### Refine

#### Year of publication

- 1999 (425)
- 1998 (116)
- 2000 (96)
- 2007 (92)
- 2018 (89)
- 1996 (88)
- 2015 (82)
- 1995 (81)
- 2016 (80)
- 2009 (78)
- 2014 (77)
- 1997 (76)
- 2019 (75)
- 1994 (70)
- 2005 (68)
- 2006 (67)
- 2008 (66)
- 2001 (64)
- 2003 (63)
- 2013 (62)
- 2012 (61)
- 2004 (57)
- 2010 (56)
- 2002 (54)
- 2011 (51)
- 2017 (51)
- 1993 (42)
- 1992 (40)
- 1991 (33)
- 2020 (22)
- 1990 (11)
- 1989 (5)
- 1987 (4)
- 1988 (4)
- 1979 (3)
- 1984 (3)
- 1985 (3)
- 1980 (1)
- 1981 (1)

#### Document Type

- Preprint (1034)
- Doctoral Thesis (643)
- Report (399)
- Article (215)
- Conference Proceeding (26)
- Diploma Thesis (22)
- Periodical Part (21)
- Master's Thesis (12)
- Working Paper (12)
- Lecture (8)

#### Language

- English (2417) (remove)

#### Keywords

- AG-RESY (47)
- PARO (25)
- SKALP (15)
- Visualisierung (13)
- Wavelet (13)
- Case-Based Reasoning (11)
- Inverses Problem (11)
- RODEO (11)
- finite element method (11)
- Mehrskalenanalyse (10)

#### Faculty / Organisational entity

- Fachbereich Mathematik (948)
- Fachbereich Informatik (662)
- Fachbereich Physik (250)
- Fraunhofer (ITWM) (203)
- Fachbereich Maschinenbau und Verfahrenstechnik (114)
- Fachbereich Elektrotechnik und Informationstechnik (83)
- Fachbereich Chemie (59)
- Fachbereich Biologie (43)
- Fachbereich Sozialwissenschaften (28)
- Fachbereich Wirtschaftswissenschaften (14)

III/V semiconductor quantum dots (QD) are in the focus of optoelectronics research for about 25 years now. Most of the work
has been done on InAs QD on GaAs substrate. But, e.g., Ga(As)Sb (antimonide) QD on GaAs substrate/buffer have also gained
attention for the last 12 years.There is a scientific dispute on whether there is a wetting layer before antimonide QD formation, as
commonly expected for Stransky-Krastanov growth, or not. Usually ex situ photoluminescence (PL) and atomic force microscope
(AFM) measurements are performed to resolve similar issues. In this contribution, we show that reflectance anisotropy/difference
spectroscopy (RAS/RDS) can be used for the same purpose as an in situ, real-time monitoring technique. It can be employed not
only to identify QD growth via a distinct RAS spectrum, but also to get information on the existence of a wetting layer and its
thickness. The data suggest that for antimonide QD growth the wetting layer has a thickness of 1 ML (one monolayer) only.

Modern society relies on convenience services and mobile communication. Cloud computing is the current trend to make data and applications available at any time on every device. Data centers concentrate computation and storage at central locations, while they claim themselves green due to their optimized maintenance and increased energy efﬁciency. The key enabler for this evolution is the microelectronics industry. The trend to power efﬁcient mobile devices has forced this industry to change its design dogma to: ”keep data locally and reduce data communication whenever possible”. Therefore we ask: is cloud computing repeating the aberrations of its enabling industry?

Previously in this journal we have reported on fundamental transversemode selection (TMS#0) of broad area semiconductor lasers
(BALs) with integrated twice-retracted 4f set-up and film-waveguide lens as the Fourier-transform element. Now we choose and
report on a simpler approach for BAL-TMS#0, i.e., the use of a stable confocal longitudinal BAL resonator of length L with a
transverse constriction.The absolute value of the radius R of curvature of both mirror-facets convex in one dimension (1D) is R = L
= 2f with focal length f.The round trip length 2L = 4f againmakes up for a Fourier-optical 4f set-up and the constriction resulting
in a resonator-internal beam waist stands for a Fourier-optical low-pass spatial frequency filter. Good TMS#0 is achieved, as long
as the constriction is tight enough, but filamentation is not completely suppressed.
1. Introduction
Broad area (semiconductor diode) lasers (BALs) are intended
to emit high optical output powers (where “high” is relative
and depending on the material system). As compared to
conventional narrow stripe lasers, the higher power is distributed
over a larger transverse cross-section, thus avoiding
catastrophic optical mirror damage (COMD). Typical BALs
have emitter widths of around 100 ????m.
Thedrawback is the distribution of the high output power
over a large number of transverse modes (in cases without
countermeasures) limiting the portion of the light power in
the fundamental transverse mode (mode #0), which ought to
be maximized for the sake of good light focusability.
Thus techniques have to be used to support, prefer, or
select the fundamental transverse mode (transverse mode
selection TMS#0) by suppression of higher order modes
already upon build-up of the laser oscillation.
In many cases reported in the literature, either a BAL
facet, the

2D quantum dilaton gravitational Hamiltonian, boundary terms and new definition for total energy
(1995)

The ADM and Bondi mass for the RST model have been first discussed from Hawking and Horowitz's argument. Since there is a nonlocal term in the RST model, the RST lagrangian has to be localized so that Hawking and Horowitz's proposal can be carried out. Expressing the localized RST action in terms of the ADM formulation, the RST Hamiltonian can be derived, meanwhile keeping track of all boundary terms. Then the total boundary terms can be taken as the total energy for the RST model. Our result shows that the previous expression for the ADM and Bondi mass actually needs to be modified at quantum level, but at classical level, our mass formula can be reduced to that given by Bilal and Kogan [5] and de Alwis [6]. It has been found that there is a new contribution to the ADM and Bondi mass from the RST boundary due to the existence of the hidden dynamical field. The ADM and Bondi mass with and without the RST boundary for the static and dynamical solutions have been discussed respectively in detail, and some new properties have been found. The thunderpop of the RST model has also been encountered in our new Bondi mass formula.

This paper considers the numerical solution of a transmission boundary-value problem for the time-harmonic Maxwell equations with the help of a special finite volume discretization. Applying this technique to several three-dimensional test problems, we obtain large, sparse, complex linear systems, which are solved by using BiCG, CGS, BiCGSTAB resp., GMRES. We combine these methods with suitably chosen preconditioning matrices and compare the speed of convergence.

Destructive diseases of the lung like lung cancer or fibrosis are still often lethal. Also in case of fibrosis in the liver, the only possible cure is transplantation.
In this thesis, we investigate 3D micro computed synchrotron radiation (SR\( \mu \)CT) images of capillary blood vessels in mouse lungs and livers. The specimen show so-called compensatory lung growth as well as different states of pulmonary and hepatic fibrosis.
During compensatory lung growth, after resecting part of the lung, the remaining part compensates for this loss by extending into the empty space. This process is accompanied by an active vessel growing.
In general, the human lung can not compensate for such a loss. Thus, understanding this process in mice is important to improve treatment options in case of diseases like lung cancer.
In case of fibrosis, the formation of scars within the organ's tissue forces the capillary vessels to grow to ensure blood supply.
Thus, the process of fibrosis as well as compensatory lung growth can be accessed by considering the capillary architecture.
As preparation of 2D microscopic images is faster, easier, and cheaper compared to SR\( \mu \)CT images, they currently form the basis of medical investigation. Yet, characteristics like direction and shape of objects can only properly be analyzed using 3D imaging techniques. Hence, analyzing SR\( \mu \)CT data provides valuable additional information.
For the fibrotic specimen, we apply image analysis methods well-known from material science. We measure the vessel diameter using the granulometry distribution function and describe the inter-vessel distance by the spherical contact distribution. Moreover, we estimate the directional distribution of the capillary structure. All features turn out to be useful to characterize fibrosis based on the deformation of capillary vessels.
It is already known that the most efficient mechanism of vessel growing forms small torus-shaped holes within the capillary structure, so-called intussusceptive pillars. Analyzing their location and number strongly contributes to the characterization of vessel growing. Hence, for all three applications, this is of great interest. This thesis provides the first algorithm to detect intussusceptive pillars in SR\( \mu \)CT images. After segmentation of raw image data, our algorithm works automatically and allows for a quantitative evaluation of a large amount of data.
The analysis of SR\( \mu \)CT data using our pillar algorithm as well as the granulometry, spherical contact distribution, and directional analysis extends the current state-of-the-art in medical studies. Although it is not possible to replace certain 3D features by 2D features without losing information, our results could be used to examine 2D features approximating the 3D findings reasonably well.

The various uses of fiber-reinforced composites, for example in the enclosures of planes, boats and cars, generates the demand for a detailed analysis of these materials. The final goal is to optimize fibrous materials by the means of “virtual material design”. New fibrous materials are virtually created as realizations of a stochastic model and evaluated with physical simulations. In that way, materials can be optimized for specific use cases, without constructing expensive prototypes or performing mechanical experiments. In order to design a practically fabricable material, the stochastic model is first adapted to an existing material and then slightly modified. The virtual reconstruction of the existing material requires a precise knowledge of the geometry of its microstructure. The first part of this thesis describes a fiber quantification method by the means of local measurements of the fiber radius and orientation. The combination of a sparse chord length transform and inertia moments leads to an efficient and precise new algorithm. It outperforms existing approaches with the possibility to treat different fiber radii within one sample, with high precision in continuous space and comparably fast computing time. This local quantification method can be directly applied on gray value images by adapting the directional distance transforms on gray values. In this work, several approaches of this kind are developed and evaluated. Further characterization of the fiber system requires a segmentation of each single fiber. Using basic morphological operators with specific structuring elements, it is possible to derive a probability for each pixel describing if the pixel belongs to a fiber core in a region without overlapping fibers. Tracking high probabilities leads to a partly reconstruction of the fiber cores in non crossing regions. These core parts are then reconnected over critical regions, if they fulfill certain conditions ensuring the affiliation to the same fiber. In the second part of this work, we develop a new stochastic model for dense systems of non overlapping fibers with a controllable level of bending. Existing approaches in the literature have at least one weakness in either achieving high volume fractions, producing non overlapping fibers, or controlling the bending or the orientation distribution. This gap can be bridged by our stochastic model, which operates in two steps. Firstly, a random walk with the multivariate von Mises-Fisher orientation distribution defines bent fibers. Secondly, a force-biased packing approach arranges them in a non overlapping configuration. Furthermore, we provide the estimation of all parameters needed for the fitting of this model to a real microstructure. Finally, we simulate the macroscopic behavior of different microstructures to derive their mechanical and thermal properties. This part is mostly supported by existing software and serves as a summary of physical simulation applied to random fiber systems. The application on a glass fiber reinforced polymer proves the quality of the reconstruction by our stochastic model, as the effective properties match for both the real microstructure and the realizations of the fitted model. This thesis includes all steps to successfully perform virtual material design on various data sets. With novel and efficient algorithms it contributes to the science of analysis and modeling of fiber reinforced materials.

This paper presents a new approach to parallel path planning for industrial robot arms with six degrees of freedom in an on-line given 3D environment. The method is based a best-first search algorithm and needs no essential off-line computations. The algorithm works in an implicitly discrete configuration space. Collisions are detected in the Cartesian workspace by hierarchical distance computation based on polyhedral models of the robot and the obstacles. By decomposing the 6D configuration space into hypercubes and cyclically mapping them onto multiple processing units, a good load distribution can be achieved. We have implemented the parallel path planner on a workstation cluster with 9 PCs and tested the planner for several benchmark environments. With optimal discretisation, the new approach usually shows very good speedups. In on-line provided environments with static obstacles, the parallel planning times are only a few seconds.

We have presented here a two-dimensional kinetical scheme for equations governing the motion of a compressible flow of an ideal gas (air) based on the Kaniel method. The basic flux functions are computed analytically and have been used in the organization of the flux computation. The algorithm is implemented and tested for the 1D shock and 2D shock-obstacle interaction problems.

In this paper a three dimensional stochastic model for the lay-down of fibers on a moving conveyor belt in the production process of nonwoven materials is derived. The model is based on stochastic diferential equations describing the resulting position of the fiber on the belt under the influence of turbulent air ows. The model presented here is an extension of an existing surrogate model, see [6, 3].

The World Wide Web is a medium through which a manufacturer may allow Internet visitors to customize or compose his products. Due to missing or rapidly changing standards these applications are often restricted to relatively simple CGI or JAVA based scripts. Usually, results like images or movies are stored in a database and are transferred on demand to the web-user. Viper (Visualisierung parametrisch editierbarer Raumkomponenten) is a Toolkit [VIP96] written in C++ and JAVA which provides 3D-modeling and visualization methodsfor developing complex web-based applications. The Toolkit has been designed to built a prototype, which can be used to construct and visualize prefabricated homes on the Internet. Alternative applications are outlined in this paper. Within Viper, all objects are stored in a scene graph (VSSG ), which is the basic data structure of the Toolkit. To show the concept and structure of the Toolkit, functionality, and implementation of the prototype are described.

The classic approach in robust optimization is to optimize the solution with respect to the worst case scenario. This pessimistic approach yields solutions that perform best if the worst scenario happens, but also usually perform bad on average. A solution that optimizes the average performance on the other hand lacks in worst-case performance guarantee.
In practice it is important to find a good compromise between these two solutions. We propose to deal with this problem by considering it from a bicriteria perspective. The Pareto curve of the bicriteria problem visualizes exactly how costly it is to ensure robustness and helps to choose the solution with the best balance between expected and guaranteed performance.
Building upon a theoretical observation on the structure of Pareto solutions for problems with polyhedral feasible sets, we present a column generation approach that requires no direct solution of the computationally expensive worst-case problem. In computational experiments we demonstrate the effectivity of both the proposed algorithm, and the bicriteria perspective in general.

We consider the problem of evacuating a region with the help of buses. For a given set of possible collection points where evacuees gather, and possible shelter locations where evacuees are brought to, we need to determine both collection points and shelters we would like to use, and bus routes that evacuate the region in minimum time.
We model this integrated problem using an integer linear program, and present a branch-cut-and-price algorithm that generates bus tours in its pricing step. In computational experiments we show that our approach is able to solve instances of realistic size in sufficient time for practical application, and considerably outperforms the usage of a generic ILP solver.

3D integration of solid-state memories and logic, as demonstrated by the Hybrid Memory Cube (HMC), offers major opportunities for revisiting near-memory computation and gives new hope to mitigate the power and performance losses caused by the “memory wall”. In this paper we present the first exploration steps towards design of the Smart Memory Cube (SMC), a new Processor-in-Memory (PIM) architecture that enhances the capabilities of the logic-base (LoB) in HMC. An accurate simulation environment has been developed, along with a full featured software stack. All offloading and dynamic overheads caused by the operating system, cache coherence, and memory management are considered, as well. Benchmarking results demonstrate up to 2X performance improvement in comparison with the host SoC, and around 1.5X against a similar host-side accelerator. Moreover, by scaling down the voltage and frequency of PIM’s processor it is possible to reduce energy by around 70% and 55% in comparison with the host and the accelerator, respectively.

Contrary to symbolic learning approaches, which represent a learned concept explicitly, case-based approaches describe concepts implicitly by a pair (CB; sim), i.e. by a measure of similarity sim and a set CB of cases. This poses the question if there are any differences concerning the learning power of the two approaches. In this article we will study the relationship between the case base, the measure of similarity, and the target concept of the learning process. To do so, we transform a simple symbolic learning algorithm (the version space algorithm) into an equivalent case- based variant. The achieved results strengthen the hypothesis of the equivalence of the learning power of symbolic and case-based methods and show the interdependency between the measure used by a case-based algorithm and the target concept.

Retrieving multiple cases is supposed to be an adequate retrieval strategy for guiding partial-order planners because of the recognized flexibility of these planners to interleave steps in the plans. Cases are combined by merging them. In this paper, we will examine two different kinds of merging cases in the context of partial-order planning. We will see that merging cases can be very difficult if the cases are merged eagerly. On the other hand, if cases are merged by avoiding redundant steps, the guidance of the additional cases tends to decrease with the number of covered goals and retrieved cases in domains having a certain kind of interactions. Thus, to retrieve a single case covering many of the goals of the problem or to retrieve fewer cases covering many of the goals is at least equally effective as to retrieve several cases covering all goals in these domains.

A Case Study on Specifikation,Detection and Resolution of IN Feature Interactions with Estelle
(1994)

We present an approach for the treatment of Feature Interactions in Intelligent Networks. The approach is based on the formal description technique Estelle and consists of three steps. For the first step, a specification style supporting the integration of additional features into a basic service is introduced . As a result, feature integration is achieved by adding specification text, i.e . on a purely syntactical level. The second step is the detection of feature interactions resulting from the integration of additional features. A formal criterion is given that can be used for the automatic detection of a particular class of feature interactions. In the third step, previously detected feature interactions are resolved. An algorithm has been devised that allows the automatical incorporation of high-level design decisions into the formal specification. The presented approach is applied to the Basic Call Service and several supplementary interacting features.

A large set of criteria to evaluate formal methods for reactive systems is presented. To make this set more comprehensible, it is structured according to a Concept-Model of formal methods. It is made clear that it is necessary to make the catalogue more specific before applying it. Some of the steps needed to do so are explained. As an example the catalogue is applied within the context of the application domain building automation systems to three different formal methods: SDL, statecharts, and a temporallogic.

In this paper we give the definition of a solution concept in multicriteria combinatorial optimization. We show how Pareto, max-ordering and lexicographically optimal solutions can be incorporated in this framework. Furthermore we state some properties of lexicographic max-ordering solutions, which combine features of these three kinds of optimal solutions. Two of these properties, which are desirable from a decision maker" s point of view, are satisfied if and only of the solution concept is that of lexicographic max-ordering.

In this paper we develop a data-driven mixture of vector autoregressive models with exogenous components. The process is assumed to change regimes according to an underlying Markov process. In contrast to the hidden Markov setup, we allow the transition probabilities of the underlying Markov process to depend on past time series values and exogenous variables. Such processes have potential applications to modeling brain signals. For example, brain activity at time t (measured by electroencephalograms) will can be modeled as a function of both its past values as well as exogenous variables (such as visual or somatosensory stimuli). Furthermore, we establish stationarity, geometric ergodicity and the existence of moments for these processes under suitable conditions on the parameters of the model. Such properties are important for understanding the stability properties of the model as well as deriving the asymptotic behavior of various statistics and model parameter estimators.

A new approach for modelling time that does not rely on the concept of a clock is proposed. In order to establish a notion of time, system behaviour is represented as a joint progression of multiple threads of control, which satisfies a certain set of axioms. We show that the clock-independent time model is related to the well-known concept of a global clock and argue that both approaches establish the same notion of time.

Coloring terms (rippling) is a technique developed for inductive theorem proving which uses syntactic differences of terms to guide the proof search. Annotations (colors) to terms are used to maintain this information. This technique has several advantages, e.g. it is highly goal oriented and involves little search. In this paper we give a general formalization of coloring terms in a higher-order setting. We introduce a simply-typed lambda calculus with color annotations and present an appropriate (pre-)unification algorithm. Our work is a formal basis to the implementation of rippling in a higher-order setting which is required e.g. in case of middle-out reasoning. Another application is in the construction of natural language semantics, where the color annotations rule out linguistically invalid readings that are possible using standard higher-order unification.

This paper develops a sound and complete transformation-based algorithm forunification in an extensional order-sorted combinatory logic supporting constantoverloading and a higher-order sort concept. Appropriate notions of order-sortedweak equality and extensionality - reflecting order-sorted fij-equality in thecorresponding lambda calculus given by Johann and Kohlhase - are defined, andthe typed combinator-based higher-order unification techniques of Dougherty aremodified to accommodate unification with respect to the theory they generate. Thealgorithm presented here can thus be viewed as a combinatory logic counterpartto that of Johann and Kohlhase, as well as a refinement of that of Dougherty, andprovides evidence that combinatory logic is well-suited to serve as a framework forincorporating order-sorted higher-order reasoning into deduction systems aimingto capitalize on both the expressiveness of extensional higher-order logic and theefficiency of order-sorted calculi.

In this work, we analyze two important and simple models of short rates, namely Vasicek and CIR models. The models are described and then the sensitivity of the models with respect to changes in the parameters are studied. Finally, we give the results for the estimation of the model parameters by using two different ways.

Let \(a_1,\dots,a_n\) be independent random points in \(\mathbb{R}^d\) spherically symmetrically but not necessarily identically distributed. Let \(X\) be the random polytope generated as the convex hull of \(a_1,\dots,a_n\) and for any \(k\)-dimensional subspace \(L\subseteq \mathbb{R}^d\) let \(Vol_L(X) :=\lambda_k(L\cap X)\) be the volume of \(X\cap L\) with respect to the \(k\)-dimensional Lebesgue measure \(\lambda_k, k=1,\dots,d\). Furthermore, let \(F^{(i)}\)(t):= \(\bf{Pr}\) \(\)(\(\Vert a_i \|_2\leq t\)),
\(t \in \mathbb{R}^+_0\) , be the radial distribution function of \(a_i\). We prove that the expectation
functional \(\Phi_L\)(\(F^{(1)}, F^{(2)},\dots, F^{(n)})\) := \(E(Vol_L(X)\)) is strictly decreasing in
each argument, i.e. if \(F^{(i)}(t) \le G^{(i)}(t)t\), \(t \in {R}^+_0\), but \(F^{(i)} \not\equiv G^{(i)}\), we show \(\Phi\) \((\dots, F^{(i)}, \dots\)) > \(\Phi(\dots,G^{(i)},\dots\)). The proof is clone in the more general framework
of continuous and \(f\)- additive polytope functionals.

Treating polyatomic gases in kinetic gas theory requires an appropriate molecule model taking into account the additional internal structure of the gas particles. In this paper we describe two such models, each arising from quite different approaches to this problem. A simulation scheme for solving the corresponding kinetic equations is presented and some numerical results to 1D shockwaves are compared.

Simulation methods like DSMC are an efficient tool to compute rarefied gas flows. Using supercomputers it is possible to include various real gas effects like vibrational energies or chemical reactions in a gas mixture. Nevertheless it is still necessary to improve the accuracy of the current simulation methods in order to reduce the computational effort. To support this task the paper presents a comparison of the classical DSMC method with the so called finite Pointset Method. This new approach was developed during several years in the framework of the European space project HERMES. The comparison given in the paper is based on two different testcases: a spatially homogeneous relaxation problem and a 2-dimensional axisymmetric flow problem at high Mach numbers.

We consider the problem of evacuating an urban area caused by a natural or man-made disaster. There are several planning aspects that need to be considered in such a scenario, which are usually considered separately, due to their computational complexity. These aspects include: Which shelters are used to accommodate evacuees? How to schedule public transport for transit-dependent evacuees? And how do public and individual traffic interact? Furthermore, besides evacuation time, also the risk of the evacuation needs to be considered.
We propose a macroscopic multi-criteria optimization model that includes all of these questions simultaneously. As a mixed-integer programming formulation cannot handle instances of real-world size, we develop a genetic algorithm of NSGA-II type that is able to generate feasible solutions of good quality in reasonable computation times.
We extend the applicability of these methods by also considering how to aggregate instance data, and how to generate solutions for the original instance starting from a reduced solution.
In computational experiments using real-world data modelling the cities of Nice in France and Kaiserslautern in Germany, we demonstrate the effectiveness of our approach and compare the trade-off between different levels of data aggregation.

This paper describes a system that supports softwaredevelopment processes in virtual software corporations. A virtual software corporation consists of a set of enterprisesthat cooperate in projects to fulfill customer needs. Contracts are negotiated in the whole lifecycle of asoftware development project. The negotiations really influence the performance of a company. Therefore, it isuseful to support negotiations and planning decisions with software agents. Our approach integrates software agentapproaches for negotiation support with flexible multiserver workflow engines.

In this article we give a sufficient condition that a simply connected flexible body does not penetrate itself, if it is subjected to a continuous deformation. It is shown that the deformation map is automatically injective, if it is just locally injective and injective on the boundary of the body. Thereby, it is very remarkable that no higher regularity assumption than continuity for the deformation map is required. The proof exclusively relies on homotopy methods and the Jordan-Brouwer separation theorem.

A Consistent Large Eddy Approach for Lattice Boltzmann Methods and its Application to Complex Flows
(2015)

Lattice Boltzmann Methods have shown to be promising tools for solving fluid flow problems. This is related to the advantages of these methods, which are among others, the simplicity in handling complex geometries and the high efficiency in calculating transient flows. Lattice Boltzmann Methods are mesoscopic methods, based on discrete particle dynamics. This is in contrast to conventional Computational Fluid Dynamics methods, which are based on the solution of the continuum equations. Calculations of turbulent flows in engineering depend in general on modeling, since resolving of all turbulent scales is and will be in near future far beyond the computational possibilities. One of the most auspicious modeling approaches is the large eddy simulation, in which the large, inhomogeneous turbulence structures are directly computed and the smaller, more homogeneous structures are modeled.
In this thesis, a consistent large eddy approach for the Lattice Boltzmann Method is introduced. This large eddy model includes, besides a subgrid scale model, appropriate boundary conditions for wall resolved and wall modeled calculations. It also provides conditions for turbulent domain inlets. For the case of wall modeled simulations, a two layer wall model is derived in the Lattice Boltzmann context. Turbulent inlet conditions are achieved by means of a synthetic turbulence technique within the Lattice Boltzmann Method.
The proposed approach is implemented in the Lattice Boltzmann based CFD package SAM-Lattice, which has been created in the course of this work. SAM-Lattice is feasible of the calculation of incompressible or weakly compressible, isothermal flows of engineering interest in complex three dimensional domains. Special design targets of SAM-Lattice are high automatization and high performance.
Validation of the suggested large eddy Lattice Boltzmann scheme is performed for pump intake flows, which have not yet been treated by LBM. Even though, this numerical method is very suitable for this kind of vortical flows in complicated domains. In general, applications of LBM to hydrodynamic engineering problems are rare. The results of the pump intake validation cases reveal that the proposed numerical approach is able to represent qualitatively and quantitatively the very complex flows in the intakes. The findings provided in this thesis can serve as the basis for a broader application of LBM in hydrodynamic engineering problems.

We propose a constraint-based approach for the two-dimensional rectangular packing problem with orthogonal orientations. This problem is to arrange a set of rectangles that can be rotated by 90 degrees into a rectangle of minimal size such that no two rectangles overlap. It arises in the placement of electronic devices during the layout of 2.5D System-in-Package integrated electronic systems. Moffitt et al. [8] solve the packing without orientations with a branch and bound approach and use constraint propagation. We generalize their propagation techniques to allow orientations. Our approach is compared to a mixed-integer program and we provide results that outperform it.

The notion of Q-Gorenstein smoothings has been introduced by Kollar. ([KoJ], 6.2.3). This notion is essential for formulating Kollar's conjectures on smoothing components for rational surface singularities. He conjectures, loosely speaking, that every smoothing of a rational surface singularity can be obtained by blowing down a deformation of a partial resolution, this partial resolution having the property (among others) that the singularities occuring on it all have qG-smoothings. (For more details and precise statements see [Ko], ch. 6.). It is therefore of interest to construct singularities having qG-smoothings.

A counter-based read circuit tolerant to process variation for low-voltage operating STT-MRAM
(2016)

The capacity of embedded memory on LSIs has kept increasing. It is important to reduce the leakage power of embedded memory for low-power LSIs. In fact, the ITRS predicts that the leakage power in embedded memory will account for 40% of all power consumption by 2024 [1]. A spin transfer torque magneto-resistance random access memory (STT-MRAM) is promising for use as non-volatile memory to reduce the leakage power. It is useful because it can function at low voltages and has a lifetime of over 1016 write cycles [2]. In addition, the STT-MRAM technology has a smaller bit cell than an SRAM. Making the STT-MRAM is suitable for use in high-density products [3–7]. The STT-MRAM uses magnetic tunnel junction (MTJ). The MTJ has two states: a parallel state and an anti-parallel state. These states mean that the magnetization direction of the MTJ’s layers are the same or different. The directions pair determines the MTJ’s magneto- resistance value. The states of MTJ can be changed by the current flowing. The MTJ resistance becomes low in the parallel state and high in the anti-parallel state. The MTJ potentially operates at less than 0.4 V [8]. In other hands, it is difficult to design peripheral circuitry for an STT-MRAM array at such a low voltage. In this paper, we propose a counter-based read circuit that functions at 0.4 V, which is tolerant of process variation and temperature fluctuation.

The growing computational power enables the establishment of the Population Balance Equation (PBE)
to model the steady state and dynamic behavior of multiphase flow unit operations. Accordingly, the twophase
flow
behavior inside liquid-liquid extraction equipment is characterized by different factors. These
factors include: interactions among droplets (breakage and coalescence), different time scales due to the
size distribution of the dispersed phase, and micro time scales of the interphase diffusional mass transfer
process. As a result of this, the general PBE has no well known analytical solution and therefore robust
numerical solution methods with low computational cost are highly admired.
In this work, the Sectional Quadrature Method of Moments (SQMOM) (Attarakih, M. M., Drumm, C.,
Bart, H.-J. (2009). Solution of the population balance equation using the Sectional Quadrature Method of
Moments (SQMOM). Chem. Eng. Sci. 64, 742-752) is extended to take into account the continuous flow
systems in spatial domain. In this regard, the SQMOM is extended to solve the spatially distributed
nonhomogeneous bivariate PBE to model the hydrodynamics and physical/reactive mass transfer
behavior of liquid-liquid extraction equipment. Based on the extended SQMOM, two different steady
state and dynamic simulation algorithms for hydrodynamics and mass transfer behavior of liquid-liquid
extraction equipment are developed and efficiently implemented. At the steady state modeling level, a
Spatially-Mixed SQMOM (SM-SQMOM) algorithm is developed and successfully implemented in a onedimensional
physical spatial domain. The integral spatial numerical flux is closed using the mean mass
droplet diameter based on the One Primary and One Secondary Particle Method (OPOSPM which is the
simplest case of the SQMOM). On the other hand the hydrodynamics integral source terms are closed
using the analytical Two-Equal Weight Quadrature (TEqWQ). To avoid the numerical solution of the
droplet rise velocity, an analytical solution based on the algebraic velocity model is derived for the
particular case of unit velocity exponent appearing in the droplet swarm model. In addition to this, the
source term due to mass transport is closed using OPOSPM. The resulting system of ordinary differential
equations with respect to space is solved using the MATLAB adaptive Runge–Kutta method (ODE45). At
the dynamic modeling level, the SQMOM is extended to a one-dimensional physical spatial domain and
resolved using the finite volume method. To close the mathematical model, the required quadrature nodes
and weights are calculated using the analytical solution based on the Two Unequal Weights Quadrature
(TUEWQ) formula. By applying the finite volume method to the spatial domain, a semi-discreet ordinary
differential equation system is obtained and solved. Both steady state and dynamic algorithms are
extensively validated at analytical, numerical, and experimental levels. At the numerical level, the
predictions of both algorithms are validated using the extended fixed pivot technique as implemented in
PPBLab software (Attarakih, M., Alzyod, S., Abu-Khader, M., Bart, H.-J. (2012). PPBLAB: A new
multivariate population balance environment for particulate system modeling and simulation. Procedia
Eng. 42, pp. 144-562). At the experimental validation level, the extended SQMOM is successfully used
to model the steady state hydrodynamics and physical and reactive mass transfer behavior of agitated
liquid-liquid extraction columns under different operating conditions. In this regard, both models are
found efficient and able to follow liquid extraction column behavior during column scale-up, where three
column diameters were investigated (DN32, DN80, and DN150). To shed more light on the local
interactions among the contacted phases, a reduced coupled PBE and CFD framework is used to model
the hydrodynamic behavior of pulsed sieve plate columns. In this regard, OPOSPM is utilized and
implemented in FLUENT 18.2 commercial software as a special case of the SQMOM. The dropletdroplet
interactions
(breakage
and
coalescence)
are
taken
into
account
using
OPOSPM,
while
the
required
information
about
the
velocity
field
and
energy
dissipation
is
calculated
by
the
CFD
model.
In
addition
to
this,
the proposed coupled OPOSPM-CFD framework is extended to include the mass transfer. The
proposed framework is numerically tested and the results are compared with the published experimental
data. The required breakage and coalescence parameters to perform the 2D-CFD simulation are estimated
using PPBLab software, where a 1D-CFD simulation using a multi-sectional gird is performed. A very
good agreement is obtained at the experimental and the numerical validation levels.

A new algorithm for optimization problems with three objective functions is presented which computes a representation for the set of nondominated points. This representation is guaranteed to have a desired coverage error and a bound on the number of iterations needed by the algorithm to meet this coverage error is derived. Since the representation does not necessarily contain nondominated points only, ideas to calculate bounds for the representation error are given. Moreover, the incorporation of domination during the algorithm and other quality measures are discussed.

The concept of the Virtual Software Corporation ( VSC) has recently become a practical reality as a result of advances in communication and distributed technologies. However, there are significant difficulties with the management of the software development process within a VSC. The main problem is the significantly increased communicational complexity of the process model for such developments. The more classic managerial hierarchy is generally replaced by a "flatter" network of commitments. Therefore new solution approaches are required to provide the necessary process support. The purpose of this paper is to present a solution approach which models the process based on deontic logic. The approach has been validated against a case study where it was used to model commitments and inter-human communications within the software development process of a VSC. The use of the formalism is exemplified through a prototype system using a layered multi-agent architecture.

We present a deterministic simulation scheme for the Boltzmann Semiconductor Equation. The convergence of the method is shown for a simplified space homogeneous case. Numerical experiments, which are very promising, are also given in this situation. The extension for the application to the space inhomogeneous equation with a self consistent electric field is quoted. Theoretical considerations in that case are in preparation.

The direction splitting approach proposed earlier in [6], aiming at the efficient solution of Navier-Stokes equations, is extended and adopted here to solve the Navier-Stokes-Brinkman equations describing incompressible flows in plain and in porous media. The resulting pressure equation is a perturbation of the
incompressibility constrained using a direction-wise factorized operator as proposed in [6]. We prove that this approach is unconditionally stable for the unsteady Navier-Stokes-Brinkman problem. We also provide numerical illustrations of the method's accuracy and efficiency.

Many discrepancy principles are known for choosing the parameter \(\alpha\) in the regularized operator equation \((T^*T+ \alpha I)x_\alpha^\delta = T^*y^\delta\), \(||y-y^d||\leq \delta\), in order to approximate the minimal norm least-squares solution of the operator equation \(Tx=y\). In this paper we consider a class of discrepancy principles for choosing the regularization parameter when \(T^*T\) and \(T^*y^\delta\) are approximated by \(A_n\) and \(z_n^\delta\) respectively with \(A_n\) not necessarily self - adjoint. Thisprocedure generalizes the work of Engl and Neubauer (1985),and particular cases of the results are applicable to the regularized projection method as well as to a degenerate kernel method considered by Groetsch (1990).

A theory of discrete Cosserat rods is formulated in the language of discrete Lagrangian mechanics. By exploiting Kirchho's kinetic analogy, the potential energy density of a rod is a function on the tangent bundle of the conguration manifold and thus formally corresponds to the Lagrangian function of a dynamical system. The equilibrium equations are derived from a variational principle using a formulation that involves null{space matrices. In this formulation, no Lagrange multipliers are necessary to enforce orthonormality of the directors. Noether's theorem relates rst integrals of the equilibrium equations to Lie group actions on the conguration bundle, so{called symmetries. The symmetries relevant for rod mechanics are frame{indierence, isotropy and uniformity. We show that a completely analogous and self{contained theory of discrete rods can be formulated in which the arc{length is a discrete variable ab initio. In this formulation, the potential energy density is dened directly on pairs of points along the arc{length of the rod, in analogy to Veselov's discrete reformulation of Lagrangian mechanics. A discrete version of Noether's theorem then identies exact rst integrals of the discrete equilibrium equations. These exact conservation properties confer the discrete solutions accuracy and robustness, as demonstrated by selected examples of application. Copyright c 2010 John Wiley & Sons, Ltd.

This paper investigates the suitability of the mobile agents approach to the problem of integrating a collection of local DBMS into a single heterogeneous large-scale distributed DBMS. The paper proposes a model of distributed transactions as a set of mobile agents and presents the relevant execution semantics. In addition, the mechanisms which are needed to guarantee the ACID properties in the considered environment are discussed.

In this paper we present an interpreter which allows to support the validation of conceptual models in early stages of the development. We compare hypermedia and expert system approaches to knowledge processing and show how an integrated approach eases the creation of expert systems. Our knowledge engineering tool CoMo-Kit allows a "smooth" transition from initial protocols via a semi-formal specification based on a typed hypertext up to an running expert system. The interpreter uses the intermediate hypertext representation for the interactive solution of problems. Thereby, tasks are distributed to agents via an local area network. This means that the specification of an expert system can directly be used to solve real world problems. If there exist formal (operational) specifications for subtasks then these are delegated to computers. Therefore, our approach allows to specify and validate distributed, cooperative systems where some subtasks are solved by humans and other subtasks are solved automatically by computers.

A practical distributed planning and control system for industrial robots is presented. The hierarchical concept consists of three independent levels. Each level is modularly implemented and supplies an application interface (API) to the next higher level. At the top level, we propose an automatic motion planner. The motion planner is based on a best-first search algorithm and needs no essential off-line computations. At the middle level, we propose a PC-based robot control architecture, which can easily be adapted to any industrial kinematics and application. Based on a client/server-principle, the control unit estab-lishes an open user interface for including application specific programs. At the bottom level, we propose a flexible and modular concept for the integration of the distributed motion control units based on the CAN bus. The concept allows an on-line adaptation of the control parameters according to the robot's configuration. This implies high accuracy for the path execution and improves the overall system performance.

A distributional solution framework is developed for systems consisting of linear hyperbolic partial differential equations (PDEs) and switched differential algebraic equations (DAEs) which are coupled via boundary conditions. The unique solvability is then characterize in terms of a switched delay DAE. The theory is illustrated with an example of electric power lines modeled by the telegraph equations which are coupled via a switching transformer where simulations confirm the predicted impulsive solutions.

For the last decade, optimization of beam orientations in intensitymodulated radiation therapy (IMRT) has been shown to be successful in improving the treatment plan. Unfortunately, the quality of a set of beam orientations depends heavily on its corresponding beam intensity proles. Usually, a stochastic selector is used for optimizing beam orientation, and then a single objective inverse treatment planning algorithm is used for the optimization of beam intensity proles. The overall time needed to solve the inverse planning for every random selection of beam orientations becomes excessive. Recently, considerable improvement has been made in optimizing beam intensity proles by using multiple objective inverse treatment planning. Such an approach results in a variety of beam intensity proles for every selection of beam orientations, making the dependence between beam orientations and its intensity proles less important. We take advantage of this property to present a dynamic algorithm for beam orientation in IMRT which is based on multicriteria inverse planning. The algorithm approximates beam intensity proles iteratively instead of doing it for every selection of beam orientation, saving a considerable amount of calculation time. Every iteration goes from an N-beam plan to a plan with N + 1 beams. Beam selection criteria are based on a score function that minimizes the deviation from the prescribed dose, in addition to a reject-accept criterion. To illustrate the eciency of the algorithm it has been applied to an articial example where optimality is trivial and to three real clinical cases: a prostate carcinoma, a tumor in the head and neck region and a paraspinal tumor. In comparison to the standard equally spaced beam plans, improvements are reported in all of the three clinical examples, even, in some cases with a fewer number of beams.

We derive a new class of particle methods for conservation laws, which are based on numerical flux functions to model the interactions between moving particles. The derivation is similar to that of classical Finite-Volume methods; except that the fixed grid structure in the Finite-Volume method is substituted by so-called mass packets of particles. We give some numerical results on a shock wave solution for Burgers equation as well as the well-known one-dimensional shock tube problem.

Compared to conventional techniques in computational fluid dynamics, the lattice Boltzmann method (LBM) seems to be a completely different approach to solve the incompressible Navier-Stokes equations. The aim of this article is to correct this impression by showing the close relation of LBM to two standard methods: relaxation schemes and explicit finite difference discretizations. As a side effect, new starting points for a discretization of the incompressible Navier-Stokes equations are obtained.

A single facility problem in the plane is considered, where an optimal location has to be
identified for each of finitely many time-steps with respect to time-dependent weights and
demand points. It is shown that the median objective can be reduced to a special case of the
static multifacility median problem such that results from the latter can be used to tackle the
dynamic location problem. When using block norms as distance measure between facilities,
a Finite Dominating Set (FDS) is derived. For the special case with only two time-steps, the
resulting algorithm is analyzed with respect to its worst-case complexity. Due to the relation
between dynamic location problems for T time periods and T-facility problems, this algorithm
can also be applied to the static 2-facility location problem.

Information technology support for complex, dynamic, and distributed business processes as they occur in engineering domains requires an advanced process management system which enhances currently available workflow management services with respect to integration, flexibility, and adapt ation. We present an uniform and flexible framework for advanced process management on an a bstract level which uses and adapts agent technology from distributed artificial intelligence for both modelling and enacting of processes. We identify two different frameworks for applying agent tec hnology to process management: First, as a multi-agent system with the domain of process manag ement. Second, as a key infrastructure technology for building a process management system. We will then follow the latter approach and introduce different agent types for managing activities, products, and resources which capture specific views on the process.

In continous location problems we are given a set of existing facilities and we are looking for the location of one or several new facilities. In the classical approaches weights are assigned to existing facilities expressing the importance of the new facilities for the existing ones. In this paper, we consider a pointwise defined objective function where the weights are assigned to the existing facilities depending on the location of the new facility. This approach is shown to be a generalization of the median, center and centdian objective functions. In addition, this approach allows to formulate completely new location models. Efficient algorithms as well as structure results for this algebraic approach for location problems are presented. Extensions to the multifacility and restricted case are also considered.

Estelle is an internationally standardized formal description technique (FDT) designed for the specification of distributed systems, in particular communication protocols. An Estelle specification describes a system of communicating components (module instances). The specified system is closed in a topological sense, i.e. it has no ability to interact with some environment. Because of this restriction, open systems can only be specified together with and incorporated with an environment. To overcome this restriction, we introduce a compatible extension of Estelle, called "Open Estelle". It allows the specification of (topologically) open systems, i.e. systems that have the ability to communicate with any environment through a well-defined external interface. We define aformal syntax and a formal semantics for Open Estelle, both based on and extending the syntax and semantics of Estelle. The extension is compatible syntactically and semantically, i.e. Estelle is a subset of Open Estelle. In particular, the formal semantics of Open Estelle reduces to the Estelle semantics in the special case of a closed system. Furthermore, we present a tool for the textual integration of open systems into environments specified in Open Estelle, and a compiler for the automatic generation of implementations directly from Open Estelle specifications.

This paper describes the architecture and concept of operation of a Framework for Adaptive Process Modeling and Execution (FAME). The research addresses the absence of robust methods for supporting the software process management life cycle. FAME employs a novel, model-based approach in providing automated support for different activities in the software development life cycle including project definition, process design, process analysis, process enactment, process execution status monitoring, and execution status-triggered process redesign. FAME applications extend beyond the software development domain to areas such as agile manufacturing, project management, logistics planning, and business process reengineering.

This research for this thesis was conducted to develop a framework which supports the automatic configuration of project-specific software development processes by selecting and combining different technologies: the Process Configuration Framework. The research draws attention to the problem that while the research community develops new technologies, the industrial companies continue only using their well-known ones. Because of this, technology transfer takes decades. In addition, there is the fact that there is no solution which solves all problems in a software development project. This leads to a number of technologies which need to be combined for one project.
The framework developed and explained in this research mainly addresses those problems by building a bridge between research and industry as well as by supporting software companies during the selection of the most appropriate technologies combined in a software process. The technology transformation gap is filled by a repository of (new) technologies which are used as a foundation of the Process Configuration Framework. The process is configured by providing SPEM process pattern for each technology, so that the companies can build their process by plugging into each other.
The technologies of the repository were specified in a schema including a technology model, context model, and an impact model. With context and impact it is possible to provide information about a technology, for example, its benefits to quality, cost or schedule. The offering of the process pattern as output of the Process Configuration Framework is performed in several stages:
I Technology Ranking:
1 Ranking based on Application Domain, Project & Impact
2 Ranking based on Environment
3 Ranking based on Static Context
II Technology Combination:
4 Creation of all possible Technology Chains
5 Restriction of the Technology Chains
6 Ranking based on Static and Dynamic Context
7 Extension of the Chains by Quality Assurance
III Process Configuration:
8 Process Component Diagram
9 Extension of the Process Component Diagram
10 Instantiation of the Components by Technologies of the Technology Chain
11 Providing process patterns
12 Creation of the process based on Patterns
The effectiveness and quality of the Process Configuration Framework have additionally been evaluated in a case study. Here, the Technology Chains manually created by experts were compared to the chains automatically created by the framework after it was configured by those experts. This comparison depicted that the framework results are similar and therefore can be used as a recommendation.
We conclude from our research that support during the configuration of a process for software projects is important especially for non-experts. This support is provided by the Process Configuration Framework developed in this research. In addition our research has shown that this framework offers a possibility to speed up the technology transformation gap between the research community and industrial companies.

We develop a framework for shape optimization problems under state equation con-
straints where both state and control are discretized by B-splines or NURBS. In other
words, we use isogeometric analysis (IGA) for solving the partial differential equation and a nodal approach to change domains where control points take the place of nodes and where thus a quite general class of functions for representing optimal shapes and their boundaries becomes available. The minimization problem is solved by a gradient descent method where the shape gradient will be defined in isogeometric terms. This
gradient is obtained following two schemes, optimize first–discretize then and, reversely,
discretize first–optimize then. We show that for isogeometric analysis, the two schemes yield the same discrete system. Moreover, we also formulate shape optimization with respect to NURBS in the optimize first ansatz which amounts to finding optimal control points and weights simultaneously. Numerical tests illustrate the theory.

A prime motivation for using XML to directly represent pieces of information is the ability of supporting ad-hoc or 'schema-later' settings. In such scenarios, modeling data under loose data constraints is essential. Of course, the flexibility of XML comes at a price: the absence of a rigid, regular, and homogeneous structure makes many aspects of data management more challenging. Such malleable data formats can also lead to severe information quality problems, because the risk of storing inconsistent and incorrect data is greatly increased. A prominent example of such problems is the appearance of the so-called fuzzy duplicates, i.e., multiple and non-identical representations of a real-world entity. Similarity joins correlating XML document fragments that are similar can be used as core operators to support the identification of fuzzy duplicates. However, similarity assessment is especially difficult on XML datasets because structure, besides textual information, may exhibit variations in document fragments representing the same real-world entity. Moreover, similarity computation is substantially more expensive for tree-structured objects and, thus, is a serious performance concern. This thesis describes the design and implementation of an effective, flexible, and high-performance XML-based similarity join framework. As main contributions, we present novel structure-conscious similarity functions for XML trees - either considering XML structure in isolation or combined with textual information -, mechanisms to support the selection of relevant information from XML trees and organization of this information into a suitable format for similarity calculation, and efficient algorithms for large-scale identification of similar, set-represented objects. Finally, we validate the applicability of our techniques by integrating our framework into a native XML database management system; in this context we address several issues around the integration of similarity operations into traditional database architectures.

Facility Location Problems are concerned with the optimal location of one or several new facilities, with respect to a set of existing ones. The objectives involve the distance between new and existing facilities, usually a weighted sum or weighted maximum. Since the various stakeholders (decision makers) will have different opinions of the importance of the existing facilities, a multicriteria problem with several sets of weights, and thus several objectives, arises. In our approach, we assume the decision makers to make only fuzzy comparisons of the different existing facilities. A geometric mean method is used to obtain the fuzzy weights for each facility and each decision maker. The resulting multicriteria facility location problem is solved using fuzzy techniques again. We prove that the final compromise solution is weakly Pareto optimal and Pareto optimal, if it is unique, or under certain assumptions on the estimates of the Nadir point. A numerical example is considered to illustrate the methodology.

A General Hilbert Space Approach to Wavelets and Its Application in Geopotential Determination
(1999)

A general approach to wavelets is presented within a framework of a separable functional Hilbert space H. Basic tool is the construction of H-product kernels by use of Fourier analysis with respect to an orthonormal basis in H. Scaling function and wavelet are defined in terms of H-product kernels. Wavelets are shown to be 'building blocks' that decorrelate the data. A pyramid scheme provides fast computation. Finally, the determination of the earth's gravitational potential from single and multipole expressions is organized as an example of wavelet approximation in Hilbert space structure.

We present a generalization of Proth's theorem for testing certain large integers for primality. The use of Gauß sums leads to a much simpler approach to these primality criteria as compared to the earlier tests. The running time of the algorithms is bounded by a polynomial in the length of the input string. The applicability of our algorithms is linked to certain diophantine approximations of \(l\)-adic roots of unity.

We present an entropy concept measuring quantum localization in dynamical systems based on time averaged probability densities. The suggested entropy concept is a generalization of a recently introduced [PRL 75, 326 (1995)] phase-space entropy to any representation chosen according to the system and the physical question under consideration. In this paper we inspect the main characteristics of the entropy and the relation to other measures of localization. In particular the classical correspondence is discussed and the statistical properties are evaluated within the framework of random vector theory. In this way we show that the suggested entropy is a suitable method to detect quantum localization phenomena in dynamical systems.

This thesis presents a novel, generic framework for information segmentation in document images.
A document image contains different types of information, for instance, text (machine printed/handwritten), graphics, signatures, and stamps.
It is necessary to segment information in documents so that to process such segmented information only when required in automatic document processing workflows.
The main contribution of this thesis is the conceptualization and implementation of an information segmentation framework that is based on part-based features.
The generic nature of the presented framework makes it applicable to a variety of documents (technical drawings, magazines, administrative, scientific, and academic documents) digitized using different methods (scanners, RGB cameras, and hyper-spectral imaging (HSI) devices).
A highlight of the presented framework is that it does not require large training sets, rather a few training samples (for instance, four pages) lead to high performance, i.e., better than previously existing methods.
In addition, the presented framework is simple and can be adapted quickly to new problem domains.
This thesis is divided into three major parts on the basis of document digitization method (scanned, hyper-spectral imaging, and camera captured) used.
In the area of scanned document images, three specific contributions have been realized.
The first of them is in the domain of signature segmentation in administrative documents.
In some workflows, it is very important to check the document authenticity before processing the actual content.
This can be done based on the available seal of authenticity, e.g., signatures.
However, signature verification systems expect pre-segmented signature image, while signatures are usually a part of document.
To use signature verification systems on document images, it is necessary to first segment signatures in documents.
This thesis shows that the presented framework can be used to segment signatures in administrative documents.
The system based on the presented framework is tested on a publicly available dataset where it outperforms the state-of-the-art methods and successfully segmented all signatures, while less than half of the found signatures are false positives.
This shows that it can be applied for practical use.
The second contribution in the area of scanned document images is segmentation of stamps in administrative documents.
A stamp also serves as a seal for documents authenticity.
However, the location of stamp on the document can be more arbitrary than a signature depending on the person sealing the document.
This thesis shows that a system based on our generic framework is able to extract stamps of any arbitrary shape and color.
The evaluation of the presented system on a publicly available dataset shows that it is also able to segment black stamps (that were not addressed in the past) with a recall and precision of 83% and 73%, respectively.
%Furthermore, to segment colored stamps, this thesis presents a novel feature set which is based on intensity gradient, is able to extract unseen, colored, arbitrary shaped, textual as well as graphical stamps, and outperforms the state-of-the-art methods.
The third contribution in the scanned document images is in the domain of information segmentation in technical drawings (architectural floorplans, maps, circuit diagrams, etc.) containing usually a large amount of graphics and comparatively less textual components. Further, as in technical drawings, text is overlapping with graphics.
Thus, automatic analysis of technical drawings uses text/graphics segmentation as a pre-processing step.
This thesis presents a method based on our generic information segmentation framework that is able to detect the text, which is touching graphical components in architectural floorplans and maps.
Evaluation of the method on a publicly available dataset of architectural floorplans shows that it is able to extract almost all touching text components with precision and recall of 71% and 95%, respectively.
This means that almost all of the touching text components are successfully extracted.
In the area of hyper-spectral document images, two contributions have been realized.
Unlike normal three channels RGB images, hyper-spectral images usually have multiple channels that range from ultraviolet to infrared regions including the visible region.
First, this thesis presents a novel automatic method for signature segmentation from hyper-spectral document images (240 spectral bands between 400 - 900 nm).
The presented method is based on a part-based key point detection technique, which does not use any structural information, but relies only on the spectral response of the document regardless of ink color and intensity.
The presented method is capable of segmenting (overlapping and non-overlapping) signatures from varying backgrounds like, printed text, tables, stamps, logos, etc.
Importantly, the presented method can extract signature pixels and not just the bounding boxes.
This is substantial when signatures are overlapping with text and/or other objects in image. Second, this thesis presents a new dataset comprising of 300 documents scanned using a high-resolution hyper-spectral scanner. Evaluation of the presented signature segmentation method on this hyper-spectral dataset shows that it is able to extract signature pixels with the precision and recall of 100% and 79%, respectively.
Further contributions have been made in the area of camera captured document images. A major problem in the development of Optical Character Recognition (OCR) systems for camera captured document images is the lack of labeled camera captured document images datasets. In the first place, this thesis presents a novel, generic, method for automatic ground truth generation/labeling of document images. The presented method builds large-scale (i.e., millions of images) datasets of labeled camera captured / scanned documents without any human intervention. The method is generic and can be used for automatic ground truth generation of (scanned and/or camera captured) documents in any language, e.g., English, Russian, Arabic, Urdu. The evaluation of the presented method, on two different datasets in English and Russian, shows that 99.98% of the images are correctly labeled in every case.
Another important contribution in the area of camera captured document images is the compilation of a large dataset comprising 1 million word images (10 million character images), captured in a real camera-based acquisition environment, along with the word and character level ground truth. The dataset can be used for training as well as testing of character recognition systems for camera-captured documents. Various benchmark tests are performed to analyze the behavior of different open source OCR systems on camera captured document images. Evaluation results show that the existing OCRs, which already get very high accuracies on scanned documents, fail on camera captured document images.
Using the presented camera-captured dataset, a novel character recognition system is developed which is based on a variant of recurrent neural networks, i.e., Long Short Term Memory (LSTM) that outperforms all of the existing OCR engines on camera captured document images with an accuracy of more than 95%.
Finally, this thesis provides details on various tasks that have been performed in the area closely related to information segmentation. This includes automatic analysis and sketch based retrieval of architectural floor plan images, a novel scheme for online signature verification, and a part-based approach for signature verification. With these contributions, it has been shown that part-based methods can be successfully applied to document image analysis.

Territory design and districting may be viewed as the problem of grouping small geographic areas into larger geographic clusters called territories in such a way that the latter are acceptable according to relevant planning criteria. The availability of GIS on computers and the growing interest in Geo-Marketing leads to an increasing importance of this area. Despite the wide range of applications for territory design problems, when taking a closer look at the models proposed in the literature, a lot of similarities can be noticed. Indeed, the models are many times very similar and can often be, more or less directly, carried over to other applications. Therefore, our aim is to provide a generic application-independent model and present efficient solution techniques. We introduce a basic model that covers aspects common to most applications. Moreover, we present a method for solving the general model which is based on ideas from the field of computational geometry. Theoretical as well as computational results underlining the efficiency of the new approach will be given. Finally, we show how to extend the model and solution algorithm to make it applicable for a broader range of applications and how to integrate the presented techniques into a GIS.

In this paper we consider the problem of optimizing a piecewise-linear objective function over a non-convex domain. In particular we do not allow the solution to lie in the interior of a prespecified region R. We discuss the geometrical properties of this problems and present algorithms based on combinatorial arguments. In addition we show how we can construct quite complicated shaped sets R while maintaining the combinatorial properties.

Abstract. An efficient approach to the numerical upscaling of thermal conductivities of fibrous media, e.g. insulation materials, is considered. First, standard cell problems for a second order elliptic equation are formulated for a proper piece of random fibrous structure, following homogenization theory. Next, a graph formed by the fibers is considered, and a second order elliptic equation with suitable boundary conditions is solved on this graph only. Replacing the boundary value problem for the full cell with an auxiliary problem with special boundary conditions on a connected subdomain of highly conductive material is justified in a previous work of the authors. A discretization on the graph is presented here, and error estimates are provided. The efficient implementation of the algorithm is discussed. A number of numerical experiments is presented in order to illustrate the performance of the proposed method.

Experience gathered from applying the software process modeling language MVP-L in software development organizations has shown the need for graphical representations of process models. Project members (i.e„ non MVP-L specialists) review models much more easily by using graphical representations. Although several various graphical notations were developed for individual projects in which MVP-L was applied, there was previously no consistent definition of a mapping between textual MVP-L models and graphical representations. This report defines a graphical representation schema for MVP-L
descriptions and combines previous results in a unified form. A basic set of building blocks (i.e., graphical symbols and text fragments) is defined, but because we must first gain experience with the new symbols, only rudimentary guidelines are given for composing basic
symbols into a graphical representation of a model.

For many years real-time task models have focused the timing constraints on execution windows defined by earliest start times and deadlines for feasibility.
However, the utility of some application may vary among scenarios which yield correct behavior, and maximizing this utility improves the resource utilization.
For example, target sensitive applications have a target point where execution results in maximized utility, and an execution window for feasibility.
Execution around this point and within the execution window is allowed, albeit at lower utility.
The intensity of the utility decay accounts for the importance of the application.
Examples of such applications include multimedia and control; multimedia application are very popular nowadays and control applications are present in every automated system.
In this thesis, we present a novel real-time task model which provides for easy abstractions to express the timing constraints of target sensitive RT applications: the gravitational task model.
This model uses a simple gravity pendulum (or bob pendulum) system as a visualization model for trade-offs among target sensitive RT applications.
We consider jobs as objects in a pendulum system, and the target points as the central point.
Then, the equilibrium state of the physical problem is equivalent to the best compromise among jobs with conflicting targets.
Analogies with well-known systems are helpful to fill in the gap between application requirements and theoretical abstractions used in task models.
For instance, the so-called nature algorithms use key elements of physical processes to form the basis of an optimization algorithm.
Examples include the knapsack problem, traveling salesman problem, ant colony optimization, and simulated annealing.
We also present a few scheduling algorithms designed for the gravitational task model which fulfill the requirements for on-line adaptivity.
The scheduling of target sensitive RT applications must account for timing constraints, and the trade-off among tasks with conflicting targets.
Our proposed scheduling algorithms use the equilibrium state concept to order the execution sequence of jobs, and compute the deviation of jobs from their target points for increased system utility.
The execution sequence of jobs in the schedule has a significant impact on the equilibrium of jobs, and dominates the complexity of the problem --- the optimum solution is NP-hard.
We show the efficacy of our approach through simulations results and 3 target sensitive RT applications enhanced with the gravitational task model.

In the literature, there are at least two equivalent two-factor Gaussian models for the instantaneous short rate. These are the original two-factor Hull White model (see [3]) and the G2++ one by Brigo and Mercurio (see [1]). Both these models first specify a time homogeneous two-factor short rate dynamics and then by adding a deterministic shift function '(·) fit exactly the initial term structure of interest rates. However, the obtained results are rather clumsy and not intuitive which means that a special care has to be taken for their correct numerical implementation.

We provide an overview of UNICOM, an inductive theorem prover for equational logic which isbased on refined rewriting and completion techniques. The architecture of the system as well as itsfunctionality are described. Moreover, an insight into the most important aspects of the internalproof process is provided. This knowledge about how the central inductive proof componentof the system essentially works is crucial for human users who want to solve non-trivial prooftasks with UNICOM and thoroughly analyse potential failures. The presentation is focussedon practical aspects of understanding and using UNICOM. A brief but complete description ofthe command interface, an installation guide, an example session, a detailed extended exampleillustrating various special features and a collection of successfully handled examples are alsoincluded.

In the present paper multilane models for vehicular traffic are considered. A microscopic multilane model based on reaction thresholds is developed. Based on this model an Enskog like kinetic model is developed. In particular, care is taken to incorporate the correlations between the vehicles. From the kinetic model a fluid dynamic model is derived. The macroscopic coefficients are deduced from the underlying kinetic model. Numerical simulations are presented for all three levels of description in [10]. Moreover, a comparison of the results is given there.

In this paper the work presented in [6] is continued. The present paper contains detailed numerical investigations of the models developed there. A numerical method to treat the kinetic equations obtained in [6] are presented and results of the simulations are shown. Moreover, the stochastic correlation model used in [6] is described and investigated in more detail.

Cooperative decision making involves a continuous process, assessing the validity ofdata, information and knowledge acquired and inferred by the colleagues, that is, the shared knowledge space must be transparent. The ACCORD methodology provides aninterpretation framework for the mapping of domain facts - constituting the world model of the expert - onto conceptual models, which can be expressed in formalrepresentations. The ACCORD-BPM framework allows a stepwise and inarbitrary reconstruction of the problem solving competence of BPM experts as a prerequisite foran appropriate architecture of both BPM knowledge bases and the BPM-"reasoning device".

Numerical Godeaux surfaces are minimal surfaces of general type with the smallest possible numerical invariants. It is known that the torsion group of a numerical Godeaux surface is cyclic of order \(m\leq 5\). A full classification has been given for the cases \(m=3,4,5\) by the work of Reid and Miyaoka. In each case, the corresponding moduli space is 8-dimensional and irreducible.
There exist explicit examples of numerical Godeaux surfaces for the orders \(m=1,2\), but a complete classification for these surfaces is still missing.
In this thesis we present a construction method for numerical Godeaux surfaces which is based on homological algebra and computer algebra and which arises from an experimental approach by Schreyer. The main idea is to consider the canonical ring \(R(X)\) of a numerical Godeaux surface \(X\) as a module over some graded polynomial ring \(S\). The ring \(S\) is chosen so that \(R(X)\) is finitely generated as an \(S\)-module and a Gorenstein \(S\)-algebra of codimension 3. We prove that the canonical ring of any numerical Godeaux surface, considered as an \(S\)-module, admits a minimal free resolution whose middle map is alternating. Moreover, we show that a partial converse of this statement is true under some additional conditions.
Afterwards we use these results to construct (canonical rings of) numerical Godeaux surfaces. Hereby, we restrict our study to surfaces whose bicanonical system has no fixed component but 4 distinct base points, in the following referred to as marked numerical Godeaux surfaces.
The particular interest of this thesis lies on marked numerical Godeaux surfaces whose torsion group is trivial. For these surfaces we study the fibration of genus 4 over \(\mathbb{P}^1\) induced by the bicanonical system. Catanese and Pignatelli showed that the general fibre is non-hyperelliptic and that the number \(\tilde{h}\) of hyperelliptic fibres is bounded by 3. The two explicit constructions of numerical Godeaux surfaces with a trivial torsion group due to Barlow and Craighero-Gattazzo, respectively, satisfy \(\tilde{h} = 2\).
With the method from this thesis, we construct an 8-dimensional family of numerical Godeaux surfaces with a trivial torsion group and whose general element satisfy \(\tilde{h}=0\).
Furthermore, we establish a criterion for the existence of hyperelliptic fibres in terms of a minimal free resolution of \(R(X)\). Using this criterion, we verify experimentally the
existence of a numerical Godeaux surface with \(\tilde{h}=1\).

In this article, we give an explicit homotopy between the solutions (i.e. stress, strain, displacement) of the quasistatic linear elastic and nonlinear elastoplastic boundary value problem, where we assume a linear kinematic hardening material law. We give error estimates with respect to the homotopy parameter.

In many robotic applications, the teaching of points in space is necessary to register the robot coordinate system with the one of the application. Robot-human interaction is awkward and dangerous for the human because of the possibly large size and power of the robot, so robot movements must be predictable and natural. We present a novel hybrid control algorithm which provides the needed precision in small scale movements while allowing for fast and intuitive large scale translations.

A way to derive consistently kinetic models for vehicular traffic from microscopic follow the leader models is presented. The obtained class of kinetic equations is investigated. Explicit examples for kinetic models are developed with a particular emphasis on obtaining models, that give realistic results. For space homogeneous traffic flow situations numerical examples are given including stationary distributions and fundamental diagrams.

In this paper the kinetic model for vehicular traffic developed in [3,4] is considered and theoretical results for the space homogeneous kinetic equation are presented. Existence and uniqueness results for the time dependent equation are stated. An investigation of the stationary equation leads to a boundary value problem for an ordinary differential equation. Existence of the solution and some properties are proved. A numerical investigation of the stationary equation is included.

A Lattice Boltzmann Method for immiscible multiphase flow simulations using the Level Set Method
(2008)

We consider the lattice Boltzmann method for immiscible multiphase flow simulations. Classical lattice Boltzmann methods for this problem, e.g. the colour gradient method or the free energy approach, can only be applied when density and viscosity ratios are small. Moreover, they use additional fields defined on the whole domain to describe the different phases and model phase separation by special interactions at each node. In contrast, our approach simulates the flow using a single field and separates the fluid phases by a free moving interface. The scheme is based on the lattice Boltzmann method and uses the level set method to compute the evolution of the interface. To couple the fluid phases, we develop new boundary conditions which realise the macroscopic jump conditions at the interface and incorporate surface tension in the lattice Boltzmann framework. Various simulations are presented to validate the numerical scheme, e.g. two-phase channel flows, the Young-Laplace law for a bubble and viscous fingering in a Hele-Shaw cell. The results show that the method is feasible over a wide range of density and viscosity differences.

Embedded systems have become ubiquitous in everyday life, and especially in the automotive industry. New applications challenge their design by introducing a new class of problems that are based on a detailed analysis of the environmental situation. Situation analysis systems rely on models and algorithms of the domain of computational geometry. The basic model is usually an Euclidean plane, which contains polygons to represent the objects of the environment. Usual implementations of computational geometry algorithms cannot be directly used for safety-critical systems. First, a strict analysis of their correctness is indispensable and second, nonfunctional requirements with respect to the limited resources must be considered. This thesis proposes a layered approach to a polygon-processing system. On top of rational numbers, a geometry kernel is formalised at first. Subsequently, geometric primitives form a second layer of abstraction that is used for plane sweep and polygon algorithms. These layers do not only divide the whole system into manageable parts but make it possible to model problems and reason about them at the appropriate level of abstraction. This structure is used for the verification as well as the implementation of the developed polygon-processing library.

Multiobjective combinatorial optimization problems have received increasing attention in recent years. Nevertheless, many algorithms are still restricted to the bicriteria case. In this paper we propose a new algorithm for computing all Pareto optimal solutions. Our algorithm is based on the notion of level sets and level curves and contains as a subproblem the determination of K best solutions for a single objective combinatorial optimization problem. We apply the method to the Multiobjective Quadratic Assignment Problem (MOQAP). We present two algorithms for ranking QAP solutions and nally give computational results comparing the methods.

It is often helpful to compute the intrinsic volumes of a set of which only a pixel image is observed. A computational efficient approach, which is suggested by several authors and used in practice, is to approximate the intrinsic volumes by a linear functional of the pixel configuration histogram. Here we want to examine, whether there is an optimal way of choosing this linear functional, where we will use a quite natural optimality criterion that has already been applied successfully for the estimation of the surface area. We will see that for intrinsic volumes other than volume or surface area this optimality criterion cannot be used, since estimators which ignore the data and return constant values are optimal w.r.t. this criterion. This shows that one has to be very careful, when intrinsic volumes are approximated by a linear functional of the pixel configuration histogram.

In this article a new numerical solver for simulations of district heating networks is presented. The numerical method applies the local time stepping introduced in [11] to networks of linear advection equations. In combination with the high order approach of [4] an accurate and very efficient scheme is developed. In several numerical test cases the advantages for simulations of district heating networks are shown.

A map for an autonomous mobile robot (AMR) in an indoor environment for the purpose ofcontinuous position and orientation estimation is discussed. Unlike many other approaches, this map is not based on geometrical primitives like lines and polygons. An algorithm is shown , where the sensordata of a laser range finder can be used to establish this map without a geometrical interpretation of the data. This is done by converting single laser radar scans to statistical representations of the environ-ment, so that a crosscorrelation of an actu al converted scan and this representative results into the actual position and orientation in a global coordinate system. The map itsel f is build of representative scansfor the positions where the AMR has been, so that it is able to find its position and orientation by c omparing the actual scan with a scan stored in the map.

In the Black-Scholes type financial market, the risky asset S 1 ( ) is supposed to satisfy dS 1 ( t ) = S 1 ( t )( b ( t ) dt + Sigma ( t ) dW ( t ) where W ( ) is a Brownian motion. The processes b ( ), Sigma ( ) are progressively measurable with respect to the filtration generated by W ( ). They are known as the mean rate of return and the volatility respectively. A portfolio is described by a progressively measurable processes Pi1 ( ), where Pi1 ( t ) gives the amount invested in the risky asset at the time t. Typically, the optimal portfolio Pi1 ( ) (that, which maximizes the expected utility), depends at the time t, among other quantities, on b ( t ) meaning that the mean rate of return shall be known in order to follow the optimal trading strategy. However, in a real-world market, no direct observation of this quantity is possible since the available information comes from the behavior of the stock prices which gives a noisy observation of b ( ). In the present work, we consider the optimal portfolio selection which uses only the observation of stock prices.

In the filling process of a car tank, the formation of foam plays an unwanted role, as it may prevent the tank from being completely filled or at least delay the filling. Therefore it is of interest to optimize the geometry of the tank using numerical simulation in such a way that the influence of the foam is minimized. In this dissertation, we analyze the behaviour of the foam mathematically on the mezoscopic scale, that is for single lamellae. The most important goals are on the one hand to gain a deeper understanding of the interaction of the relevant physical effects, on the other hand to obtain a model for the simulation of the decay of a lamella which can be integrated in a global foam model. In the first part of this work, we give a short introduction into the physical properties of foam and find that the Marangoni effect is the main cause for its stability. We then develop a mathematical model for the simulation of the dynamical behaviour of a lamella based on an asymptotic analysis using the special geometry of the lamella. The result is a system of nonlinear partial differential equations (PDE) of third order in two spatial and one time dimension. In the second part, we analyze this system mathematically and prove an existence and uniqueness result for a simplified case. For some special parameter domains the system can be further simplified, and in some cases explicit solutions can be derived. In the last part of the dissertation, we solve the system using a finite element approach and discuss the results in detail.

We present a mathematical knowledge base containing the factual know-ledge of the first of three parts of a textbook on semi-groups and automata,namely "P. Deussen: Halbgruppen und Automaten". Like almost all math-ematical textbooks this textbook is not self-contained, but there are somealgebraic and set-theoretical concepts not being explained. These concepts areadded to the knowledge base. Furthermore there is knowledge about the nat-ural numbers, which is formalized following the first paragraph of "E. Landau:Grundlagen der Analysis".The data base is written in a sorted higher-order logic, a variant of POST ,the working language of the proof development environment OmegaGamma mkrp. We dis-tinguish three different types of knowledge: axioms, definitions, and theorems.Up to now, there are only 2 axioms (natural numbers and cardinality), 149definitions (like that for a semi-group), and 165 theorems. The consistency ofsuch knowledge bases cannot be proved in general, but inconsistencies may beimported only by the axioms. Definitions and theorems should not lead to anyinconsistency since definitions form conservative extensions and theorems areproved to be consequences.

The performance of napkins is nowadays improved substantially by embedding granules of a superabsorbent into the cellulose matrix. In this paper a continuous model for the liquid transport in such an Ultra Napkin is proposed. Its mean feature is a nonlinear diffusion equation strongly coupled with an ODE describing a reversible absorbtion process. An efficient numerical method based on a symmetrical time splitting and a finite difference scheme of ADI-predictor-corrector type has been developed to solve these equations in a three dimensional setting. Numerical results are presented that can be used to optimize the granule distribution.

The detection and characterisation of undesired lead structures on shaft surfaces is a concern in production and quality control of rotary shaft lip-type sealing systems. The potential lead structures are generally divided into macro and micro lead based on their characteristics and formation. Macro lead measurement methods exist and are widely applied. This work describes a method to characterise micro lead on ground shaft surfaces. Micro lead is known as the deviation of main orientation of the ground micro texture from circumferential direction. Assessing the orientation of microscopic structures with arc minute accuracy with regard to circumferential direction requires exact knowledge of both the shaft’s orientation and the direction of surface texture. The shaft’s circumferential direction is found by calibration. Measuring systems and calibration procedures capable of calibrating shaft axis orientation with high accuracy and low uncertainty are described. The measuring systems employ areal-topographic measuring instruments suited for evaluating texture orientation. A dedicated evaluation scheme for texture orientation is based on the Radon transform of these topographies and parametrised for the application. Combining the calibration of circumferential direction with the evaluation of texture orientation the method enables the measurement of micro lead on ground shaft surfaces.

1,3-Diynes are frequently found as an important structural motif in natural products, pharmaceuticals and bioactive compounds, electronic and optical materials and supramolecular molecules. Copper and palladium complexes are widely used to prepare 1,3-diynes by homocoupling of terminal alkynes; albeit the potential of nickel complexes towards the same is essentially unexplored. Although a detailed study on the reported nickel-acetylene chemistry has not been carried out, a generalized mechanism featuring a nickel(II)/nickel(0) catalytic cycle has been proposed. In the present work, a detailed mechanistic aspect of the nickel-mediated homocoupling reaction of terminal alkynes is investigated through the isolation and/or characterization of key intermediates from both the stoichiometric and the catalytic reactions. A nickel(II) complex [Ni(L-N4Me2)(MeCN)2](ClO4)2 (1) containing a tetradentate N,N′-dimethyl-2,11-diaza[3.3](2,6)pyridinophane (L-N4Me2) as ligand was used as catalyst for homocoupling of terminal alkynes by employing oxygen as oxidant at room temperature. A series of dinuclear nickel(I) complexes bridged by a 1,3-diyne ligand have been isolated from stoichiometric reaction between [Ni(L-N4Me2)(MeCN)2](ClO4)2 (1) and lithium acetylides. The dinuclear nickel(I)-diyne complexes [{Ni(L-N4Me2)}2(RC4R)](ClO4)2 (2) were well characterized by X-ray crystal structures, various spectroscopic methods, SQUID and DFT calculation. The complexes not only represent as a key intermediate in aforesaid catalytic reaction, but also describe the first structurally characterized dinuclear nickel(I)-diyne complexes. In addition, radical trapping and low temperature UV-Vis-NIR experiments in the formation of the dinuclear nickel(I)-diyne confirm that the reactions occurring during the reduction of nickel(II) to nickel(I) and C-C bond formation of 1,3-diyne follow non-radical concerted mechanism. Furthermore, spectroscopic investigation on the reactivity of the dinuclear nickel(I)-diyne complex towards molecular oxygen confirmed the formation of a mononuclear nickel(I)-diyne species [Ni(L-N4Me2)(RC4R)]+ (4) and a mononuclear nickel(III)-peroxo species [Ni(L-N4Me2)(O2)]+ (5) which were converted to free 1,3-diyne and an unstable dinuclear nickel(II) species [{Ni(L-N4Me2)}2(O2)]2+ (6). A mononuclear nickel(I)-alkyne complex [Ni(L-N4Me2)(PhC2Ph)](ClO4).MeOH (3) and the mononuclear nickel(III)-peroxo species [Ni(L-N4Me2)(O2)]+ (5) were isolated/generated and characterized to confirm the formulation of aforementioned mononuclear nickel(I)-diyne and mononuclear nickel(III)-peroxo species. Spectroscopic experiments on the catalytic reaction mixture also confirm the presence of aforesaid intermediates. Results of both stoichiometric and catalytic reactions suggested an intriguing mechanism involving nickel(II)/nickel(I)/nickel(III) oxidation states in contrast to the reported nickel(II)/nickel(0) catalytic cycle. These findings are expected to open a new paradigm towards nickel-catalyzed organic transformations.

We present the application of a meshfree method for simulations of interaction between fluids and flexible structures. As a flexible structure we consider a sheet of paper. In a two-dimensional framework this sheet can be modeled as curve by the dynamical Kirchhoff-Love theory. The external forces taken into account are gravitation and the pressure difference between upper and lower surface of the sheet. This pressure difference is computed using the Finite Pointset Method (FPM) for the incompressible Navier-Stokes equations. FPM is a meshfree, Lagrangian particle method. The dynamics of the sheet are computed by a finite difference method. We show the suitability of the meshfree method for simulations of fluid-structure interaction in several applications.

It is of basic interest to assess the quality of the decisions of a statistician, based on the outcoming data of a statistical experiment, in the context of a given model class P of probability distributions. The statistician picks a particular distribution P , suffering a loss by not picking the 'true' distribution P' . There are several relevant loss functions, one being based on the the relative entropy function or Kullback Leibler information distance. In this paper we prove a general 'minimax risk equals maximin (Bayes) risk' theorem for the Kullback Leibler loss under the hypothesis of a dominated and compact family of distributions over a Polish observation space with suitably integrable densities. We also find that there is always an optimal Bayes strategy (i.e. a suitable prior) achieving the minimax value. Further, we see that every such minimax optimal strategy leads to the same distribution P in the convex closure of the model class. Finally, we give some examples to illustrate the results and to indicate, how the minimax result reflects in the structure of least favorable priors. This paper is mainly based on parts of this author's doctorial thesis.

The original publication is available at www.springerlink.com. This original publication also contains further results. We study a spherical wave propagating in radius- and latitude-direction and oscillating in latitude-direction in case of fibre-reinforced linearly elastic material. A function system solving Euler's equation of motion in this case and depending on certain Bessel and associated Legendre functions is derived.