### Refine

#### Document Type

- Doctoral Thesis (1)
- Master's Thesis (1)

#### Language

- English (2) (remove)

#### Keywords

- Optimal Control (2) (remove)

This study deals with the optimal control problems of the glass tube drawing processes where the aim is to control the cross-sectional area (circular) of the tube by using the adjoint variable approach. The process of tube drawing is modeled by four coupled nonlinear partial differential equations. These equations are derived by the axisymmetric Stokes equations and the energy equation by using the approach based on asymptotic expansions with inverse aspect ratio as small parameter. Existence and uniqueness of the solutions of stationary isothermal model is also proved. By defining the cost functional, we formulated the optimal control problem. Then Lagrange functional associated with minimization problem is introduced and the first and the second order optimality conditions are derived. We also proved the existence and uniqueness of the solutions of the stationary isothermal model. We implemented the optimization algorithms based on the steepest descent, nonlinear conjugate gradient, BFGS, and Newton approaches. In the Newton method, CG iterations are introduced to solve the Newton equation. Numerical results are obtained for two different cases. In the first case, the cross-sectional area for the entire time domain is controlled and in the second case, the area at the final time is controlled. We also compared the performance of the optimization algorithms in terms of the solution iterations, functional evaluations and the computation time.

Optimal control of partial differential equations is an important task in applied mathematics where it is used in order to optimize, for example, industrial or medical processes. In this thesis we investigate an optimal control problem with tracking type cost functional for the Cattaneo equation with distributed control, that is, \(\tau y_{tt} + y_t - \Delta y = u\). Our focus is on the theoretical and numerical analysis of the limit process \(\tau \to 0\) where we prove the convergence of solutions of the Cattaneo equation to solutions of the heat equation.
We start by deriving both the Cattaneo and the classical heat equation as well as introducing our notation and some functional analytic background. Afterwards, we prove the well-posedness of the Cattaneo equation for homogeneous Dirichlet boundary conditions, that is, we show the existence and uniqueness of a weak solution together with its continuous dependence on the data. We need this in the following, where we investigate the optimal control problem for the Cattaneo equation: We show the existence and uniqueness of a global minimizer for an optimal control problem with tracking type cost functional and the Cattaneo equation as a constraint. Subsequently, we do an asymptotic analysis for \(\tau \to 0\) for both the forward equation and the aforementioned optimal control problem and show that the solutions of these problems for the Cattaneo equation converge strongly to the ones for the heat equation. Finally, we investigate these problems numerically, where we examine the different behaviour of the models and also consider the limit \(\tau \to 0\), suggesting a linear convergence rate.