legt den Schluss nahe, dass Acetatkinase und CiaR möglicherweise interagieren. Eine solche regulatorische Rolle der Acetatkinase ist bisher nicht beschrieben.
Weiterhin konnte gezeigt werden, dass die CiaR-Aktivität durch die Bifunktionalität von CiaH auf nahezu konstantem Niveau gehalten wird. Dabei kann wahrscheinlich Acetat, ein exkretiertes Endprodukt des Acetylphosphat-Stoffwechsels, zur Stimulierung der Phosphataseaktivität von CiaH dienen. Dies könnte von physiologischer Bedeutung sein, um eine von Acetylphosphat ausgehende Phosphorylierung von CiaR durch Acetat im Medium durch Dephosphorylierung zu begrenzen. Somit könnten Acetylphosphat und Acetat Gegenspieler zur Regulation der CiaR-Aktivität darstellen.
Ein einem zweiten Teil dieser Arbeit wurde auf die Auswirkungen von Mutationen in CiaH auf die CiaR-Aktivität eingegangen. Das CiaRH-System wurde als erste Nicht-PBP-Resistenzdeteminante in β-lactamresistenten Labormutanten von S. pneumoniae R6 entdeckt, wobei eine Mutation im Sensorkinasegen ciaH (ciaH306, T230P) eine Erhöhung der CiaR-abhängigen Genexpression vermittelte. Weitere ciaH-Mutationen wurden in anderen spontanresistenten Labormutanten beschrieben. Die Laborallele vermitteln eine Steigerung der CiaR-abhängigen Promotoraktivität zwischen vier- und 26-fach. Phänotypische Folgen sind die Verringerung der β-Lactamsuszeptibilität, der Verlust der Kompetenz und verändertes Wachstum von S. pneumoniae R6.
Im Zuge dieser Arbeit wurden zum ersten Mal veränderte ciaH-Allele in klinischen Pneumokokken-Isolaten identifiziert und charakterisiert. Es zeigte sich eine Verbreitung in Isolaten der Serotypen 6, 7, 9, 19 und 23. Im Gegensatz zu den Laborallelen vermitteln die klinischen Allele eine bis zu dreifache Erhöhung der CiaR-abhängigen Promotoraktivität. Lediglich das Allel ciaHTpVT beeinflusst die Phänotypen β-Lactamresistenz und Kompetenz. Weiterhin erfolgte die Charakterisierung der Kinase- und Phosphataseaktivitäten der klinischen ciaH-Allele. Hierbei zeigten sich Abweichungen der Stärken beider Funktionen, wobei für ciaH306 ein Phosphatasedefekt festgestellt wurde.
Wechselnde Umweltbedingungen wie Temperaturveränderungen oder der Zugang zu Nährstoffen erfordern spezielle genetische Anpassungsprogramme, vor allem von sessilen Organismen wie Pflanzen. Ein solcher hochkonservierter Mechanismus, der unter anderem vor Temperaturspitzen schützt, ist die von Hitzeschockfaktoren (HSF) kontrollierte Hitzeschockantwort (HSR). Dabei werden vermehrt spezifische Hitzestressproteine (HSPs, Chaperone) gebildet, die Proteine vor Denaturierung schützen. In Pflanzen hat sich ein hochkomplexes regulatorisches Netzwerk gebildet, das aus über 20 HSFs besteht, das eine genaue Feinabstimmung der HSR auf die jeweiligen Stressbedingungen erlaubt.
Das hohe Maß an Komplexität der HSR in Pflanzen erschwert die wissenschaftliche Zugänglichkeit jedoch erheblich. Um die grundlegenden Prinzipien der HSR in Pflanzen zu verstehen griffen wir deshalb auf einen einfacheren Modellorganismus zurück, der Pflanzen sehr nahe steht aber nur einen einzigen HSF (HSF1) enthält, der einzelligen Grünalge Chlamydomonas reinhardtii. Im Rahmen dieser Arbeit wurden dazu drei Ansätze verfolgt.
Als erstes wurden verschiedene chemische Substanzen eingesetzt die unterschiedliche Schritte während der Aktivierung und Abschaltung der HSR hemmen um darüber die Regulation der HSR aufzuklären. Dabei wurde festgestellt, dass die Phosphorylierung von HSF1 eine entscheidende Rolle in der Aktivierung der HSR spielt, das auslösende Momentum die Anhäufung von falsch gefalteten Proteinen ist und das HSP90A aus dem Cytosol eine wichtige modulierende Rolle bei der HSR spielt.
Als zweites wurde die Veränderung sämtlicher Transkripte mithilfe von Microarrays gemessen, um vor allem pflanzenspezifische Prozesse zu identifizieren, die auf erhöhte Temperaturen gezielt angepasst werden müssen. Dabei konnte die Chlorophyll Biosynthese und der Transport von Proteinen in den Chloroplasten als neue, pflanzenspezifische Ziele der Stressantwort identifiziert werden. Des Weiteren konnte direkt gezeigt werden, das HSF1 auch plastidäre Chaperone reguliert, im Gegensatz zu mitochondrialen Chaperonen die getrennt gesteuert werden.
Als letztes wurde gezielt die Expression wichtiger Gene für die Stressantwort (HSF1/HSP70B) unterdrückt, um den Einfluss dieser Gene auf die HSR genauer zu studieren. Dazu habe ich ein in der einzelligen Grünalge neuartiges System entwickelt, basierend auf dem RNAi Mechanismus, dass es erlaubt abhängig von der Stickstoffquelle im Nährmedium auch essentielle Gene gezielt auszuschalten. Dieses System erlaubte es zu zeigen, dass HSF1 selbst während des Stresses die Expression seiner RNA erhöht, und dies gezielt tut um die Stressantwort weiter zu verstärken. Es konnte weiter gezeigt werden, dass das Chloroplasten Chaperon HSP70B ein essentielles Protein für das Zellwachstum ist, welches mithilfe des induzierbaren RNAi Systems genauer untersucht werden kann. Dabei wurde festgestellt, dass die HSP70B vermittelte Assemblierung und Disassemblierung des VIPP1 Proteins entscheidend ist für dessen Funktion in der Zelle. Des Weiteren konnte gezeigt werde, dass HSP70B wahrscheinlich verantwortlich ist für die Faltung eines oder mehrerer noch unbekannter Enzyme der Arginin Biosynthese oder der Stickstofffixierung, und das diese Prozesse wahrscheinlich die essentielle Funktion von HSP70B darstellen.
Die weltweite Verbreitung Penicillin-resistenter Bakterienstämme, darunter auch S. pneumoniae, stellt ein erhebliches medizinisches Problem dar. Resistenzen gegen Antibiotika können mittels horizontalem Gentransfer zwischen verschiedenen Streptokokken-Spezies ausgetauscht und somit verbreitet werden. In diesem Zusammenhang ist es wichtig die Vorgänge bei der Entstehung und Ausbreitung der β-Lactamresistenz zu verstehen. Im Fokus dieser Arbeit stand die Analyse des horizontalen Gentransfers zwischen den beiden Spezies Streptococcus mitis und Streptococcus pneumoniae und die daraus resultierende Entwicklung der β-Lactamresistenz.
Ausgangspunkt dieser Arbeit war die CCCB-Transformantenfamilie, welche durch die sukzessive Transformation von S. pneumoniae R6 mit chromosomaler DNA von S. mitis B6 und Selektion mit β-Lactamantibiotika generiert wurde. Dabei konnten bisher ungeklärte Faktoren der Resistenzentwicklung dieser Stämme identifiziert werden. Im Rahmen dieser Arbeit wurde eindeutig bewiesen, dass PBP2a in Kombination mit PBP2x aus S. mitis B6 einen entscheidenden Beitrag zur β-Lactamresistenz leistet.
Ein weiterer Schwerpunkt dieser Arbeit bestand in der Charakterisierung der Ursache des Resistenzunterschieds zwischen CCCB und CCCO. Diese zwei hochresistenten Stämme der vierten Transformationsstufe weisen scheinbar das gleiche Profil nieder-affiner Varianten aller fünf hochmolekularen PBP auf. Es konnte im Zuge dieser Arbeit gezeigt werden, dass das murM Gen aus S. mitis B6 lediglich in CCCB ausgetauscht wurde. Weiterführende Experimente bestätigten, dass sowohl MurMB6 als auch MurMHu17 aus einem resistenten S. pneumoniae Isolat, das über einen nahezu identischen Mosaikblock wie MurMB6 verfügt, erhöhte β-Lactamresistenz vermitteln. Das Mosaik-MurMB6 trägt somit entscheidend zur höheren Resistenz von CCCB bei. Zudem wurde nachgewiesen, dass der Resistenzunterschied zwischen CCCB und CCCO zusätzlich durch die Anwesenheit des kompletten PBP2bB6 in CCCB verursacht wird. Dabei konnte herausgestellt werden, dass die Aminosäuresubstitutionen des C-Terminus von PBP2bB6, die in CCCO nicht vorhanden sind, eine zentrale Rolle bei der Entwicklung von β-Lactamresistenz spielen.
Ein weiterer Fokus dieser Arbeit lag auf der Identifizierung möglicher neuer Resistenzdeterminanten, welche von S. mitis B6 auf den bereits hochresistenten Stamm CCCB übertragen werden könnten. Durch die Transformation chromosomaler S. mitis B6 DNA in CCCB und Selektion mit diversen β-Lactamantibiotika konnten Stämme mit erhöhter β-Lactamresistenz isoliert werden. DNA-Microarray-Analysen dieser CCCB-Derivate dienten der Detektion möglicher übertragener Gene. Anstelle ausgetauschter, intakter Genloci zeigten diese Mutanten jedoch die Inaktivierung der Gene spr0683 bzw. spr1851. Im Rahmen dieser Arbeit wurde gezeigt, dass der beobachtete Resistenzanstieg aus der Deletion dieser beiden Gene resultiert. Beide Gene kodieren für hypothetische Proteine mit potentiellen Nukleinsäure-bindenden R3H- bzw. KH-Domänen. Die genaue Funktion beider Domänen ist nicht bekannt. Transkriptionsanalysen der Deletionsderivate von spr0683 und spr1851 dienten als Screening-Methode für einen möglichen durch das Fehlen der Gene beeinflussten Effekt auf transkriptioneller Ebene. Die veränderte Genexpression einer möglichen Resistenzdeterminante (ClpL) deutete zunächst auf einen möglichen Zusammenhang mit den Resistenzphänotypen der Deletions-derivate hin. Weiterführende Versuche widerlegten dies jedoch. Zukünftige Untersuchungen müssten noch offene Fragen hinsichtlich der potentiellen Funktion der beiden hypothetischen Proteine klären.
Sekretionssysteme ermöglichen Bakterien nicht nur die Kommunikation mit ihrer Umwelt, sie spielen auch eine große Rolle in der Virulenz. Mit Virulenz werden auch Typ VII-Sekretionssysteme in Verbindung gebracht, die ausschließlich in Gram-positiven Bakterien vorkommen. Substrate dieser Systeme sind u.a. kleine Proteine mit einem zentralen WXG-Motiv, die sogenannten WXG-100 Proteine, die im gleichen Locus kodiert werden. Das ESX-1 System, das u.a. in M. tuberculosis und S. aureus vorkommt, ist ein bisher vor allem in diesen Organismen untersuchtes Typ VII-Sekretionssystem.
Im Gegensatz zu seinem pathogenen Verwandten S. pneumoniae besitzt S. oralis Uo5 Gene, die für ein ESX-1 Sekretionssystem kodieren. Bislang wurde ein solches System in Strepto-kokken nicht untersucht und es war unklar, ob dieses exprimiert wird und welche Funktion es in diesen Bakterien erfüllt.
Im Fokus dieser Arbeit stand nun die Charakterisierung des ESX-1 Sekretionssystems von S. oralis Uo5 und dessen Verbreitung in anderen Streptokokken. Dabei belegten Transkrip-tionsstudien, dass ein interner Terminator zwischen dem ersten und zweiten Gen (esxA und esaA) die Transkription negativ beeinflusst. Trotz der niedrigen Transkriptmenge der downstream des Terminators gelegenen Gene konnte die Funktionalität des Systems durch den Nachweis der beiden WXG-100 Proteine EsxA und EsxB im Cytoplasma und im Kultur-medium bestätigt werden. Der Nachweis der WXG-100 Proteine erfolgte mit Antiseren, die im Rahmen dieser Arbeit gegen die rekombinant hergestellten und aus E. coli isolierten WXG-100 Proteine generiert worden waren. Durch eine Deletion des Gens, das in anderen Organismen für eine FtsK/SpoIIIE-ATPase kodiert, wurde gezeigt, dass auch dieses Protein in S. oralis Uo5 für die Sekretion der WXG-100 Proteine essentiell ist.
Die Daten von CD-spektroskopischen Analysen lassen vermuten, dass EsxA und EsxB, wie in anderen Organismen bereits gezeigt, als lineare Proteine vorliegen, die hauptsächlich aus α-Helices bestehen. Diese Daten zeigen auch, dass EsxA im Gegensatz zu EsxB eine höhere Stabilität besitzt. Durch die Kombination von Gelfiltration und Crosslinking-Experimenten mittels Glutaraldehyd konnte die Bildung von EsxA-Homodimeren bestätigt werden.
Mit Hilfe von Antikörpern konnte EsxA in einer Reihe von S. oralis Stämmen nachgewiesen werden; die Verbreitung des ESX-1 Systems konnte durch PCR-Analysen bestätigt werden. Eine vergleichende Analyse bekannter Genomdaten in silico bestätigt, dass dieses Cluster in verschiedenen Streptokokken-Spezies vorkommt. Eine phylogenetische Analyse der Gene esxA und essC im Vergleich mit dem in allen Bakterien konservierten Gen gyrA verdeutlicht, dass das ESX-1 System als Teil des akzessorischen Genoms angesehen werden kann, das sich über horizontalen Gentransfer verbreiten kann.
In dieser Arbeit wird somit zum ersten Mal ein Typ VII-Sekretionssystem in Streptokokken untersucht. Die Charakterisierung auf molekularer Ebene legt einen Grundstein für die Erforschung der Rolle des ESX-1 Systems in vivo.
TRP-Proteine sind integrale Membranproteine, die Untereinheiten von Kationenkanälen bilden, die z.B. an der Schmerz und Temperaturwahrnehmung, der Absorption von Mg2+ und Ca2+ im Darm und in der Niere oder für die Freisetzung von Entzündungsmediatoren in Immunzellen verantwortlich sind.
Das in der vorliegenden Arbeit untersuchte TRPV6-Protein stellt einen hochselektiven Ca2+¬-Kanal dar, der für den tranzellulären Ca2+-Transport in Endothelzellen des Dünndarms und der Plazenta verantwortlich ist und für den bisher noch kein hochaffiner Agonist bekannt ist. Das niedrig exprimierte, integrale Membranprotein konnte ich erstmal im Rahmen meiner Diplomarbeit aus humaner Plazenta zusammen mit Annexin A2 und Cyclophilin B (CyPB) anreichern. Diese putative Interaktion zwischen dem Ionenkanal und CyPB wird im Rahmen meiner Doktorarbeit mit Coimmunpräzipitation, Saccharosedichtegradientenzentrifugation, Peptidblotanalyse und GST-Pulldown-Analysen untersucht. Hierbei kann die TRPV6-CyPB-Interaktion in Immunpräzipitationen mit unabhängigen Antikörpern bestätigt werden. Die Ergebnisse der Dichtegradientenzentrifugation belegen die Existenz von TRPV6-Multimeren bzw. von TRPV6 enthaltenden Multiproteinkomplexen. Unter diesen Bedingungen ist allerdings keine CyPB-Assoziation mit dem TRPV6-Protein festzustellen. Das Einengen der Bindestelle von CyPB im TRPV6-Protein mittels Peptidblot- und GST-Pulldown-Analyse führt zur der potentiellen Bindungsstelle mit der minimalen Aminosäuresequenz Y66EDCKV71.
Meine Ergebnisse waren Ausgangspunkt für die funktionelle Charakterisierung der TRPV6-CyPB-Interaktion in Xenopus laevis Oozyten, die zeigt, dass CyPB den Ionenkanal aktiviert. Die Bindung zwischen beiden Proteinen ist offenbar wenig affin und scheint nur unter den gegebenen Solubilisierungsbedingungen nachweisbar.
Zur Erhaltung möglicher kalziumabhängiger Proteinbindungen wird die zuvor benutzte mehrstufige TRPV6-Affinitätschromatographie, bestehend aus einer CaM- und einer TRPV6-Antikörpersäule, durch eine einstufige Affinitätsreinigung ersetzt. Zur Solubilisierung und Isolierung des TRPV6-enthaltenden Proteinkomplexes eignen sich hierbei insbesondere die nichtionischen Detergenzien Dodecyl-β-D-maltosid (DDM) und Digitonin.
Zur Auftrennung und Untersuchung der isolierten TRPV6-Proteinkomplexe kann weiterhin eine zweidimensionale Blue Native-Gelelektrophorese (BN-PAGE) etabliert und die daraus isolierten Proteine massenspektrometrisch analysiert werden. Für die Auftrennung der TRPV6-Proteinkomplexe in der BN-PAGE eigenen sich ebenfalls am besten die nichtionischen Detergenzien DDM und Digitonin. Das TRPV6-Protein wird nach der nativen BN-PAGE als Bestandteil eines oder mehrerer Proteinkomplexe mit einem Molekulargewicht von 440 - 670 kDa detektiert.
Abschließend wird die Übertragbarkeit der für TRPV6 etablierten Vorgehensweise zur Isolierung von Membranproteinkomplexen auf andere TRP-Kanalproteine in verschiedenen Geweben gezeigt. So kann TRPV6 aus Mausplazenta und das TRPC6-Membranprotein aus murinen Mastzellen und Mauslungengewebe mittels Coimmunpräzipitation und Affinitätschromatographie isoliert und spezifisch detektiert werden.
Die Entwicklung eines neuartigen Therapiekonzeptes erfordert umfangreiche Prüfungen insbesondere für die Sicherheit der Anwendung am Menschen. Die Verwendung des apathogenen, onkoselektiven, replikationskompetenten Parvovirus H-1 (H-1PV) zur onkolytischen Virotherapie bei bösartigen Hirntumoren (Glioblastome) ist eine vielversprechende Alternative (oder Ergänzung) zu den bisherigen Therapien, wie Operation, Chemotherapie und Bestrahlung. In unserer Arbeitsgruppe konnte gezeigt werden, dass H-1PV in der Lage ist, nach einmaliger intratumoraler oder mehrfacher intravenöser Applikation im Rattengliom-Modell eine vollständige Regression des Tumors ohne pathologische Nebenwirkungen herbeizuführen. In Vorbereitung einer klinischen Studie Phase I/IIa mit H-1PV wurden in dieser Arbeit wichtige Aspekte dieser neuartigen Virotherapie untersucht:
1. Ausscheidung und Übertragung von H-1PV in vivo in der Ratte
Es konnte gezeigt werden, dass infektiöse Viren in Urin und Speichel unabhängig von der Applikationsart und der Anwesenheit eines Tumors ausgeschieden werden, was bedeutet, dass eine Übertragung von H-1PV durch Tröpfcheninfektion stattfinden könnte. In klinischen Studien muss daher geprüft werden, ob das Virus auch vom Menschen ebenso im Urin und Speichel ausgeschieden wird.
2. Intranasale Applikation von H-1PV zur Behandlung von Glioblastomen in der Ratte
Es konnte gezeigt werden, dass H-1PV auch nach intranasaler Applikation den Tumor erreicht, dort virale Proteine gebildet werden und in infizierten tumortragenden Tieren die Überlebenszeit signifikant verlängert werden konnte im Vergleich mit den nicht-infizierten Kontrolltieren. Diese Applikationsart wäre eine einfach durchzuführende Art der Anwendung, da sie keinen chirurgischen Eingriff am Gehirn erfordert.
3. Replikation von H-1PV in vivo im Rattenmodell
Durch die Fähigkeit von H-1PV in Tumorzellen repliziert zu werden, können nach einer einzigen Virusapplikation einer geringen Dosis initial nicht infizierte Zellen der Tumormasse infiziert und lysiert werden. In vivo im Rattengliom-Modell konnte gezeigt werden, dass H-1PV zunächst im ganzen Organismus verteilt wird, nach kurzer Zeit aber im Tumorgewebe angereichert und die Viruskonzentration dort länger aufrecht erhalten bleibt als bei Tieren ohne Tumor. Die Expression des viralen, zytotoxischen Proteins NS-1 war bei allen Applikationsarten auf das Tumorgebiet beschränkt. Die Daten sprechen für eine zumindest begrenzte Vermehrung von H-1PV im Tumorgewebe.
4. Adaptierung von H-1PV an humane Glioblastomzellen
H-1PV gehört zu der Gruppe der Nager-Parvoviren und wird daher in Rattentumorzellen effizienter vermehrt als in humanen Glioblastomzellen. In dieser Arbeit wurden durch Passagieren an eine humane Glioblastomzelllinie adaptierte virale Einzelklone von H-1PV in verschiedenen humanen Glioblastomzellen charakterisiert. Alle Klone konnten sich stärker in diesen vermehren und diese effizienter lysieren. In vivo führte einer der Klone zu einem signifikant langsameren Tumorwachstum und verlängerter Überlebenszeit der Tiere im Vergleich zum Wildtyp. Bei der Analyse der genetischen Mutationen der Klone konnten verschiedene Alterationen detektiert werden, wobei sich die Mutationsgeschwindigkeit von H-1PV als eher gering erwies, was für eine sichere Anwendung von H-1PV beim Menschen ein Vorteil ist. Es konnte weiterhin gezeigt werden, dass die Onkoselektivität von H-1PV durch die Adaptierung nicht verloren ging, was bedeutet, dass auch die adaptierten viralen Klone weiterhin apathogen für nicht transformierte Zellen sind.
Die Ergebnisse dieser Arbeit leisten einen Beitrag zur Erprobung von H-1PV im Hinblick auf die klinische Anwendung im Menschen. H-1PV erwies sich als einfach zu applizierendes, in vivo replikationskompetentes, sicheres und anpassungsfähiges Virus für die onkolytische Virotherapie von Gliomen beim Menschen. Dass H-1PV seine Onkoselektivität durch Adaptation an humane Gliomzellen nicht einbüßte, eröffnet die Möglichkeit das Virus an weitere Krebsentitäten anzupassen und auch dort zur onkolytischen Therapie einzusetzen.
Oxa1 ist ein integrales Protein der mitochondrialen Innenmembran und eine zentrale Komponente der Proteininsertionsmaschinerie in Mitochondrien. Oxa1 ist an der Insertion zweier unterschiedlicher Klassen von Proteinen in die Innenmembran beteiligt: Durch eine C-terminale,
matrixständige Domäne interagiert Oxa1 mit mitochondrialen Ribosomen und vermittelt so die ko-translationale Membraninsertion mitochondrial kodierter Proteine. Darüber hinaus wurde auch
eine Beteiligung von Oxa1 an der Insertion einiger kernkodierter Proteine beschrieben. Bei allen
bisher identifizierten kernkodierten Substraten von Oxa1 handelt es sich um sogenannte konservativ sortierte Proteine, die nach ihrer Synthese im Zytosol zunächst klassisch über die Translokasen der mitochondrialen Außen- und Innenmembran in die mitochondriale Matrix importiert werden.
In einem Oxa1-vermittelten Schritt werden sie schließlich von der Matrix aus in die Innenmembran inseriert. Vergleiche mit dem bakteriellen Oxa1-Homolog YidC lassen weiterhin vermuten, dass Oxa1 auch an der Faltung von Membranproteinen beteiligt sein könnte, bisher ist eine solche Oxa1-Funktion jedoch nur in Einzelfällen beschrieben worden.
Der genaue molekulare Mechanismus der Proteininsertion durch Oxa1 sowie eine eventuelle Be-
teiligung von Oxa1 an der Insertion anderer mitochondrialer Innenmembranproteine ist bisher unklar. Es war daher uberraschend festzustellen, dass die Level des ADP/ATP-Carriers in Abwesenheit von Oxa1 stark reduziert waren. Der Import und die Membraninsertion mitochondrialer
Carrier wurden in den vergangenen Jahren im Detail beschrieben, bisherige Studien deuteten jedoch nie auf eine Beteiligung von Oxa1 bei der Carrier-Biogenese hin. Carrier-Proteine werden,
im Gegensatz zu konservativ sortierten Proteinen, aus dem Intermembranraum in die Innenmembran inseriert. Im Rahmen dieser Arbeit konnte durch Importversuche gezeigt werden, dass Oxa1
eine wichtige, wenn auch nicht essentielle Funktion bei der Biogenese verschiedener Vertreter der
mitochondrialen Carrier-Familie einnimmt. Die erhaltenen Daten deuten darauf hin, dass Oxa1
nicht an der Membraninsertion der Carrier-Proteine per se beteiligt ist, sondern ahnlich einem
Chaperon die TIM22-abh¨ ngig inserierten Carrier stabilisiert und ihre Faltung oder Assemblierung in der Membran begünstigt. Diese Arbeit zeigt somit, dass Oxa1 nicht nur an der Membraninsertion verschiedener mitochondrial und kernkodierter Proteine beteiligt ist, sondern eine weitere
wichtige Funktion als Chaperon einnimmt. Bedeutend ist hierbei vor allem, dass diese Rolle bei
der Stabilisierung und Faltung mitochondrialer Innenmembranproteine sich nicht auf klassische
Oxa1-Substrate beschränkt, die von Seiten der Matrix in die Membran inseriert werden, sondern entscheidend die Biogenese von Proteinen beeinflusst, deren eigentliche Membraninsertion Oxa1-
unabhängig verläuft.
Die Bedeutung von Oxa1 bei der Insertion mitochondrial kodierter Proteine ist gut dokumentiert,
genaue mechanistische Details des Prozesses der Membraninsertion durch Oxa1 fehlen jedoch
bisher. Um den molekularen Mechanismus der Oxa1-vermittelten Proteininsertion besser zu verstehen, wurde die native Aufreinigung von rekombinant exprimiertem S. cerevisiae Oxa1 etabliert
und gezeigt, dass dieses einen dimeren oder höher oligomeren Komplex ausbildet. Oxa1 wurde weiterhin erfolgreich in Proteoliposomen rekonstituiert und stimuliert in vitro die Insertion des
mitochodrial kodierten Proteins Atp8. In dieser Arbeit wurden vorläufige Daten über die Oxa1-vermittelte Proteininsertion gesammelt. Das hier etablierte Rekonstitutionssystem wird eine wichtige Basis für zukünftige Arbeiten bilden, die zum Verständnis der molekularen Mechanismen der
Oxa1-abhängigen Proteininsertion beitragen werden.
Das Zweikomponentensystem CiaRH, bestehend aus der membranständigen Histidinkinase CiaH und dem cytoplasmatischen Responseregulator CiaR, wurde als erste nicht-PBP-Resistenzdeterminante in Streptococcus pneumoniae entdeckt. Es beeinflusst neben der β-Laktamresistenz noch weitere Phänotypen, darunter die genetische Kompetenz, die Autolyse und die Virulenz, was seine Bedeutung für die Physiologie der Zelle unterstreicht.
Im Zuge dieser Arbeit wurden sieben verschiedene ciaH-Allele aus spontanen β laktamresistenten Labormutanten charakterisiert. Die Allele, deren eine bis zwei Punktmutationen sich über den gesamten Genbereich erstrecken, wurden mit Hilfe der Janus Kassette in den Wildtyp-Stamm R6 eingebracht und untersucht. Es konnte durch β Galaktosidaseassays von Promotor-lacZ-Fusionen gezeigt werden, dass alle ciaH-Allele eine Aktivierung des CiaRH-Systems vermitteln. Diese bewegt sich, bezogen auf den CiaR-regulierten Promotor PhtrA, je nach Allel zwischen dem 4- und dem 26-fachen im Vergleich zum Wildtyp. Phänotypische Studien konnten zeigen, dass die Aktivierung des CiaRH-Systems in allen Fällen zu einer Erhöhung der β-Laktamresistenz, sowie einer verzögerten Autolyse führt. Durch den neu hergestellten alternativen Rifampin-Resistenzmarker RKL222 konnte zudem der Kompetenzphänotyp der Stämme mit verändertem ciaH untersucht und ein Verlust der Kompetenz nachgewiesen werden. Die Ausprägung der Phänotypen korreliert dabei weitestgehend mit der Stärke der CiaRH-Aktivierung. Die abgestufte Aktivierungsstärke der unterschiedlichen ciaH-Allele könnte in Zukunft bei der Untersuchung verschiedener regulatorischer Aspekte von CiaRH von Nutzen sein.
Ein weiterer Teil dieser Arbeit beschäftigte sich mit der Frage, welches oder welche der 30 Gene des CiaR-Regulons die CiaRH-Abhängigkeit des Resistenz-, Kompetenz- und Autolysephänotyps von S. pneumoniae vermitteln. Dazu wurde die Bedeutung der stark regulierten Gene ccnA E und htrA phänotypisch näher untersucht. Es konnte gezeigt werden, dass die durch ccnA-E kodierten csRNAs die Haupteffektoren der genannten Phänotypen sind. Ihr Fehlen hebt den Kompetenzblock, die verzögerte Lyse und größtenteils auch die β Laktamresistenz eines aktivierten CiaRH-Systems auf. Die Serinprotease HtrA dagegen hat keinen deutlichen Effekt auf Resistenz und Autolyse, trägt aber zum Kompetenzblock, der bei aktiviertem CiaRH-System auftritt, bei. In dem kompetenzinhibierenden Medium BHI führt nur die gemeinsame Deletion von ccnA-E und htrA zur Wiederherstellung der Kompetenz, wie beim ciaR-Deletionsstamm, während in dem ebenfalls kompetenzinhibierenden Medium THB die Deletion von htrA dafür ausreicht. Die Identifizierung der csRNAs und HtrA als Effektoren der CiaRH-abhängigen Phänotypen stellt die Basis für weiterführende Analysen über die regulatorischen Zusammenhänge zwischen CiaRH und den Phänotypen dar.
In dieser Arbeit konnte zudem erstmals gezeigt werden, dass unter den Genprodukten des CiaR-Regulons die Serinprotease HtrA, die csRNAs und das Mannose-Phosphotransferasesystem ManLMN einen regulatorischen Einfluss auf die Aktivität des CiaRH-Systems ausüben. Die Deletion ihrer Gene führte zu einer unterschiedlich starken Aktivierung der CiaR-abhängigen Genregulation. Da der stärkste aktivierende Effekt durch das Fehlen von HtrA vermittelt wurde, wurde die Art dieser Regulation im Rahmen der vorliegenden Arbeit näher untersucht. Es konnte gezeigt werden, dass im Falle einer htrA-Deletion die Aktivierung von CiaR ohne Beteiligung der Histidinkinase CiaH geschieht. Zudem ist der regulatorische Effekt offenbar unabhängig vom Medium und wird nicht über Veränderungen der genetischen Kompetenz vermittelt. Im Zuge dieser Untersuchungen wurde zusätzlich festgestellt, dass die Deletion der Gene comAB und comDE, die für die Kompetenzinduktion essentiell sind, einen inhibitorischen Effekt auf die CiaRH-Aktivität hat. Damit konnten in dieser Arbeit zwei bislang unbekannte Regulationswege identifiziert werden, die die Aktivität des CiaRH-Systems beeinflussen.
Im Gegensatz zur Mehrzahl der Zweikomponentensysteme ist CiaRH offensichtlich nicht darauf ausgelegt, starke Änderungen der Genexpression zu vermitteln. Die CiaRH-Aktivität befindet sich vielmehr unter den verschiedensten physiologischen Bedingungen auf einem recht konstanten mittleren Aktivierungsniveau. Stärkere Abweichungen von diesem Niveau führen zur deutlichen Beeinträchtigung der Zellfitness. Die Homöostase der CiaRH-Aktivität ist folglich für S. pneumoniae von großer Bedeutung und muss durch Regulationsmechanismen sichergestellt werden. Regelkreise, wie die in dieser Arbeit identifizierten Regulationswege, stellen dabei eine Möglichkeit dar. Insbesondere die gegenseitige Beeinflussung von CiaRH und den Komponenten des eigenen Regulons kann zur Aufrechterhaltung eines gleichbleibenden Aktivitätsniveaus von CiaRH beitragen. Es zeigt sich mehr und mehr, dass es sich bei CiaRH um ein für die Zellphysiologie bedeutendes System handelt, dessen Aktivität durch ein regulatorisches Zusammenspiel von äußeren und inneren Faktoren gesteuert wird.
Der Katabolismus von Pyrimidin-Nukleobasen erfolgt in Arabidopsis thaliana über einen dreistufigen Stoffwechselweg. In diesem wird Uracil zu beta-Alanin, Kohlenstoffdioxid und Stickstoff in Form von Ammonium abgebaut. Die erste Reaktion, die Reduktion von Uracil zu Dihydrouracil wird von dem plastidären Enzym Dihydrouracil-Dehydrogenase (Pyd1) katalysiert. „Knockout“-Mutanten zeigten verglichen mit Wildtyp-Pflanzen bis zu 50-fach erhöhte Uracilgehalte in allen untersuchten Geweben. Diese Mutanten waren nicht in der Lage, die radioaktiv markierten Pyrimidine Uridin und Uracil zu degradieren und deshalb hochsensitiv gegenüber den toxischen Derivaten 5-Fluorouridin und 5-Fluorouracil. Im Gegensatz dazu wiesen Mutanten, die Pyd1 überexprimieren eine erhöhte Resistenz gegenüber diesen toxischen Derivaten auf. Expressionsanalysen deckten auf, dass Pyd1 hauptsächlich im trockenen Samen exprimiert wird. Die transgenen Pyd1-Pflanzen wiesen einen drastischen Keimungsphänotyp auf. Während „knockout“-Mutanten 2 Tage später als Arabidopsis thaliana-Wildtyp-Pflanzen keimten, waren die Pyd1-Überexpressions-pflanzen in der Lage etwas früher zu keimen. Dies indiziert, dass die Aktivität der Pyd1 in der frühen pflanzlichen Entwicklung von entscheidender Bedeutung ist. Auch der Abscisinsäure-Stoffwechsel scheint in diesen Keimungsphänotyp involviert zu sein. Weiterhin entwickelten die Pyd1-Überexpressionspflanzen mehr Schoten und Samen als Wildtyp-Pflanzen, die „knockout“-Pflanzen weniger. War während der pflanzlichen Entwicklung Stickstoff limitierend, erhöhten sich Pyd1-Expression und Pyd1-Aktivität. Pyd1 scheint ein Schlüsselregulator des Pyrimidin-Katabolismus zu sein, der zwischen den Bedürfnissen an Stickstoff von Nukleotiden und anderen Metaboliten wie beispielsweise Aminosäuren vermittelt. Weiterhin erwies sich Pyd1 als wichtige Komponente in der Remobilisierung des Stickstoffs aus seneszenten Geweben. Es wurde untersucht, ob eventuell ein weiteres Enzym mit Dihydrouracil-Dehydrogenase-Aktivität existiert. Das Arabidopsis thaliana-Protein mit der höchsten Homologie zur Aminosäuresequenz von Pyd1 ist das Enzym Dihydroorotat-Dehydrogenase (DHODH), welches den vierten Schritt der Pyrimidin-de novo-Synthese katalysiert, die Oxidation von Dihydroorotat zu Orotat. Der Pyrimidinkatabolismus stellt die Umkehrung der Pyrimidin-de novo-Synthese dar und die von Pyd1 und DHODH katalysierten Reaktionen sind chemisch ähnlich. Transgene Pflanzen mit einer gesteigerten DHODH-Expression waren zu einer erhöhten Dihydroorotat-Oxidation in der Lage, zeigten aber keinerlei Pyd1-Aktivität. Während eine geringfügige Reduktion in der DHODH-Expression keinen Einfluss auf die pflanzliche Entwicklung hatte, wiesen Dosismutanten mit einer starken Reduktion des DHODH-Transkriptgehaltes einen drastischen Phänotyp auf. Die entsprechenden Pflanzen waren zwergwüchsig, bildeten rötlich-braune Keimblätter aus und ihr Wurzelwachstum war im Vergleich zu Arabidopsis thaliana-Wildtyp-Pflanzen stark vermindert. Zudem hatten diese Pflanzen weniger RNA, was auf eine geringere Pyrimidinverfügbarkeit hindeutet. Gewebespezifische Expressionsanalysen unterstrichen die Bedeutung der DHODH und damit der Pyrimidin-de novo-Synthese in wachsenden Geweben, in denen die Bereitstellung neuer Pyrimidin-Grundgerüste von essentieller Bedeutung ist. Weiterhin konnten erste Hinweise darauf erbracht werden, dass die pflanzliche DHODH, so wie auch das Homolog in Tieren an der äußeren Oberfläche der inneren Mitochondrienmemban verankert und dort als Flavoprotein an die Atmungskette gekoppelt ist.
Die vorliegende Arbeit befasst sich mit dem penicillin-bindenden Protein 2a (PBP2a) von Streptococcus pneumoniae und dessen Rolle bei der ß-Lactam-Resistenz. Hierbei sind grundsätzlich zwei verschiedene Typen von mutiertem PBP2a zu unterscheiden. In Cefotaxim-resistenten Labormutanten kommt es in höheren Selektionsstufen zum Verlust von PBP2a durch das Auftreten von vorzeitigen Translations-Stops. Eine solche Mutation wird bei Mutante C403 durch die Wiederholung eines Genabschnitts von 8bp Länge verursacht. Es konnte gezeigt werden, dass diese Art der Mutation einen geringen Einfluss auf die Resistenz hat. Jedoch ist der Verlust des PBP nicht alleine für die Erhöhung des Resistenzniveaus in C403 verantwortlich. Auch in einem Stamm mit einem Mosaik-PBP2x klinischen Ursprungs führt die Transformation mit dem pbp2a von C403 zu einer leichten Erhöhung der Resistenz. Die Mutation des pbp2a von C403 hat auch Auswirkungen auf das Wachstums- und Lyseverhalten von Streptococcus pneumoniae. Eine Mutante des Wildtyps R6 mit dem pbp2a von C403 zeigt ein langsameres Wachstum und eine früher einsetzende Lyse. In ß-Lactam-resistenten klinischen Isolaten von Streptococcus pneumoniae und Streptococcus mitis treten niederaffine PBP2a-Varianten auf, welche auch unter Cefotaxim-Selektion transformiert werden können. Im Rahmen dieser Arbeit konnte erstmals gezeigt werden, dass die isolierte Übertragung eines für ein niederaffines PBP2a codierenden Gens zur deutlichen Erhöhung der Cefotaxim-Resistenz eines Stamms mit Mosaik-PBP2x führt. Im Gegensatz zum pbp2a von C403 verursacht das pbp2a von Streptococcus mitis B6 im Wildtyp eine später einsetzende Lyse. Das Wachstum ist jedoch ebenso verlangsamt wie nach dem Verlust von PBP2a. Bei der Analyse niederaffiner PBP2a-Varianten aus klinischen Isolaten traten zwei Mutationen häufig auf, die immer gemeinsam anzutreffen sind: Die Mutation T411>A, welche direkt stromabwärts des aktiven Serins der Penicillin-bindenden Domäne lokalisiert ist, und die Mutation Q431>L. Es konnte demonstriert werden, dass die erste Mutation einen starken Abfall der Affinität gegen Bocillin FL verursacht und die zweite Mutation einen Einfluss auf des Laufverhalten des Proteins in der SDS-PAGE hat. Die Inaktivierung des signal-tranduzierenden Zwei-Komponenten-Systems CiaRH führt in Mutanten mit inaktiviertem PBP2a zu einer Rückkehr der Wachstumsrate auf Wildtyp-Niveau. Stämme mit niederaffinem PBP2a zeigen nach Inaktivierung von CiaRH eine Verkürzung der stationären Phase, ähnlich wie dies bereits für PBP2x beschrieben wurde. Durch die Experimente im Rahmen dieser Arbeit konnte somit gezeigt werden, dass Mutationen in PBP2a einen Einfluß auf die Cefotaxim-Resistenz, das Wachstum und die Lyse von Streptococcus pneumoniae haben können. Auftreten und Ausmaß dieser Effekte sind abhängig von der Art der Mutation und dem genetischen Hintergrund in den diese transformiert wird.
Der erhebliche Anstieg an Penicillin-resistenten Bakterienstämmen stellt ein weltweit immer größer werdendes Problem in der Medizin dar. Für die Bekämpfung solcher resistenten Stämme ist es wichtig, die Entstehung und den Mechanismus der Penicillin-Resistenz auf molekularer Ebene zu verstehen und dadurch Targets für neue Klassen antimikrobieller Wirkstoffe zu identifizieren. Die Lösung dieser Problemstellung war somit der Schwerpunkt der Untersuchungen in der vorliegenden Arbeit. Die Arbeit befasste sich mit der Übertragung der beta-Laktam-Resistenz von einem hochresistenten klinischen S. oralis Isolat aus Ungarn auf den sensitiven S. pneumoniae R6 Stamm. Dabei sollte durch Transformationsexperimente überprüft werden, ob und wie weit S. oralis als Donor für die Penicillin-Resistenz in S. pneumoniae fungieren kann und welche Gene dabei eine Rolle spielen. Solche Experimente bilden die Grundlage für das bessere Verständnis der Evolution und Ausbreitung der beta-Laktam-Resistenz in kommensalen und pathogenen Streptokokken. Durch sukzessive DNA-Transformation konnte der Resistenzphänotyp des Donorstammes zu einem hohen Grad in den sensitiven S. pneumoniae Stamm R6 übertragen werden. Von Interesse war zunächst, welche S. oralis PBPs dabei eine Rolle spielen. Für die bekannten Resistenzdeterminanten PBP2x, PBP2b und PBP1a konnte nachgewiesen werden, dass sie auch hier einen entscheidenden Beitrag für die Resistenzentwicklung leisten. Nach insgesamt sechs aufeinanderfolgenden Transformationsstufen mit chromosomaler S. oralis DNA konnte das Resistenzniveau des Rezipienten ca. 600- bis 700-fach erhöht werden; PBPs waren nur bei den ersten drei Stufen beteiligt. Microarray-Analysen mit DNA der Transformanten gaben Hinweise darauf, welche anderen Gene übertragen wurden und erlaubten in einem Fall die Identifizierung einer neuen Resistenzdeterminante: MurE. Die gesamte Resistenz des Donors konnte nicht in S. pneumoniae übertragen werden; die Gründe hierfür sind denkbar vielfältig und wurden in der Diskussion aufgegriffen. Die Charakterisierung der Nicht-PBP-Resistenzdeterminate MurE standen nach deren Identifizierung im Mittelpunkt der Analysen in der vorliegenden Arbeit. Die Selektion von beta-Laktam-resistenten Transformanten mit modifiziertem MurE zeigten zum ersten Mal die Rolle dieses Proteins in der Entwicklung der Penicillin-Resistenz in S. pneumoniae. Austausche in diesem Gen führten zu einer ca. 3- bis 5-fachen Erhöhung der Resistenz gegenüber Cefotaxim und Piperacillin und bewirkten einen 40-fachen Anstieg der Cefotaxim-Resistenz und 20-fachen Anstieg der Oxacillin-Resistenz in Verbindung mit einem Mosaik-PBP2x. In Verbindung mit einem Mosaik-PBP2b führte das ausgetauschte MurE zu einem 20-fachen Anstieg der Piperacillin-Resistenz. Durch Herstellung von Stämmen mit ektopischer Kopie von murE mit unterschiedlichen Promotor- und Genfragmenten und anschließender Deletion des Wildtyp-Allels im Genom konnte nachgewiesen werden, dass sowohl veränderte Bereiche im Strukturgen als auch der murE-Promotorbereich von S. oralis Uo5 zu einem Anstieg der Resistenz in S. pneumoniae führen. Einige der Veränderungen, die Aminosäuren betreffen, sind in der Nähe des aktiven Zentrums lokalisiert und könnten die Bindung zum Substrat bzw. ATP beeinflussen. Die Bestimmung der Promotoraktivität von murE aus S. oralis Uo5 und S. pneumoniae R6 ergab, dass das Gen aus S. oralis etwa zweifach stärker exprimiert wird. Die stärkere Expression von murE hat allerdings keinen Einfluss auf die Produktion von PBP2x, PBP1a oder PBP2b, wie durch spezifische Antikörper und Western-Blots für alle drei PBPs festgestellt werden konnte. Dies konnte auch mit Hilfe von Reporter-Assays zur Bestimmung der Promotoraktivität von pbp2x bestätigt werden. Signifikante Veränderungen in der Zellwandzusammensetzung der murE-Transformanten konnten ebenfalls nicht beobachtet werden. Eine Hypothese geht davon aus, dass sowohl die erhöhte Promotoraktivität als auch die Mutationen im Strukturprotein dasselbe bewirken, nämlich die Bereitstellung von mehr MurE-Produkt (durch mehr Enzym oder durch aktiveres Enzym). Möglicherweise ist dadurch der Pool an Muropeptidvorstufen erhöht, was wiederrum Einfluss auf die Mureinbiosynthese hat und somit ein besseres Wachstum in Gegenwart von beta-Laktamen erlaubt, d.h. unter den hier verwendeten Selektions- und Testbedingungen.
Die kommensalen, in der Mundhöhle lebenden Bakterien-Arten S. mitis und S. oralis zählen zusammen mit dem humanpathogenen Bakterium S. pneumoniae zu den Streptokokken der Mitis-Gruppe (Kawamura et al., 1995). Mitglieder dieser phylogenetischen Gruppe besitzen nachweislich die Fähigkeit zum Austausch von genetischem Material (Whatmore et al., 2000; Hakenbeck et al., 2001; King et al., 2005), was durch die natürliche Kompetenz dieser Streptokokken-Spezies begünstigt wird. Das Ergebnis sind Gene mit Mosaikstruktur ─ ein Indiz für horizontalen Gentransfer. Als Reservoir für solche, in S. pneumoniae auftretende Mosaik-strukturen wurde der Genpool der verwandten, kommensalen Streptokokken identifiziert. Demnach werden Resistenz- und Virulenz-determinierende Sequenzen über Gentransfer und homologe Rekombination auf Pneumokokken übertragen (Dowson et al., 1993; Sibold et al., 1994; King et al., 2005; Chi et al., 2007). Die vorliegende Arbeit befasst sich mit der Spezifizierung von Streptokokken der Mitis-Gruppe. Hierzu wurden mit einer ausgewählten heterogenen Sammlung von oralen S. mitis- und S. oralis-Isolaten vergleichende Genom-Hybridisierungen mittels des kürzlich entwickelten S. mitis B6-Biochips (Denapaite et al., 2010) durchgeführt. Zentraler Aspekt dieser Unter-suchungen war die erstmalige Analyse eines gemeinsamen „Kerngenoms“ aller untersuchten oralen Streptokokken sowie des S. mitis-„Kerngenoms“. Letzteres beinhaltet insgesamt 972 Gene, von denen ein bemerkenswert großer Teil (94 %) auch in S. pneumoniae vorhanden ist. Dies belegt eindeutig die sehr nahe Verwandschaft von S. mitis und S. pneumoniae (Chi et al., 2007; Kilian et al., 2008; Bishop et al., 2009; Denapaite et al., 2010) und stützt die Evolutionstheorie, dass sich S. pneumoniae aus einem spezialisierten S. mitis-Klon entwickelt hat (Denapaite et al., 2010). Das erstmals ermittelte „Gesamt-Kerngenom“ von S. mitis, S. pneumoniae und S. oralis ist mit 386 Genen wesentlich kleiner. Wie die vorliegenden Daten demonstrieren, enthält es eine Reihe von nachgewiesenen S. pneumoniae-Virulenzfaktoren. Die Tatsache, dass S. mitis und S. oralis im Gegensatz zu S. pneumoniae meist apathogen sind, suggeriert, dass in S. pneumoniae erst das Zusammenspiel mehrerer unterschiedlicher Virulenzdeterminanten den bekannten, krankheitserregenden Phänotyp bewirkt. Ein weiteres Ziel war die Analyse der genomischen Varianz der S. mitis- und S. oralis-Stämme. Neben dem S. mitis B6-Chip wurde der S. pneumoniae R6/TIGR4-Chip zur vergleichenden Genom-Analyse eingesetzt. Die Ergebnisse dieser globalen Untersuchungen weisen auf eine große genomische Diversität innerhalb der Mitis-Gruppe hin und bestätigen das Fehlen einer klaren Art-Grenze zwischen S. mitis, S. oralis und S. pneumoniae (Hakenbeck et al., 2001). Ursache für diese genomische Varianz sind inner- und inter-artliche Gentransfer-Ereignisse innerhalb dieser transformierbaren Spezies, die neben Antibiotika-Resistenzgenen wie den pbp auch bestimmte Virulenzgene betreffen. Besonderes Interesse galt der Identifizierung von Pneumokokken-spezifischen Virulenzgenen, wobei an dieser Stelle die Cholin-Bindeproteine PspA, PspC und PcpA, die Hyaluronidase HysA sowie die PiaA-Komponente des Eisen-Aufnahme-Systems PiaA/PiuA zu nennen sind. Zum ersten Mal konnten entscheidende, das Pathogenitätspotenzial betreffende Unterschiede zu den meist nicht krankheitserregenden Kommensalen herausgestellt werden. Einen weiteren wichtigen Punkt der Arbeit bildeten zwei S. mitis-Isolate, für die im Rahmen der Microarray-Analysen gezeigt wurde, dass sie im Besitz der Pathogenitätsfaktoren Pneumolysin (Ply) und Autolysin (LytA) sind. Beide Gene wurden lange Zeit für S. pneumoniae-spezifisch gehalten, liegen auf dem Genom von S. pneumoniae zirka 7 kb voneinander entfernt und werden von einem 94 bp langen „direct repeat“ flankiert (Denapaite et al., 2010). Eine ausführliche Sequenzanalyse der lytA/ply-Region ergab in beiden Fällen eine genetisch ähnliche Organisation wie in S. pneumoniae R6. Zudem konnte gezeigt werden, dass einer der beiden S. mitis-Stämme neben dem chromosomal kodierten lytA ein zweites Prophagen-assoziiertes lytA-Allel besitzt. Die Tatsache, dass im Gegensatz zu S. mitis alle Pneumokokken die „Pathogenitäts- insel“ in ihrem Genom enthalten, bestätigt die oben besprochene Evolutionstheorie: Die lytA/ply-Insel wurde vermutlich vor der Evolution von S. pneumoniae aus S. mitis erworben, wobei der 94 bp „direct repeat“ mit großer Wahrscheinlichkeit die Integrationsstelle darstellt.
Im Rahmen dieser Arbeit konnte die physiologische Funktion des AtENT1 weitestgehend aufgeklärt werden. Durch Untersuchungen an RNAi- und Überexpressionslinien konnte gezeigt werden, dass dieser Nukleosidtransporter in unterschiedlichen Geweben verschiedene Aufgaben erfüllt. Die verringerte Expression des AtENT1 in den RNAi-Pflanzen hat hauptsächlich Auswirkungen auf den Nukleotidhaushalt in Pollen. Diese zeigen eine geringere Keimungsrate, eine niedrigere Nukleosidaufnahme sowie verringerte Mengen an intra- und extrazellulärem ATP. Daraus kann man schließen, dass der AtENT1 eine wichtige Funktion in der Versorgung von Pollen mit Nukleosiden während der Entwicklung und zu Beginn der Keimung hat. Die veränderte Menge an eATP in den RNAi-Pollen führt möglicherweise zu einer veränderten Signaltransduktion, was ebenfalls ein Grund für die schlechtere Keimungsrate im Vergleich mit WT-Pollen sein könnte. Weiterhin deutet die verminderte Aufnahme von Adenosin in RNAi-Pollen darauf hin, dass AtENT1 in diesen Zellen in der Plasmamembran lokalisiert ist. Sowohl in Blatt-Rohextrakten als auch in isolierten Vakuolen der AtENT1-RNAi-Pflanzen konnte ein erhöhter Adenosingehalt festgestellt werden, während dieser in Blättern und Vakuolen der AtENT1-35S-Pflanzen deutlich verringert war. Weiterhin konnte an Liposomen mit rekostituiertem Tonoplastenprotein aus Überexpressionspflanzen ein höherer Adenosinexport verglichen mit Liposomen mit WT-Tonoplastenprotein beobachtet werden. Als wahrscheinlichste Quelle der Nukleoside konnte der in der Vakuole stattfindende RNA-Abbau mit Nukleosiden als End- und 2‘3‘-cAMP als Zwischenprodukt nachgewiesen werden. Ein gesteigerter Nukleosidtransport aus der Vakuole durch Überexpression des AtENT1 führt zu einem Anstieg der zytosolischen Nukleosidkonzentration. Als Reaktion darauf sind die Aktivitäten der Enzyme des „salvage pathway“ in den entsprechenden Mutanten erhöht. Ein Anstieg der zytosolischen Adenosinkonzentration führt durch Feedback-Inhibierung zu einer Verringerung der Transmethylierungsreaktionen. In der stärksten Überexpressionspflanze konnte, als Folge dieser Inhibierung, eine verringerte Zellwandmethylierung beobachtet werden. Betrachtet man alle Ergebnisse der Untersuchungen in vegetativem Gewebe ist eine Lokalisierung des AtENT1 im Tonoplasten sehr wahrscheinlich. Der letzte Teil der Arbeit befasste sich mit der biochemischen Charakterisierung der putativen Nukleosidtransporter StENT1 und StENT3 aus Solanum tuberosum. Dabei konnte gezeigt werden dass es sich beim StENT1 um einen hoch affinen Transporter für Purin- und Pyrimidinnukleoside handelt. Aufgrund der Ähnlichkeit der Transporteigenschaften zum AtENT1 und der ebenfalls vorhandenen möglichen Signalsequenz für eine tonoplastidäre Lokalisierung könnte StENT1 auch ein physiologisches Homolog zum AtENT1 sein. StENT3 vermittelt einen hoch affinen, pyrimidinspezifischen Nukleosidtransport. Dieser Transporter könnte vor allem in Knollen für die Aufnahme von Pyrimidinen aus der Erde oder dem Phloem zuständig sein.
Das Futtersuchverhalten von Blattschneiderameisen (BSA) weist zwei Besonderheiten auf, die bislang nicht mit der Theorie des optimalen Nahrungserwerbs in Übereinstimmung gebracht werden konnten: sie (i) verlassen ihre Nahrungspflanzen frühzeitig bevor diese komplett entlaubt sind und (ii) ernten Bäume in beträchtlicher Distanz , obwohl conspezifische Bäume (mit scheinbar gleicher Blattqualität) näher am Nest liegen. Eine mögliche kausale Erklärung bietet die Hypothese induzierter Pflanzenabwehr (induced-defence hypothesis), durch welche die beobachteten Futtersuchmuster als zeitlich und räumlich dynamisches Mosaik aus induzierter, wenig induzierter und nicht induzierter Pflanzenabwehr in Pflanzenindividuen und Pflanzenteilen zu verstehen wären. In diesem Kontext war es das Ziel meiner Diplomarbeit zu klären ob und mit welcher Wirkung herbivorieinduzierte Pflanzenvolatile (HIPVs) von BSA perzipiert werden. Der Fokus lag dabei auf der jeweils spezifischen Rolle der beiden symbiontischen Partner des BSA-Systems (Ameisen und Pilz) und möglichen Interaktionen zwischen ihnen. Im ersten Untersuchungsabschnitt wurden Atta colombica-Arbeiterinnen in olfaktometrischen Wahlexperimenten mit einzelnen Komponenten und dem naturgetreuen Mix der HIPVs der Limabohne (Phaseolus lunatus) konfrontiert. Da hierbei kein Eintrag induzierter Blätter in die Kolonie stattfand, blieb der symbiotische Pilz unbeeinflusst von den HIPVs. Um andererseits spezifisch die Reaktion des Pilzpartners auf die HIPVs der Limabohne zu beurteilen, wurden Wachstumsassays mit Kulturen des Gartenpilzes Leucoagaricus gongylophorus durchgeführt. Zentrale Ergebnisse meiner Untersuchung waren: (1) BSA-Arbeiterinnen zeigten im Olfaktometer keine Reaktion auf verschiedene Konzentrationen der Limabohnen-HIPVs (Abb. 1); (2) Hingegen konnten für eine Reihe von HIPVs antimykotische Eigenschaften auf den symbiotischen Pilz nachgewiesen werden (Abb. 2). Im Lichte dieser Ergebnisse sind viele bisher publizierte Hinweise auf die repellente Wirkung von HIPV-Komponenten auf BSA-Kolonien/Arbeiterinnen (Aigner 2007, Tremmel 2008) nur dann zu verstehen, wenn man sie als eine nachträgliche, vom symbiotischen Pilz vermittelte‚ verzögerte Ablehnung (so genannte delayed rejection hypothesis, sensu Knapp et al 1990) interpretiert. Pilz-inhibierende Substanzen werden dabei zunächst von BSA- Arbeiterinnen in die Kolonie eingetragen und zu einem späteren Zeitpunkt abgelehnt. Die vorliegende Studie kann somit als Unterstützung der induced-defence hypothesis gelten.
Der TRPV5 Ionenkanal ist ein hoch selektiver Kalziumkanal, der in der Niere exprimiert wird und dort für den transzellulären Kalziumtransport im distalen Konvolut verantwortlich ist. TRPV5 Transkripte sind auch in anderen Geweben, wie z.B. der Plazenta, identifiziert worden. In dieser Arbeit wurde versucht, das TRPV5 Protein in verschiedenen Geweben nachzuweisen und den Kanal sowie eventuell daran assoziierte Proteine aus der Plazenta zu isolieren. Hierzu wurden verschiedene Strategien verfolgt. Zum einen wurden vier polyklonale Peptidantikörper generiert, einer gegen einen N- und drei gegen C-terminale Bereiche des humanen TRPV5 Proteins. Diese wurden eingehend mittels ELISA, Peptidblot-Analysen, Western Blot Analysen und immunhistochemischen Färbungen bezüglich ihrer Spezifität und Affinität charakterisiert. Alle generierten Antikörper erkennen spezifisch nur die antigenen Bindungsregionen in Glutathion-S-Transferase (GST)-TRPV5-Fusionsproteinen und detektieren das endogen in humaner Plazenta exprimierte Protein. Der Antikörper, der gegen den absoluten C-Terminus des TRPV5 Ionenkanals gerichtet ist (982/3), erwies sich zum Nachweis des TRPV5 Proteins im distalen Konvolut in Mausnieren als geeignet, allerdings zum Nachweis des TRPV5 Proteins im Synzytiotrophoblasten der humanen Plazenta, ist einer der anderen C-terminalen TRPV5 Antikörper besser geeignet. Der Antikörper 982/3 wurde auch in Immunpräzipitationen und Antikörper-Affinitäts-chromatographien eingesetzt. Mit diesen beiden Methoden konnte das TRPV5 zwar in kleinen Mengen aus humanem Plazentagewebe bzw. Mausnieregewebe angereichert und im anschließenden Western Blot detekiert werden, allerdings war die Menge des isolierten Proteins so gering, dass eine massenspektrometrische Identifikation nicht möglich war. Parallel wurden GST-Pulldown Versuche mit Fusionsproteinen, die den N- und C-Terminus des TRPV5 Proteins enthalten, mit Proteinextrakten der humanen Plazenta durchgeführt. Hierbei wurden insgesamt 38 Proteine als putative Interaktionspartner von TRPV5 identifiziert. Darunter befinden sich bereits in der Literatur beschriebene Interaktionspartner, wie NHERF2 und Galectin-1, und zahlreiche potentielle TRPV5 bindende Proteine. Zu den häufigsten identifizierten Proteinen zählen die Proteine 11ß-HSD2, Ku70 und Calpain-6. Ihre Bindung an N- und C-terminale Bereiche des Ionenkanals, nicht aber an GST konnte in weiteren GST-Pulldown-Experimenten und anschließender Identifikation im Western Blot bestätigt werden. Zusammenfassend zeigen diese Ergebnisse, dass das TRPV5 Protein in der humanen Plazenta an der Blut-Plazenta Schranke exprimiert wird. Aller Wahrscheinlichkeit nach ist dort das Protein mit anderen Proteinen assembliert. Inwiefern diese Interaktionen die Kanalaktivität beeinflussen müsste in weiteren Experimenten untersucht werden.
Vor kurzem wurde MOT1 als Molybdat-Transportprotein in Arabidopsis thaliana identifiziert. Unter Zuhilfenahme von GFP-Fusionsproteinen konnte als subzelluläre Lokalisierung des Proteins die Membran des Endoplasmatischen Retikulums (ER) in dieser Arbeit identifiziert werden. Auch wurde hier demonstriert, dass das mit Abstand nächste Homolog des Proteins, MOT2, ist in der vakuolären Membran, dem Tonoplasten, lokalisiert ist. Unter Standarbedingungen zeigten mot1-KO-Pflanzen reduzierte Molybdatgehalte im Blatt und Keimlinge wiesen Wachstumsdefizite in Abwesenheit von Molybdat auf. Dies führte zu der Annahme, dass MOT1 nicht, wie bislang angenommen, den Hauptimporter für Molybdat in die Zelle darstellt. Durch die Quantifizierung vakuolärer Molybdatgehalte konnte einerseits die Vakuole als Hauptspeicherort für Molybdat in der pflanzlichen Mesophyllzelle und andererseits MOT1 als wichtigstes Protein zur Beladung der Vakuole mit dem Spurenelement identifiziert werden. Die Blätter von mot2-KO-Pflanzen zeigten erhöhte Molybdatgehalte und die Bedeutung des Proteins für die Remobilisierung des essentiellen Molybdats während der Seneszenz konnte mittels Transkriptanalysen und Molybdatquantifizierung in Samen und seneszenten Blättern gezeigt werden. Mittels Fluoreszenzanalysen konnte zusätzlich eine wichtige Determinante der Zielsteuerung von Proteinen zum Tonoplasten identifiziert werden. Durch Mutagenese zweier Leucinreste am N-Terminus von MOT2 ist das korrekte Targeting in die vakuoläre Membran gestört und das Protein lokalisiert fälschlicherweise in der Plasmamembran. Es konnte ein Modell für den intrazellulären Molybdattransport vorgestellt werden. So transportiert MOT1 das Anion ins ER, von wo aus es über Vesikelfluss zur Vakuole gelangt. MOT2 stellt das tonoplastidäre Protein für den Export des Spurenelements aus der Vakuole, besonders während der Seneszenz, dar. Auch konnte eine Korrelation zwischen dem Molybdatgehalt und der Konzentration von Moco, sowie dessen Vorstufe MPT, identifiziert werden. Dies liefert Hinweise auf eine Regulation der Moco-Biosynthese in Abhängigkeit von der zellulären Molybdatkonzentration.
Proteins of the intermembrane space of mitochondria are generally encoded by nuclear genes that are synthesized in the cytosol. A group of small intermembrane space proteins lack classical mitochondrial targeting sequences, but these proteins are imported in an oxidation-driven reaction that relies on the activity of two components, Mia40 and Erv1. Both proteins constitute the mitochondrial disulfide relay system. Mia40 functions as an import receptor that interacts with incoming polypeptides via transient, intermolecular disulfide bonds. Erv1 is an FAD-binding sulfhydryl oxidase that activates Mia40 by re-oxidation, but the process how Erv1 itself is re-oxidized has been poorly understood. Here, I show that Erv1 interacts with cytochrome c which provides a functional link between the mitochondrial disulfide relay system and the respiratory chain. This mechanism not only increases the efficiency of mitochondrial inport by the re-oxidation of Erv1 and Mia40 but also prevents the formation of deleterious hydrogen peroxide within the intermembrane space. Thus, the miochondrial disulfide relay system is, analogous to that of the bacterial periplasm, connected to the electron transport chain of the inner membrane, which possibly allows an oxygen-dependend regulation of mitochondrial import rates. In addition, I modeled the structure of Erv1 on the basis of the Saccharomyces cerevisiae Erv2 crystal structure in order to gain insight into the molecular mechanism of Erv1. According to the high degree of sequence homologies, various characteristics found for Erv2 are also valid for Erv1. Finally, I propose a regulatory function of the disulfide relay system on the respiratory chain. The disulfide relay system senses the molecular oxygen levels in mitochondria and, thus, is able to adapt respiratory chain activity in order to prevent wastage of NADH and production of ROS.
Die Entwicklung von beta-Laktam-Resistenz in dem Pathogen Streptococcus pneumoniae (S. pneu-moniae) stellt einen komplexen Prozess dar, welcher auf einer Modifikation der Penicillin-Bindeproteine (PBP), der Targetstrukturen von beta-Laktam-Antibiotika beruht. PBP sind Membran-gebundene Enzyme, welche essentielle Reaktionen bei der bakteriellen Zellwand-Synthese katalysieren. Diese Proteine werden im Zuge der Resistenzentstehung so verändert, dass beta-Laktame nicht mehr oder nur noch mit geringer Affinität gebunden werden, das physiologische Substrat aber noch erkannt werden muß. Die vorliegende Arbeit befasst sich mit dem PBP2x von S. pneumoniae, das als essentielles PBP und wichtigste primäre Resistenzdeterminante einen hohen Stellenwert bei der Entstehung von beta-Laktam-Resistenz in diesem Organismus einnimmt. Obwohl dieses PBP zu den am besten untersuchten PBP gehört, bleiben die Resistenzrelevanz einzelner Punktmutationen und die mit der Veränderung des Proteins einhergehenden physiologischen Folgen für die Zelle weitgehend unklar. Zentraler Inhalt dieser Arbeit war die Untersuchung des Effekts von PBP2x-Mutationen auf die Resistenz, Funktionalität von PBP2x und Zellphysiologie im Kontext mit der sekundären Resistenzdeterminante PBP1a und den beiden Zwei-Komponenten-Systemen CiaRH, welches in die Cefotaxim-Resistenz, genetische Kompetenz und Virulenz involviert ist und ComDE, das die genetische Kompetenz reguliert. Besonderes Interesse galt dabei der Position Thr338, welche sich unmittelbar benachbart zum aktiven Serin befindet und in den meisten resistenten klinischen Isolaten zu Alanin, Prolin oder Glycin mutiert ist. Durch eine gerichtete Mutagenese dieser Position im Wildtyp R6 konnte zum ersten Mal gezeigt werden, dass eine Thr338-Punktmutation einen selektionierbaren Resistenz-Phänotyp in vivo vermittelt, wobei abhängig von dem jeweiligen Austausch unterschiedliche Resistenzniveaus und Kreuzresistenzspektren zu beobachten waren. Abgesehen von einem nur moderaten Beitrag zur Resistenz, betraf eine solche Substitution offenbar auch die Funktionalität von PBP2x, was sich auf dramatische Art und Weise in Abwesenheit eines intakten CiaRH-Regulationssystems äußerte: Es kam zu Wachstumsdefekten, insbesondere einer verfrühten und verstärkten Autolyse, morphologischen Aberrationen und einer verminderten Lebensfähigkeit. Entgegen aller Erwartungen führte die Präsens eines Mosaik-PBP1a in dem genetischen Hintergrund der Thr338-Mutation nicht zu einem weiteren Anstieg der Resistenz, sondern bewirkte sogar einen leichten Abfall. Dennoch komplementierte das Mosaik-PBP1a die durch das Fehlen eines funktionsfähigen CiaRH-Systems hervorgerufenen Wachstumsdefizienzen. Der Vergleich zwischen dem PBP2x mit Thr338-Punktmutation und einem Mosaik-PBP2x deckte gravierende Unterschiede im Hinblick auf das Resistenzpotential und die physiologischen Auswirkungen auf. Anders als bei der PBP2x-Punktmutation waren bei dem Mosaik-PBP2x fast keine Wachstumseinbußen zu verzeichnen, wenn es mit einem inaktiven Zwei-Komponenten-System CiaRH kombiniert wurde, und die Anwesenheit eines Mosaik-PBP1a brachte eine starke Erhöhung der Cefotaxim-Resistenz mit sich. Beiden pbp2x-Allelen war jedoch gemeinsam, dass die Abwesenheit eines PBP1a massive Defekte im Wachstum zur Folge hatte. Alle diese Beobachtungen deuteten auf eine mögliche Interaktion zwischen PBP2x und PBP1a hin. Die Analyse der Zellwand einer Mutante mit zwei PBP2x-Aminosäureaustauschen, von denen einer in resistenten klinischen Stämmen anzutreffen ist, ergab eine biochemisch modifizierte Zellwand, in der bei einem fast gleichbleibenden Anteil an verzweigten Dimeren, Monomere erhöht, und lineare Dimere und Trimere reduziert waren. Diese Befunde ließen auf eine enzymatische Beeinträchtigung dieses PBP2x schließen. Ein von CiaRH ausgehender Effekt konnte nicht festgestellt werden. Eine Inaktivierung des für den Export des Kompetenz-stimulierenden Peptids CSP verantwortlichen ABC-Transporters ComAB in Kombination mit einem nicht-funktionellen CiaRH-System bewirkte im Wildtyp eine vollständige, in PBP2x-Punktmutanten eine nur teilweise Aufhebung der vorzeitigen stationären Phase-Autolyse. Darüber hinaus machte sich bei einem der PBP2x-Derivate, welches zusätzlich über eine Cefotaxim-Resistenz-vermittelnde Aminosäuresubstitution in CiaH verfügte, bei ciaR-Inaktivierung sowohl ein Verlust der CiaH- als auch eine partielle Einbuße der PBP2x-Resistenz bemerkbar, bei comAB-Inaktivierung hingegen aber ausschließlich ersteres. Hieraus konnte zum einen auf einen direkten Bezug des Lyse-Phänotyps zu der Kompetenz und der CiaRH-Resistenz zu ComAB geschlossen werden, zum anderen auf einen CiaRH-unabhängigen Einfluss von PBP2x auf die Kompetenz und Autolyse. Tatsächlich bestätigte eine Bestimmung der Transformationseffizienz von Mutanten mit verschiedenen Konstellationen aus niederaffinen und unmodifizierten PBP, dass das Kompetenzmuster bzw. -ausmaß von der jeweiligen PBP-Ausstattung moduliert wird. Auch eine Microarray-basierte globale Transkriptomanalyse dieser Mutanten sowie spontan resistenter Labormutanten mit PBP2x- und CiaH-Mutationen suggerierte eine von CiaRH-entkoppelte Einflussnahme der PBP auf die Kompetenz. Zudem zeugten die Transkriptionsmuster von einem vielschichtigen Regulationsnetzwerk der Resistenzentwicklung unter Beteiligung von Kompetenz, Bakteriocinproduktion, Virulenz, Metabolismus, Transportprozessen und Energiestatus, was möglicherweise eine indirekte Folge einer gestörten Zellwand- und Membranintegrität darstellt. Durch die Extraktion von intergenen Bereichen, sowie potentiellen neuen Resistenzdeterminanten bzw. Resistenz-unterstützenden Genen, wie den Gen-Clustern spr1545-spr1549 und spr0096-spr0110 oder den Genen des Purinstoffwechsels wurde die Basis für weiterführende Untersuchungen geschaffen. Die hier vorgestellten Daten demonstrieren, dass der Erwerb von beta-Laktam-Resistenz nicht nur von Vorteil ist, sondern auch physiologische Konsequenzen für die Zelle hat, die sie kompensiert, um ein möglichst stabiles Wachstum zu gewährleisten. Über die Zellwand-Zusammensetzung und Kompetenz konnte erstmalig eine Verbindung von PBP2x zu CiaRH hergestellt werden. Eine konkrete kompensatorische Wirkung dieses Regulons hinsichtlich PBP2x-Mutationen wurde mit der Repression der Kompetenzlyse ausfindig gemacht. Im letzten Teil dieser Arbeit wurde basierend auf einer früheren Veröffentlichung, in der eine Inaktivierung des Gens für das PBP2b von S. pneumoniae erfolglos blieb, erneut versucht, eine solche Mutante herzustellen. Obwohl lebensfähige Transformanten generiert werden konnten, war es nicht möglich eine pbp2b-Inaktivierungs- bzw. Deletionsmutante zu isolieren, sodass PBP2b in diesem Organismus weiterhin als essentielles Protein angesehen werden kann.
Prostate cancer preferentially metastasizes to the skeleton and abundant evidence exists that osteoblasts specifically support the metastatic process, including cancer stem cell niche formation. At early stages of bone metastasis, crosstalk of prostate cancer cells and osteoblasts through soluble molecules results in a decrease of cancer cell proliferation, accompanied by altered adhesive properties and increased expression of bone-specific genes, or osteomimicry. Osteoblasts synthesize a plethora of biologically active factors, which comprise the unique bone microenvironment. By means of quantitative real-time RT-PCR it was determined that exposure to the osteoblast secretome induced gene expression changes in prostate cancer cells, including the upregulation of osteomimetic genes such as BMP2, AP, COL1A1, OPG and RANKL. IL6 and TGFbeta1 signaling pathway components also became upregulated at early time points. Moreover, osteoblast-released IL6 and TGFbeta1 contributed to the upregulation of OPG mRNA in LNCaP. Thus, the earliest response of prostate cancer cells to osteoblast-released factors, which ultimately cause metastatic cells to assume an osteomimetic phenotype, involved activation of paracrine and autocrine IL6 and TGFbeta signaling. On the other hand, a microarray analysis showed that osteoblasts exposed to the secretome of prostate cancer cells exhibited gene expression alterations suggestive of repressed proliferation, decreased matrix synthesis and inhibited immune response, which together indicate enhanced preosteocytic differentiation. TGFbeta signaling, known to inhibit osteoblast maturation, was strongly suppressed, as shown by elevated expression of negative regulators, downregulation of pathway components and of numerous target genes. Transcriptional downregulation of osteoblast inhibitory molecules such as DKK1 and FST also occurred, with concomitant upregulation of the osteoinductive molecules ADM, STC1 and BMP2, and of the transcription factors CBFA1 and HES1, which promote osteoblast differentiation. Finally, the mRNA encoding NPPB, the precursor of a molecule implicated in the inhibition of TGFbetaeffects, in bone formation and in stem cell maintenance, became upregulated after coculture both in osteoblasts and in prostate cancer cells. These results provide an insight into potential mechanisms of dysregulated bone formation in metastatic prostate cancer, as well as mechanisms by which osteoblasts might enhance the invasive, osteomimetic and stem cell-like properties of the tumor cells. In particular, the differential modulation of TGFbetasignaling in prostate cancer cells and osteoblasts appears to merit further research.
Verteilung von Na+/Ca2+-Austauschern während der Ontogenese des auditorischen Hirnstamms der Ratte
(2009)
Die Homöostase der intrazellulären Ca2+-Konzentration ist eine essenzielle Aufgabe in allen Zellen, da Ca2+ an diversen zellulären Prozessen beteiligt ist. Besonders Neurone des auditorischen Hirnstamms sind auf eine optimale Ca2+-Regulation angewiesen, da ihr Überleben und ihre Entwicklung von der intrazellulären Ca2+-Konzentration abhängen. Neben Ca2+-bindenden Proteinen und Ca2+-ATPasen sind besonders Na+/Ca2+-Austauscher, welche sich in die Familien NCX (NCX1-3), NCKX (NCKX1-5) und CCX (NCKX6) gliedern, in vielen neuronalen und nicht-neuronalen Strukturen maßgeblich für die Ca2+-Regulation verantwortlich. In meiner Arbeit wurde die Verteilung von NCX1-3 sowie NCKX2-6 im Nucleus cochlearis(CN), superioren Olivenkomplex (SOC) und inferioren Colliculus (IC), welche Strukturen des auditorischen Hirnstamms darstellen, untersucht. Dies erfolgte auf Boten-Ribonukleinsäure(messenger ribonucleic acid, mRNA)-Ebene qualitativ mittels reverser Transkription (RT)gefolgt von genspezifischer Polymerasekettenreaktion (PCR) sowie quantitativ mittels realtime-PCR, auf Proteinebene qualitativ mittels Immunhistochemie. Um auch ontogenetische Aspekte der Ca2+-Homöostase zu berücksichtigen, wurden Ratten in einem unreifen Entwicklungsstadium (P4) sowie junge adulte Ratten (P60) analysiert. Die Genexpression aller untersuchten ncx- und nckx-Isoformen wurde mittels RT-PCR in beiden Entwicklungsstadien in CN, SOC und IC nachgewiesen. Besonders auffallend war bei den ncx-Isoformen eine im Verlauf der Entwicklung meist verstärkte Transkription, während die nckx-Isoformen in den meisten Fällen eine verminderte Transkription im adulten Tier zeigten. Mittels Immunhistochemie zeigt meine Arbeit zum ersten Mal eine entwicklungsabhängige Umverteilung der Austauscher. Während die Isoformen bei P4 hauptsächlich im Neuropil lokalisiert waren, zeigte sich im Gegensatz dazu bei P60 eine verstärkte Immunfluoreszenz innerhalb der Somata. Ausnahme war hier NCKX2, welcher im CN auch bei P60 hauptsächlich im Neuropil exprimiert wurde. Die Expression von NCX1-3 und NCKX2 im Neuropil junger auditorischer Hirnstammneurone legt eine Ca2+-regulierende Funktion im Bereich dendritischer Synapsen nahe. Die Synapsen befinden sich in diesem Alter noch in einem unreifen Zustand, so dass die Na+/Ca2+-Austauscher einen maßgeblichen Einfluss auf die synaptische Plastizität ausüben können. Abschließend deutet die Verteilung der Na+/Ca2+-Austauscher darauf hin, dass alle NCX- und NCKX-Isoformen, im Zusammenspiel mit weiteren Ca2+-regulierenden Proteinen, an der Ca2+-Homöostase in den Strukturen des auditorischen Hirnstamms beteiligt sind.
I) Die Untersuchungen zum vakuolären Malat-Carrier AtTDT unterstützen die Annahme, dass seine Aktivität in den Schließzellen zum Öffnen und Schließen der Stomata beiträgt. Zudem erhöht wahrscheinlich die Aktivität von TDT in den Mesophyllzellen die Stomata-Dichte und den Stomata-Index. Im Rahmen einer osmotischen Anpassung vermittelt der Transporter eine Malat-Akkumulation, die in den TDT-Knockout-Mutanten beeinträchtigt ist und durch erhöhte Citrat-Gehalte kompensiert wird. Darüber hinaus beschleunigt TDT unter Kurztag-Bedingungen den Eintritt in die generative Phase. Eine Funktion von TDT in der Salztoleranz kann nach metabolischen und phänotypischen Analysen ausgeschlossen werden. II) Die tonoplastidären Monosaccharid-Transporter regulieren bei Kälte in Blättern nicht nur die Monosaccharid-Gehalte, sondern wirken auch positiv auf Photosynthese und Stärkegehalte. Das Ausschalten der TMT-Gene führt unter den gewählten Kältebedingungen zu einer erhöhten Synthese von Saccharose und zu einer gesteigerten Respirationsrate. Insbesondere unter Wassermangel wirkt sich die Aktivität der tonoplastidären Monosaccharid-Transporter positiv auf die Keimungsrate aus. III) Die Bestimmung von Zuckergehalten in Blättern indiziert, dass die tonoplastidären Transportproteine AtERD6.7 und BvIMP Glukose aus der Vakuole transportieren, während AtERD6.5 womöglich Fruktose aus der Vakuole transportiert. Als Transportmechanismus wird aufgrund der Homologie zu den GLUT-Proteinen eine erleichterte Diffusion angenommen. Die Aktivität der Carrier scheint insbesondere nach Kältephasen von Bedeutung zu sein, wenn vakuolär gespeicherte Zucker mobilisiert werden. ERD6.7 fördert gemäß den durchgeführten Keimungstests die Samen-Dormanz.
Das Zwei-Komponenten System CiaRH von S. pneumoniae ist an der ß-Laktam-Resistenz, Regulation der genetischen Kompetenz, Lyse und Virulenz beteiligt. Unter den 16 Promotoren, die von diesem System kontrolliert werden, befanden sich die fünf stärksten Promotoren in intergenen Regionen. Hieraus resultierte die Vermutung, dass diese Promotoren die Expression von kleinen nichtkodierenden RNAs steuern könnten. Mittels Northern-Analyse konnte nachgewiesen werden, dass von diesen Promotoren aus kleine RNAs mit einer Größe von 87 bis 151 Basen exprimiert werden. Im Stamm mit deletierten ciaR waren diese RNAs nicht bzw. kaum detektierbar. Die fünf CiaRH-abhängigen kleinen RNAs wurden csRNAs benannt (cia controlled small RNAs). Durch Northern-Analyse an vier verschiedenen Zeitpunkten des Wachstums konnte gezeigt werden, dass die csRNAs in hoher Konzentration sowohl während der exponentiellen als auch in der stationären Wachstumsphase in den Zellen von S. pneumoniae vorhanden sind. Mittels 3´-RACE-Analyse wurde die Länge der csRNAs auf die Base genau bestimmt. csRNA1, csRNA2, csRNA3 und csRNA4 bestehen aus 87 bis 101 Nukleotiden. csRNA5 besitzt dagegen eine Länge aus 151 Basen. Die Promotoren der stromabwärts der kleinen RNAs liegenden Gene wurden mittels 5´-RACE-Analyse kartiert und ihre Expression mittels realtime RT-PCR-Analyse im Wildtyp, im ciaR-Deletionsstamm und einem Stamm mit aktiviertem CiaRH-System untersucht. Hierbei konnte gezeigt werden, dass diese Gene unabhängig von CiaRH exprimiert werden. Um die Beteiligung der csRNAs an den CiaRH-assoziierten Phänotypen aufzuklären, wurden die Gene für alle fünf csRNAs deletiert und mit verschiedenen Antibiotika-Resistenz-Genen ersetzt. Durch Kombination aller Deletionen wurde der Stamm S. pneumoniae RK12345 konstruiert, welcher keine csRNA mehr exprimiert. In Stamm RK12345 konnte eine erniedrigte Transformationseffizienz und eine erhöhte Lyserate im Vergleich zum Wildtyp S. pneumoniae R6 beobachtet werden. Hierdurch wurde gezeigt, dass die csRNAs eine Rolle bei den CiaRH-regulierten Prozessen spielen. Kleine RNAs üben ihren regulatorischen Effekt meist durch Wechselwirkung mit der mRNA ihrer Zielgene aus. Die beiden RNA-Moleküle interagieren hierbei über komplementäre Sequenzbereiche. Durch diese Basenpaarungen kommt es zur Hemmung oder Aktivierung der Translation bzw. zum Abbau des RNA-RNA-Interaktionskomplexes. Um die Ursachen der csRNA-vermittelten phänotypischen Veränderungen bestimmen zu können, wurde die Identifizierung der csRNA-Zielgene angestrebt. Mittels bioinformatischer Analyse wurde eine große Anzahl putativer Zielgene vorhergesagt, wovon nach Anlegung verschiedener Kriterien letztendlich 13 zu den weiteren Untersuchungen eingesetzt wurden. Um diese teilweise uncharakterisierten Gene auf eine posttranskriptionelle Regulation durch die csRNAs untersuchen zu können, wurde ein integratives Translations Probe Plasmid namens pTP3 konstruiert. Dieses Plasmid ermöglicht die Klonierung von 5´-Genfragmenten vor das ´lacZ-Gen, wodurch in frame-Zielgen´-´lacZ-Fusionsproteine entstehen. Die Expression des entstandenen Fusionsgens erfolgt hierbei von einem konstitutiven CiaRH-unabhängigen Promotor, namens PvegT. Die Klonierung und Untersuchung der ß-Galaktosidase- Expression der Zielgen´-´lacZ-Fusionsproteine ergab, dass die klonierten Fragmente der Gene spr0081, comC, spr1645 und cibB durch die csRNAs reguliert werden. Die Untersuchung dieser vier Zielgene bei Expression von den eigenen Promotoren und Intaktheit der entsprechenden mRNAs zeigte, dass letztendlich zwei Gene posttranskriptionell negativ durch die csRNAs reguliert werden. Interessanterweise ist eines dieser Zielgene das comC-Gen, welches für das Vorläuferpeptid des Kompetenz-Phäromons CSP kodiert. Diese Beobachtung könnte eine mögliche Ursache für die csRNA-abhängige veränderte Transformierbarkeit von Stamm RK12345 darstellen. Das zweite Zielgen der csRNAs, spr0081, kodiert für einen bisher uncharakterisierten ABC-Transporter, welcher möglicherweise am Transport eines Kohlenhydrats beteiligt ist. Letztendlich wurde die direkte Interaktion der in vitro produzierten mRNA dieser beiden Zielgene mit den csRNAs durch die Entwicklung und Etablierung einer neuartigen Methode der Bandshift-Analyse untersucht. Hierbei konnte nachgewiesen werden, dass die mRNA von comC mit allen fünf csRNAs Interaktions-komplexe bildet und die mRNA von spr0081 befähigt ist mit vier csRNAs Interaktionskomplexe zu bilden. Schließlich wurde der Effekt einzelner RNAs auf die Expression des ComC´-´lacZ-Fusionsproteins getestet. Hierbei konnte gezeigt werden, dass csRNA1, csRNA2 und csRNA3 einerseits bzw. csRNA4 und csRNA5 andererseits genügen, um den Effekt aller fünf RNAs ausüben zu können. Die stärkste Hemmungsaktivität einer einzelnen csRNA konnte bei csRNA4 festgestellt werden.
In my doctoral thesis, I present new information about the developmental expression pattern of the potassium chloride cotransporter KCC2 in the rat auditory brain stem and the morphometrical effects caused by KCC2 gene silencing in mice. The thesis is divided into 3 Chapters. Chapter 1 is a general introduction which gives a brief outline of the primary ascending auditory pathway in mammals. Also, it provides information about the presence of a large number of inhibitory inputs in the auditory system and how these inputs develop; the involvement of inhibition in the acoustic processing is mentioned. In addition, the role of the KCC2 cotransporter in the shift of GABA/glycine transmission, and thus, in maintaining the normal level of inhibition in the mature brain, is described. The focus of Chapter 2 was to investigate the KCC2 immunofluorescent signal from postnatal day (P) 0 to P60 in four major nuclei of the rats superior olivary complex (SOC), namely the medial nucleus of the trapezoid body (MNTB), the medial superior olive (MSO), the lateral superior olive (LSO), and the superior paraolivary nucleus (SPN). The lack of a correlation between the continuous presence of KCC2 mRNA/protein in the postnatal rat brain stem on one side, and the shift in GABA/glycinergic polarity (i.e. KCC2 functionality) on the other side, prompted me to search for a specific cellular expression pattern of the KCC2 protein that might correlate with the switch in GABA/glycine signalling. To do so, the KCC2 immunoreactivity was analysed using high-resolution confocal microscopy in three cellular regions of interest: the soma surface, the soma interior, and the neuropil. In the soma surface, I observed an increase of the KCC2 immunofluorescent signal intensity, yet with a moderate magnitude (1.1 to 1.6-fold). Therefore, I conclude that the change in the soma surface signal is only of minor importance and does not explain the change in KCC2 functionality. The KCC2 signal intensity in the soma interior decreased in all nuclei (1.4 to 2-fold) with the exception of the MNTB where no statistically significant change was found. The decrease in the soma interior was probably related to the increase in the soma surface immunoreactivity and the proposed (weak) intracellular trafficking process of the KCC2 protein. The main developmental reorganization (in qualitative as well as in quantitative aspects) of the KCC2 immunofluorescence in the SOC nuclei was observed in the neuropil. The signal changed its pattern from a diffusely stained neuropil early in development (P0-P4) to a crisp and membrane-confined signal later on (P8-P60), with single dendrites becoming apparent. The exception was found in the MNTB, where the neuropil became almost unlabeled. Quantification revealed a statistically significant decrease (2.2 to 3.8-fold) in the neuropil immunoreactivity in all four nuclei, although the remaining KCC2-stained dendrites became thicker and the signal became stronger. I suppose that, at least in part, the neuropil reorganization can be explained by an age-related reduction of dendritic branches via a pruning mechanism and with the absence of an abnormal Cl- load via extrasynaptic GABAA receptors. This is consistent with the proposed additional role of KCC2, namely to maintain the cellular ionic homeostasis and to prevent dendritic swelling (Gulyás et al., 2001). In conclusion, neither the increase in the KCC2 soma surface signal intensity, nor the reorganization in the neuropil can be strictly related to the developmental switch in the GABA/glycine polarity and the onset of KCC2 function, although some correlation (the appearance of a specific membrane-confined dendritic pattern) between structure and function was found. Further implication of different molecular methods, regarding the proposed posttranslational modification of KCC2, will shed light upon the question of what leads to the functional activation of the cotransporter. In Chapter 3, the advantage of loss-of-function KCC2 mice made it possible, via manipulating the duration of the depolarizing phase of GABA/glycine transmission, to analyse the effect of disturbed Cl- regulation and, thus, the effect of disrupted GABA/glycine neurotransmission (lack of inhibition). I asked the following question: how important is the Cl- homeostasis to maintain general aspects (brain weight) and specific aspects (nucleus volume, neuron number, and soma cross-sectional area) of brain development? Brain stem slices from KCC2 knock-out animals (-/-), with a trace amount of transporter (~5%), as well as from wild type animals (+/+) at P3 and P12 were stained for Nissl substance and the analyses were performed with the help of basic morphometrical and stereological methods. In KCC2 (-/-) animals, body growth impairment was observed, in part related to the seizure activity preventing normal feeding (Woo et al., 2002). However, their brains, in terms of brain weight, were less affected. Therefore, I conclude that Cl- homeostasis is not essential per se to maintain the brain weight. Four auditory nuclei (MNTB, MSO, LSO, and ventral cochlear nucleus (VCN)), were compared with respect to the KCC2 null mutation. The SOC nuclei were not influenced by the lack of KCC2 at P3 considering the morphometric parameters. A difference in the number of neurons occurred in the VCN at P3. I suggest to perform additional immunohistochemical studies of glial presence related to its involvement in the structural and functional support of the neurons and their survival. At P12, the volume of the auditory nuclei in KCC2 (-/-) animals was smaller than in (+/+) animals. However, this is likely to be an epiphenomenon since the brain weight increase was also impaired with the same magnitude. Therefore, I suppose that the Cl- homeostasis is not crucial for the nucleus volume increase in the VCN, the MNTB and the MSO during development. An exception was found for the LSO. Regarding the other morphometric parameters at P12, the four nuclei behaved in a different way: (1) in the VCN, after P3, no parameter underwent a disproportional change due to impaired Cl- homeostasis; (2) the MNTB and the LSO showed less pronounced neuropil in mutants in comparison to age-matched controls and two reasons were proposed: first, the depolarizing GABA/glycine transmission in mutants may contribute to excessive Ca2+ load, excitotoxicity and dendrite damage; second, a decrease of some trophic factors may prevent dendrite development in addition to impaired normal body growth; (3) the MSO neurons in P12 (-/-) animals had smaller soma cross-sectional area than in P12 (+/+) animals. I conclude that the normal Cl- homeostasis is required in the MSO at older ages (P12) to achieve and maintain a proper soma size; (4) the lack of KCC2 did not prevent the process of neuronal differentiation in the VCN and the MNTB during development in both mutant and control animals. In conclusion, the various auditory nuclei have to be discussed independently regarding the influence of Cl- homeostasis on some morphometric parameters. Presumably, this is related to the different time of the shift in the GABA/glycine polarity i.e., the onset of KCC2 function (Srinivasan et al., 2004a). Taken together, my thesis accumulated data about the immunohistological expression pattern of KCC2 in various auditory brain stem nuclei and the influence of impaired Cl- homeostasis on some morphometric features in these nuclei. This information will be helpful for further investigations involved to discover the mechanisms and the events that govern the inhibition and the inhibitory pathway in the central auditory system.
Im Rahmen der vorliegenden Dissertation konnten wichtige Ergebnisse zur Charakterisierung des neuartigen Nukleotidtransporters AtNTT3 gewonnen werden. Die vorgeschlagenen Spleißvarianten des AtNTT3 wurden erfolgreich in Gesamtblüten-, Pollen- und Wurzelgewebe nachgewiesen. Zusätzlich konnte in diesen Geweben die stärkste AtNTT3-Promotoraktivität gezeigt werden. Die subzelluläre Expression der AtNTT3-Proteine wurde mit Hilfe von GFP-Fusionskonstrukten untersucht und untermauert eine außergewöhnliche Lokalisierung von zwei der drei untersuchten Proteinvarianten (AtNTT3-2 und AtNTT3-3) in der pflanzlichen Plasmamembran. Für AtNTT3-1 kann ein anderer Insertionsort, wie beispielsweise die Membranen des ER, nicht ausgeschlossen werden. Insgesamt ist AtNTT3 damit der erste pflanzliche Nukleotidtransporter der NTTFamilie, der nicht in den Plastiden lokalisiert ist. Die Hauptfunktion des AtNTT3 und seinen Spleißvarianten besteht in dem Transport von Nukleotiden. ATP, ADP und auch dATP konnten als favorisierte Importsubstrate identifiziert werden. Obwohl die heterolog exprimierten AtNTT3-Varianten im Vergleich mit strukturell ähnlichen Nukleotidtransportern eine geringe Transportaktivität zeigten, konnte ein spezifischer Transport der Substrate ATP und ADP verifiziert werden. Weiterhin wurde eine homozygote AtNTT3-KO-Linie identifiziert und damit eine Vielzahl von Versuchen zur physiologischen Rolle des AtNTT3 durchgeführt. Bisher konnten keine Hinweise auf einen veränderten Stoffwechsel der KO-Mutanten erhalten werden. Zusätzlich wurden AtNTT3-Überexpressionsmutanten hergestellt, um eine weiterführende detaillierte Analyse vorzubereiten. Wenngleich die physiologische Funktion des untersuchten Membranproteins im Rahmen dieser Arbeit nicht vollständig geklärt werden konnte, zeigen die Ergebnisse jedoch deutlich, dass es sich bei AtNTT3-2 und AtNTT3-3 um plasmamembranständige Nukleotidtransporter handelt. Aufgrund des vorliegenden Expressionsmusters, der subzellulären Lokalisierung und der transportierten Substrate liegt eine Beteiligung der Spleißvarianten am extrazellulären Nukleotidstoffwechsel nahe. Transportstudien indizieren für AtNTT3-1 das gleiche Substratspektrum, die Expression auf Zellebene muss aber nochmals überprüft werden, bevor hier eine konkrete Aussage möglich ist.
Fragmentation of habitats, especially of tropical rainforests, ranks globally among the most pervasive man-made disturbances of ecosystems. There is growing evidence for long-term effects of forest frag-mentation and the accompanying creation of artificial edges on ecosystem functioning and forest structure, which are altered in a way that generally transforms these forests into early successional systems. Edge-induced disruption of species interactions can be among the driving mechanisms governing this transformation. These species interactions can be direct (trophic interactions, competition, etc.) or indirect (modification of the resource availability for other organisms). Such indirect interactions are called ecosystem engineering. Leaf-cutting ants of the genus Atta are dominant herbivores and keystone-species in the Neotropics and have been called ecosystem engineers. In contrast to other prominent ecosystem engineers that have been substantially decimated by human activities some species of leaf-cutting ants profit from anthropogenic landscape alterations. Thus, leaf-cutting ants are a highly suitable model to investigate the potentially cascading effects caused by herbivores and ecosystem engineers in modern anthropogenic landscapes following fragmentation. The present thesis aims to describe this interplay between consequences of forest fragmentation for leaf-cutting ants and resulting impacts of leaf-cutting ants in fragmented forests. The cumulative thesis starts out with a review of 55 published articles demonstrating that herbivores, especially generalists, profoundly benefit from forest edges, often due to (1) favourable microenviron-mental conditions, (2) an edge-induced increase in food quantity/quality, and (3; less well documented) disrupted top-down regulation of herbivores (Wirth, Meyer et al. 2008; Progress in Botany 69:423-448). Field investigations in the heavily fragmented Atlantic Forest of Northeast Brazil (Coimbra forest) were subsequently carried out to evaluate patterns and hypotheses emerging from this review using leaf-cutting ants of the genus Atta as a model system. Colony densities of both Atta species occuring in the area changed similarly with distance to the edge but the magnitude of the effect was species-specific. Colony density of A. cephalotes was low in the forest interior (0.33 ± 1.11 /ha, pooling all zones >50 m into the forest) and sharply increased by a factor of about 8.5 towards the first 50 m (2.79 ± 3.3 /ha), while A. sexdens was more uniformly distributed (Wirth, Meyer et al. 2007; Journal of Tropical Ecology 23:501-505). The accumulation of Atta colonies persisted at physically stable forest edges over a four-year interval with no significant difference in densities between years despite high rates of colony turn-over (little less than 50% in 4 years). Stable hyper-abundant populations of leaf-cutting ants accord with the constantly high availability of pioneer plants (their preferred food source) as previously demonstrated at old stabilised forest edges in the region (Meyer et al. submitted; Biotropica). In addition, plants at the forest edge might be more attractive to leaf-cutting ants because of their physiological responses to the edge environment. In bioassays with laboratory colonies I demonstrated that drought-stressed plants are more attractive to leaf-cutting ants because of an increase in leaf nutrient content induced by osmoregulation (Meyer et al. 2006; Functional Ecology 20:973-981). Since plants along forest edges are more prone to experience drought stress, this mechanism might contribute to the high resource availabil-ity for leaf-cutting ants at forest edges. In light of the hyper-abundance of leaf-cutting ants within the forest edge zone (first 50 m), their po-tentially far-reaching ecological importance in anthropogenic landscapes is apparent. Based on previous colony-level estimates, we extrapolated that herbivory by A. cephalotes removes 36% of the available foliage at forest edges (compared to 6% in the forest interior). In addition, A. cephalotes acted as ecosys-tem engineers constructing large nests (on average 55 m2: 95%-CI: 22-136) that drastically altered forest structure. The ants opened gaps in the canopy and forest understory at nest sites, which allowed three times as much light to reach the nest surface as compared to the forest understory. This was accompa-nied by an increase in soil temperatures and a reduction in water availability. Modifications of microcli-mate and forest structure greatly surpassed previously published estimates. Since higher light levels were detectable up to about 4 m away from the nest edge, an area roughly four times as big as the actual nest (about 200 and 50 m2, respectively) was impacted by every colony, amounting to roughly 6% of the total area at the forest edge (Meyer et al. in preparation; Ecology). The hypothesized impacts of high cutting pressure and microclimatic alterations at nest sites on forest regeneration were directly tested using transplanted seedlings of six species of forest trees. Nests of A. cephalotes differentially impacted survival and growth of seedlings. Survival differed highly significantly between habitats and species and was generally high in the forest, yet low on nests where it correlated strongly with seed size of the species. These results indicate that the disturbance regime created by leaf-cutting ants differs from other distur-bances, since nest conditions select for plant species that profit from additional light, yet are large-seeded and have resprouting abilities, which are best suited to tolerate repeated defoliation on a nest (Meyer et al. in preparation; Journal of Tropical Ecology). On an ecosystem scale leaf-cutting ants might amplify edge-driven microclimatic alterations by very high rates of herbivory and the maintenance of canopy gaps above frequent nests. By allowing for an increased light penetration Atta may, ultimately, contribute to a dominating, self-replacing pioneer communities at forest edges, possibly creating a positive feed-back loop. Based on the persisting hyper-abundance of leaf-cutting ants at old edges of Coimbra forest and the multifarious impacts documented, we conclude that the ecological importance of leaf-cutting ants in pristine forests, where they are commonly believed to be keystone species despite very low colony densities, is greatly surpassed in anthropogenic landscapes In fragmented forests, Atta has been identified as an essential component of a disturbance regime that causes a post-fragmentation retrogressive succession. Apparently, these forests have reached a new self-replacing secondary state. I suggest additional human interference in form of thoughtful management in order to break this cycle of self-enhancing disturbance and to enable forest regeneration along the edges of threatened forest remnants. Thereby the situation of the forest as a whole can be ameliorated and the chances for a long-term retention of biodiversity in these landscapes increased.
In dieser Arbeit konnte durch ein Assay-System, das ausgehend von publizierten Methoden für S. pneumoniae adaptiert wurde, eine inter- und intraspezies Inhibierung anderer Stämme nachgewiesen werden. Dies gilt für die zwei S. pneumoniae TIGR4 und R6 in denen Bacteriocingene beschrieben waren ebenso, wie für Vertreter gobal verbreiteter Isolate verschiedener Serotypen und unterschiedlicher klonaler Zugehörigkeit. Da bei den verschiedenen Stämmen Unterschiede in der Hemmstärke und im Wirkspektrum beobachtet wurden, wurde sowohl das die Bacteriocingene enthaltene pnc-Cluster, wie auch das spi-Regulationscluster einiger Stämme sequenziert und genauer analysiert. Einige der im pnc-Cluster von S. pneumoniae identifizierten ORFs ließen sich anhand der Merkmale ihrer Genprodukte zu Bacteriocinen der Klasse IIb zu ordnen. Sie besitzen alle gut konservierte Leader-Peptide, variieren jedoch in der AS-Sequenz und im pI ihrer Propeptide. Des Weiteren befinden sich Gene für Immunitätsproteine, Membranproteine, IS-Elemente, AAXProteasen und hypothetische Proteine in den untersuchten pnc-Clustern. Das spi-Cluster zeigte bereits in vorhergehenden Versuchen Einfluss auf die Regulation der stromabwärts gelegenen Gene des pnc-Clusters (de Saizieu et al., 2000; Reichmann & Hakenbeck, 2000). Es ließen sich z.T. Unterschiede in den AS-Sequenzen der Histidinkinase SpiH, dem ABCTransporter SpiABCD und dem Peptidpheromon SpiP zwischen den untersuchten Stämmen erkennen. Damit ließ sich die Selektivität des QS-Regulationsmechanismus, wie er bereits beschrieben wurde, erklären (de Saizieu et al., 2000; Reichmann & Hakenbeck, 2000). Die Bedeutung des spi-TCS, des SpiABCD-Transporter und der CAAX-Protease für Regulation, Produktion und Immunität der Bacteriocinproduktion konnte durch Mutationsanalyse am Beispiel von S. pneumoniae 2306 nachgewiesen werden. Offensichtlich existieren im Stamm S. pneumoniae 2306 jedoch noch andere Bacteriocingene außerhalb des pnc-Clusters, die u.a. auf Grund fehlender genomischer Information nicht identifiziert werden konnten. Die biologische Bedeutung der Bacteriocinproduktion ist vermutlich im Konkurrenzkampf um ökologische Nischen, bzw. Steigerung von möglichen DNA-Rekombinationsereignissen in natürlich kompetenten Streptokokkenspezies durch erhöhte Freisetzung von DNA verwandter Arten zu sehen. Als ein besonders starker Bacteriocinproduzent mit einem breiten Wirkspektrum stellte sich S. pneumonaie 632 heraus. Dies könnte auf einen Zusammenhang mit der globalen Verbreitung hindeuten und stellt somit einen interessanten Aspekt für weitere Forschungen dar.
Diese Arbeit befasste sich mit der Analyse genetischer Veränderungen in der Familie P006 von Piperacillin-resistenten Mutanten von S. pneumoniae R6. Jede der fünf Mutanten P106 bis P506 dieser Familie wurde aus dem jeweiligen Parentalstamm auf ansteigender Konzentration des lytischen ß-Lactams Piperacillin isoliert und zeichnete sich durch eine jeweils höhere minimale Hemmkonzentration (MHK) für Piperacillin aus (Laible et al., 1987). In Mutante P106 konnte mit CpoA bereits eine Resistenzdeterminante für Piperacillin identifiziert werden, welche nicht zu den klassischen Targets der ß-Lactamantibiotika, den Penicillin-Bindeproteinen (Pbp), zählt (Grebe et al., 1997). Die Mutanten P206 und P306 zeigten aufgrund von Mutationen in Pbp2b und Pbp2x eine höhere Resistenz gegen Piperacillin (Hakenbeck et al., 1994; Grebe & Hakenbeck, 1996). In dieser Arbeit standen die Identifizierung und Charakterisierung der bisher unbekannten Resistenzdeterminante für Piperacillin in Mutante P406 und die Charakterisierung der bisher nur unzulänglich untersuchten Nicht-Pbp-Resistenzdeterminante CpoA in Mutante P106 im Mittelpunkt der Analysen. Im Fall der bereits identifizierten Resistenzdeterminante in Mutante P106 handelt es sich um das für eine Glykosyltransferase kodierende Gen cpoA. Die Herstellung einer cpoA-Deletionsmutante, sowie deren Charakterisierung, sollten zur Aufklärung des zugrundeliegenden Resistenzmechanismus in P106 und der Funktion von CpoA beitragen. Durch die Herstellung der cpoA-Deletionsmutante und die Bestimmung der MHK für Piperacillin konnte gezeigt werden, daß ein Ausfall der durch CpoA katalysierten Reaktion einen Anstieg der MHK für Piperacillin in S. pneumoniae R6 bewirkt. Die eingehende phänotypische Charakterisierung zeigte, daß die cpoA-Deletionsmutante zudem eine reduzierte genetische Kompetenz, eine reduzierte Säuretoleranz, einen höheren Bedarf an zweiwertigen Mg-Ionen, eine längere Generationszeit und eine verlangsamte Autolyse im Vergleich zu S. pneumoniae R6 besitzt. Diese Beobachtungen, sowie die Ergebnisse einer Microarray-basierten, globalen Transkriptomanalyse lassen es unter Berücksichtigung der biochemischen Charakterisierung von CpoA (Edman et al., 2003) als wahrscheinlich erscheinen, daß CpoA an der Synthese von α-Galactosyl-Glucosyl-Diacylglycerin, einem der Hauptglycolipide der Cytoplasmamembran von S. pneumoniae beteiligt ist. Die Deletion von cpoA könnte demzufolge auch einen Effekt auf die Menge der Lipoteichonsäuren in der Zellwand von S. pneumoniae besitzen, da der Precursor von α-Galactosyl-Glucosyl-Diacylglycerin, das α-Monoglucosyl-Diacylglycerin vermutlich den Lipidanker der Lipoteichonsäuren darstellt. Basierend auf dieser Annahme konnte ein Modell zur Funktion von CpoA erstellt werden, welches eine Erklärung des Resistenzmechanismus für Piperacillin in Mutante P106, bzw. in der cpoA-Deletionsmutante ermöglichen würde. In Mutante P406 konnten weitere Veränderungen der Pbps bereits ausgeschlossen werden (Hakenbeck et al., 1994; Grebe & Hakenbeck, 1996). Durch eine Microarray-basierte, globale Transkriptomanalyse aller fünf Mutanten der Familie P006 konnten Gene identifiziert werden, deren Transkripte im Vergleich zu S. pneumoniae R6 nur in P406 signifikant veränderte Mengen aufwiesen: Unter diesen Genen befanden sich sechs Gene, welche aufgrund ihrer geclusterten Anordnung im Genom von S. pneumoniae als putative funktionelle Einheit (TCS11-Cluster) angesehen wurden. Diese Gene zeigten eine bis zu 22-fach erhöhte Transkriptmenge in Mutante P406. Zudem konnten nur in Mutante P406 von Genen des an der Teichonsäurebiosynthese beteiligten lic1-Operons eine bis zu 7,9-fach höhere Transkriptmenge beobachtet werden. Keines der Genprodukte des TCS11-Clusters wurde bisher charakterisiert. Aufgrund von Blast- und Domänen-Analysen konnten den Genprodukten putative Funktionen zugeschrieben werden. Die Gene smp11A und smp11B kodieren für zwei putative Membranproteine von 63 und 64 Aminosäuren. Die Gene nbp11 und msp11 kodieren für die ATPase- und die Permease-Komponente eines putativen ABC-Transporters. kin11 und reg11 kodieren für die Histidin-Kinase und den Response-Regulator des bisher uncharakterisierten Zweikomponentensystems 11 (TCS11) in S. pneumoniae. Die Gene sind in der Reihenfolge smp11A, smp11B, nbp11, msp11, kin11 und reg11 auf dem Minus-Strang im Genom von S. pneumoniae lokalisiert. Die Deletion der Gene kin11 und reg11 des TCS11 in P406 führte zum Abfall der MHK für Piperacillin auf die MHK des Parentalstamms P306. Somit konnte die Beteiligung des TCS11 in S. pneumoniae an einem unbekannten Resistenzmechanismus gegen Piperacillin nachgewiesen werden. Die Deletion von nbp11 in P406 führte ebenfalls zum Abfall der MHK für Piperacillin, womit einerseits auch für Nbp11 eine Beteiligung an dem unbekannten Resistenzmechanismus gegen Piperacillin gezeigt werden konnte und andererseits eine transkriptionelle Regulation der Gene smp11A, smp11B, nbp11 und msp11 durch das TCS11 vermutet werden konnte. Durch eine konstitutive, gemeinsame Überexpression der Gene smp11A, smp11B, nbp11 und msp11 in S. pneumoniae R6 wurde gezeigt, daß die Überexpression dieser Gene hinreichend für eine Erhöhung der Resistenz gegen Piperacillin ist. Durch 5´-RACE-Analysen konnten die beiden Transkriptionsstartpunkte P11.1 und P11.2 im Bereich des TCS11-Clusters kartiert werden. P11.1 befindet sich 20bp upstream von smp11A und P11.2 befindet sich 441bp upstream von kin11 innerhalb von msp11. Eine Northern-Analyse und die Durchführung von PCR auf cDNA zeigte, daß die Gene des TCS11-Clusters in zwei überlappenden Transkriptionseinheiten transkribiert werden. Die Gene kin11 und reg11 sind zusammen mit einer downstream von reg11 liegenden Kopie des repetetiven Elements rupA im 11-2-Operon organisiert und werden ausgehend von Promotor P11.2 inklusive des ungewöhnlich langen Leaders von 441bp transkribiert. smp11A, smp11B, nbp11 und msp11 sind im 11-1-Operon organisiert und werden ausgehend von Promotor P11.1 transkribiert. Die Zugehörigkeit von kin11 und reg11 zum 11-1-Operon konnte hingegegen bei den verwendeten Wachstumsbedingungen nicht gezeigt werden. Es konnte bereits gezeigt werden, daß phosphoryliertes Reg11 (Reg11-P) an die Promotor-Region von P11.1 bindet (Marciszewski, Diplomarbeit 2007). Die Bestimmung der Aktivität von P11.1 in S. pneumoniae R6, sowie in kin11-, reg11- und kin11reg11-Deletionsmutanten zeigte, daß P11.1 einer direkten, positiven Regulation durch das TCS11 unterliegt. Durch Sequenzvergleiche der Promotor-Region von P11.1 mit den DNA-Regionen putativer Promotoren von zum TCS11-Cluster ähnlich organisierten Clustern homologer Proteine in Genomen anderer Gram-positiver Bakterien konnten drei hoch konservierte Sequenzabschnitte identifiziert werden, von welchen gezeigt werden konnte, daß sie für die Bindung von Reg11-P in S. pneumoniae essentiell sind. Vermutlich stellt die Konsensus-Sequenz ATGACA(2)TGTCAT(8-9)GTGACA die DNA-Bindestelle von Reg11-P dar. Es konnten keine weiteren, zu 100 % konservierten Sequenzen dieser Art im Genom von S. pneumoniae gefunden werden. In EMSA-Assays mit weniger konservierten Sequenzen dieser Art konnte keine Bindung von Reg11-P beobachtet werden. Somit handelt es sich bei der Bindestelle an P11.1 vermutlich um die einzige Bindestelle von Reg11-P im Genom von S. pneumoniae. Von P11.2 konnte durch die Bestimmung der Promotor-Aktivität in Deletionsmutanten einzelner Gene des TCS11-Clusters gezeigt werden, daß auch dieser Promotor einer Regulation unterliegt, welche jedoch nicht durch die Bindung von Reg11-P, oder von unphosphoryliertem Reg11 vermittelt wird. Die Aktivität von P11.2 ist hierbei jedoch einerseits Abhängig von der Anwesenheit von Kin11 und andererseits entweder von der Funktion der Membranproteine Smp11A und Smp11B, oder von der durch Nbp11/Msp11 transportierten unbekannten Substanz. Die Bestimmung der Promotor-Aktivität von P11.2 in Deletionsmutanten einzelner Gene des TCS11-Clusters und die unterschiedlichen phänotypischen Effekte einer kin11-, reg11- und einer kin11reg11-Deletionsmutante zeigten, daß unphosphoryliertes Reg11 ebenfalls in der Lage sein muß, die Transkription von noch unbekannten Zielgenen durch Bindung an eine weitere, unbekannte DNA-Bindestelle zu regulieren. Sowohl durch die Deletion eines Großteils des 441nt langen Leaders des Transkripts des 11-2-Operons, als auch durch die Deletion zweier verschiedener Abschnitte des 3´-untranslatierten Bereichs dieses Transkripts konnte gezeigt werden, daß der 5´- und der 3´-untranslatierte Bereich an noch unbekannten regulatorischen Mechanismen beteiligt sind. Die Deletion einzelner Gene des TCS11-Clusters, sowie die gemeinsame Überexpression von Smp11A, Smp11B, Nbp11 und Msp11 bewirkten die gleichen phänotypischen Effekte wie die charakterisierte cpoA-Deletionsmutante. So konnte in Wachstumsexperimenten der gleiche Einfluß auf die Generationszeit, die maximale Zelldichte und die Autolyse, wie in der cpoA-Deletionsmutante, gezeigt werden. Die Microarray-basierte Transkriptomanalyse zweier Deletionsmutanten von Genen des TCS11-Clusters zeigte zudem, daß sich infolge dieser Deletionen größtenteils die Transkriptmengen solcher Gene ändern, welche auch auf eine Deletion von cpoA reagieren. Hierzu zählen neben zahlreichen Genen für Proteine unbekannter Funktion die Gene des Kompetenzregulons, des blp-Clusters, sowie des Cholinbindeproteins PcpA und der Subtilisin-artigen Proteinase PrtA. Die in Mutante P406 beobachteten höheren Transkriptmengen von an der Teichonsäurebiosynthese beteiligten Genen des lic1-Operons konnten durch die Deletion von kin11reg11 revidiert werden. Die konstitutive gemeinsame Überexpression von Smp11A, Smp11B, Nbp11 und Msp11, sowie die Bestimmung der Aktivität des Promotors P1spr1149 des lic1-Operons zeigte, daß die Transkription der Gene des lic1-Operons indirekt von der Menge an Smp11A, Smp11B, Nbp11 und Msp11 abhängt. Diese Ergebnisse führten zu der Hypothese, daß das TCS11-Cluster und die Glykosyltransferase CpoA an den gleichen, oder zumindest an sich beeinflussenden, Membran-assoziierten Vorgängen beteiligt sind. Folglich konnte durch die molekulargenetische Charakterisierung des in ähnlicher genetischer Organisation in Gram-positiven Bakterien weit verbreiteten TCS11-Clusters erstmals ein Hinweis auf die putative physiologische Funktion des TCS11-Clusters in S. pneumoniae erhalten werden.
Bei dem in dieser Arbeit untersuchten Antibiotikum Vancoresmycin handelt es sich um ein neuartiges Tetramsäurederivat, das aus der Fermentationsbrühe des Aktinomyceten Amycolatopsis vancoresmycina gewonnen wurde. Da der Wirkungsmechanismus und mögliche Resistenzmechanismen unbekannt sind, soll diese Arbeit zu deren Aufklärung beitragen. Dazu wurden verschiedene Determinanten für die Resistenz gegen Vancoresmycin in Streptococcus pneumoniae R6 analysiert. Zuerst wurden acht vancoresmycinresistente Labormutanten von Streptococcus pneumoniae R6 bei einer Konzentration von 0,5 µg/ml Vancoresmycin isoliert und phänotypisch charakterisiert. Es konnte eine bakteriolytische Wirkung von Vancoresmycin auf S. pneumoniae gezeigt werden. Zur Identifizierung genetischer Resistenzdeterminanten wurden verschiedene Strategien verfolgt. Zum einen wurden Genbanken von der Mutante aR6 erstellt und nach der resistenzvermittelnden DNA-Sequenz durch Transformation des sensitiven Rezipienten S. pneumoniae R6 gesucht. Zum anderen wurden die Transkriptome der Mutanten aR6, eR6, fR6 und gR6 mit dem des Referenzstammes R6 durch mikroarraybasierte Studien verglichen, um Transkriptmengenunterschiede zu detektieren. Durch das Screening der Genbanken konnten zwei Determinanten identifiziert werden, deren Funktionen durch Insertion des IS10-R-Elementes eingeschränkt waren. Dabei handelte es sich um das Gen rpsI, das für das kleine ribosomale Protein S9 codiert, und um das Gen dexS, das für eine Dextranglucosidase codiert. Der Stamm R6-rpsI::IS10-R zeichnete sich durch ein verlangsamtes Wachstum aus, was zu der beobachteten erhöhten Vancoresmycinresistenz beitragen könnte. Für das Gen dexS konnte eine direkte Beteiligung an der Resistenz gegenüber Vancoresmycin nicht nachgewiesen werden. Durch einen Transkriptomvergleich der Mutanten aR6, eR6 und fR6 mit dem Referenzstamm R6 wurde festgestellt, dass die Transkriptmengen des Genes copY, das für einen Transkriptionsrepressor codiert, und der Gene eines Cyl-Operons, deren Genprodukte vermutlich an der Bildung, Modifikation und Sezernierung eines Cytolysins beteiligt sind, in den Mutanten aR6, eR6 und fR6 erhöht waren. Mit Hilfe ausführlicher Analysen wurde nachgewiesen, dass sowohl das Gen copY als auch die Gene des Cyl-Operons nicht direkt an einer Resistenz gegenüber Vancoresmycin beteiligt sind. Im Transkriptom der Mutante gR6 fielen zwei Gene (spr0812 = abcA und spr0813 = abcB), die für einen ABC-Transporter codieren, durch erhöhte Transkriptmengen im Vergleich zu den entsprechenden Transkriptmengen des Referenzstammes R6 auf. Die Funktion dieses ABC-Transporters bei der Resistenz gegenüber Vancoresmycin wurde detailliert analysiert, da ein Aminosäureaustausch im C-terminalen Ende der Permeaseuntereinheit AbcB in der Mutante gR6 identifiziert wurde (Gln581 ® Stop). Durch Transformation des Rezipienten R6 mit der entsprechenden DNA-Sequenz konnte für die Transformanten (gTR) eine erhöhte Vancoresmycinresistenz gezeigt werden. Außerdem konnte durch Deletion des ABC-Transporter-Operons in der Mutante gR6 eine MHK-Erniedrigung auf das Ausgangsniveau des Referenzstammes R6 herbeigeführt werden. Die im Transkriptom der Mutante gR6 detektierten erhöhten Transkriptmengen der Gene abcA und abcB wurden durch quantitative Real-Time-PCR verifiziert. In der Transformante gTR wurden ebenfalls erhöhte Transkriptmengen der Gene abcA und abcB nachgewiesen. Sowohl in der Mutante gR6 als auch in der Transformante gTR waren die Transkriptmengen der Gene abcA und abcB etwa um das Sechsfache im Vergleich zu den jeweiligen Transkriptmengen des Referenzstammes R6 erhöht. Um die Ursache der erhöhten Transkriptmengen aufzuklären, wurde die Promotoraktivität des ABC-Transporter-Operons in der Mutante gR6 und in der Transformante gTR mit Hilfe von lacZ- Reporterfusionskonstrukten analysiert. Die Promotoraktivitäten in der Mutante gR6 und in der Transformante gTR unterschieden sich nicht von der des Referenzstammes R6. Dieses Resultat lässt vermuten, dass die erhöhten Transkriptmengen der Gene abcA und abcB nicht auf eine gesteigerte Promotoraktivität zurückgeführt werden können, sondern dass die Stabilität der Transkripte durch die Nonsensemutation in der Mutante gR6 und in der Transformante gTR erhöht war. In der Literatur werden homologe ABC-Transporter aus Bacillus subtilis bzw. S. mutans beschrieben, die in eine Resistenz gegenüber Bacitracin involviert sind (Ohki et al., 2003; Tsuda et al., 2002). Aufgrund dessen wurde eine Beteiligung des hier untersuchten ABC-Transporters an einer Bacitracinresistenz überprüft. Mit Hilfe einer MHK-Bestimmung für Bacitracin wurde ein fünffach erniedrigter MHK-Wert für die Mutante gR6 und für die Transformante gTR im Vergleich zum Referenzstamm R6 festgestellt. Das bedeutet, dass der mutierte ABC-Transporter der Mutante gR6 sowohl in eine erhöhte Resistenz gegenüber Vancoresmycin als auch in eine erhöhte Sensitivität gegenüber Bacitracin involviert ist.
Das Zwei-Komponenten System CiaRH beeinflusst die genetische Kompetenz, das Lyseverhalten, die Virulenz und die Resistenz gegen Cefotaxim von S. pneumoniae. Der entscheidende Einfluss von CiaRH für S. pneumoniae zeigt sich auch darin, dass in mehreren Transkriptomstudien eine große Zahl von Genen identifiziert wurde, die in Abhängigkeit des Zwei-Komponenten Systems transkribiert werden. In dieser Arbeit konnten nun die Gene, deren Transkription direkt durch Bindung des Response Regulators CiaR in ihrem Promotorbereich reguliert wird, eindeutig definiert werden. Durch die Kombination von transkriptionellen Reportergenfusionen in dem neu konstruierten Promoter Probe Plasmid pPP2, Bandshiftassays und Mutageneseexperimenten wurde als Bindestelle von CiaR ein Direct Repeat mit der Sequenz TTTAAG-N5-TTTAAG identifiziert. Für 16 Promotoren mit dieser Bindestelle wurden eine Bindung von CiaR und eine CiaRH abhängige Expression nachgewiesen. Von den 16 Promotoren sind 15 positiv und nur einer negativ reguliert. Insgesamt besteht das CiaRH Regulon aus 30 Genen, wobei 19 Gene in 6 Operons organisiert sind. Zum CiaRH Regulon gehören ciaRH selbst, eine Vielzahl von Genen, die am Zellwandmetabolismus beteiligt sind (lic1 Operon, dlt Operon), die Gene von fünf kleinen nicht-kodierenden RNAs (ccnA-E), die Stressprotease HtrA, das Chromosomensegregationsprotein ParB, die Peptidyl-Prolyl Isomerase PpmA, die Maltoseverwertungsgene malMP, das Phosphotransferasesystem ManLMN und mehrere Gene mit unbekannter Funktion. Die eindeutige Identifizierung der Gene des Regulons des Zwei-Komponenten Systems CiaRH ermöglicht eine detaillierte Analyse der Zusammenhänge mit den cia-vermittelten Phänotypen. In einem zweiten Teil dieser Arbeit wurde darauf eingegangen, welche Rolle die Histidinkinase CiaH spielt und woher das Phosphat für die Phosphorylierung des Response Regulators CiaR stammt. Es wurde durch Einbringen der Mutation D51A in CiaR gezeigt, dass das Aspartat an dieser Stelle des Proteins entscheidend für die Aktivität von CiaR als transkriptionellen Regulator ist. CiaH ist hingegen während des exponentiellen Wachstums in C-Medium für die Aktivität von CiaR verzichtbar. Die Promotoren des CiaRH Regulons zeigten in Abwesenheit der Kinase während dieser Wachstumsphase keine veränderte Aktivität. Die Phosphorylierung von CiaR muss daher auch über einen anderen Weg, beispielsweise über Acetylphosphat, erfolgen können. Deshalb wurde auch der Einfluss der Inaktivierung von spxB, dem Gen für eine Pyruvatoxidase, welche die Synthese eines Großteils des zellulären Acetylphosphats in S. pneumoniae katalysiert, untersucht. Eine entscheidende Rolle wurde für CiaH bei Eintritt in die stationäre Wachstumsphase beobachtet. Es konnte gezeigt werden, dass zu diesem Zeitpunkt nur bei vorhandenem CiaH ein Anstieg der Aktivität der Promotoren des CiaRH Regulons stattfindet. Dies deutet darauf hin, dass die Histidinkinase beim Übergang in die stationäre Phase ein Signal erhält, das die Aktivierung des CiaRH Regulons stimuliert. Möglicherweise können daraus Ansätze zur Identifizierung des bisher unbekannten Signals von CiaH entwickelt werden.