### Refine

#### Document Type

- Preprint (9)
- Doctoral Thesis (1)

#### Language

- English (10) (remove)

#### Keywords

#### Faculty / Organisational entity

In dieser Dissertation wird das Konzept der Gröbnerbasen für endlich erzeugte Monoid-und Gruppenringe verallgemeinert. Dabei werden Reduktionsmethoden sowohl zurDarstellung der Monoid- beziehungsweise Gruppenelemente, als auch zur Beschreibungder Rechtsidealkongruenz in den entsprechenden Monoid- beziehungsweise Gruppenrin-gen benutzt. Da im allgemeinen Monoide und insbesondere Gruppen keine zulässigenOrdnungen mehr erlauben, treten bei der Definition einer geeigneten Reduktionsrela-tion wesentliche Probleme auf: Zum einen ist es schwierig, die Terminierung einer Re-duktionsrelation zu garantieren, zum anderen sind Reduktionsschritte nicht mehr mitMultiplikationen verträglich und daher beschreiben Reduktionen nicht mehr unbedingteine Rechtsidealkongruenz. In dieser Arbeit werden verschiedene Möglichkeiten Reduk-tionsrelationen zu definieren aufgezeigt und im Hinblick auf die beschriebenen Problemeuntersucht. Dabei wird das Konzept der Saturierung, d.h. eine Polynommenge so zu er-weitern, daß man die von ihr erzeugte Rechtsidealkongruenz durch Reduktion erfassenkann, benutzt, um Charakterisierungen von Gröbnerbasen bezüglich der verschiedenenReduktionen durch s-Polynome zu geben. Mithilfe dieser Konzepte ist es gelungenfür spezielle Klassen von Monoiden, wie z.B. endliche, kommutative oder freie, undverschiedene Klassen von Gruppen, wie z.B. endliche, freie, plain, kontext-freie odernilpotente, unter Ausnutzung struktureller Eigenschaften spezielle Reduktionsrelatio-nen zu definieren und terminierende Algorithmen zur Berechnung von Gröbnerbasenbezüglich dieser Reduktionsrelationen zu entwickeln.

A first explicit connection between finitely presented commutative monoids and ideals in polynomial rings was used 1958 by Emelichev yielding a solution tothe word problem in commutative monoids by deciding the ideal membership problem. The aim of this paper is to show in a similar fashion how congruenceson monoids and groups can be characterized by ideals in respective monoid and group rings. These characterizations enable to transfer well known resultsfrom the theory of string rewriting systems for presenting monoids and groups to the algebraic setting of subalgebras and ideals in monoid respectively grouprings. Moreover, natural one-sided congruences defined by subgroups of a group are connected to one-sided ideals in the respective group ring and hencethe subgroup problem and the ideal membership problem are directly related. For several classes of finitely presented groups we show explicitly howGröbner basis methods are related to existing solutions of the subgroup problem by rewriting methods. For the case of general monoids and submonoidsweaker results are presented. In fact it becomes clear that string rewriting methods for monoids and groups can be lifted in a natural fashion to definereduction relations in monoid and group rings.

The concept of algebraic simplification is of great importance for the field of symbolic computation in computer algebra. In this paper we review somefundamental concepts concerning reduction rings in the spirit of Buchberger. The most important properties of reduction rings are presented. Thetechniques for presenting monoids or groups by string rewriting systems are used to define several types of reduction in monoid and group rings. Gröbnerbases in this setting arise naturally as generalizations of the corresponding known notions in the commutative and some non-commutative cases. Severalresults on the connection of the word problem and the congruence problem are proven. The concepts of saturation and completion are introduced formonoid rings having a finite convergent presentation by a semi-Thue system. For certain presentations, including free groups and context-free groups, theexistence of finite Gröbner bases for finitely generated right ideals is shown and a procedure to compute them is given.

Groups can be studied using methods from different fields such as combinatorial group theory or string rewriting. Recently techniques from Gröbner basis theory for free monoid rings (non-commutative polynomial rings) respectively free group rings have been added to the set of methods due to the fact that monoid and group presentations (in terms of string rewriting systems) can be linked to special polynomials called binomials. In the same mood, the aim of this paper is to discuss the relation between Nielsen reduced sets of generators and the Todd-Coxeter coset enumeration procedure on the one side and the Gröbner basis theory for free group rings on the other. While it is well-known that there is a strong relationship between Buchberger's algorithm and the Knuth-Bendix completion procedure, and there are interpretations of the Todd-Coxeter coset enumeration procedure using the Knuth-Bendix procedure for special cases, our aim is to show how a verbatim interpretation of the Todd-Coxeter procedure can be obtained by linking recent Gröbner techniques like prefix Gröbner bases and the FGLM algorithm as a tool to study the duality of ideals. As a side product our procedure computes Nielsen reduced generating sets for subgroups in finitely generated free groups.

t is well-known that for the integral group ring of a polycyclic group several decision problems are decidable. In this paper a technique to solve themembership problem for right ideals originating from Baumslag, Cannonito and Miller and studied by Sims is outlined. We want to analyze, how thesedecision methods are related to Gröbner bases. Therefore, we define effective reduction for group rings over Abelian groups, nilpotent groups and moregeneral polycyclic groups. Using these reductions we present generalizations of Buchberger's Gröbner basis method by giving an appropriate definition of"Gröbner bases" in the respective setting and by characterizing them using concepts of saturation and s-polynomials.

Following Buchberger's approach to computing a Gröbner basis of a poly-nomial ideal in polynomial rings, a completion procedure for finitely generatedright ideals in Z[H] is given, where H is an ordered monoid presented by a finite,convergent semi - Thue system (Sigma; T ). Taking a finite set F ' Z[H] we get a(possibly infinite) basis of the right ideal generated by F , such that using thisbasis we have unique normal forms for all p 2 Z[H] (especially the normal formis 0 in case p is an element of the right ideal generated by F ). As the orderingand multiplication on H need not be compatible, reduction has to be definedcarefully in order to make it Noetherian. Further we no longer have p Delta x ! p 0for p 2 Z[H]; x 2 H. Similar to Buchberger's s - polynomials, confluence criteriaare developed and a completion procedure is given. In case T = ; or (Sigma; T ) is aconvergent, 2 - monadic presentation of a group providing inverses of length 1 forthe generators or (Sigma; T ) is a convergent presentation of a commutative monoid ,termination can be shown. So in this cases finitely generated right ideals admitfinite Gröbner bases. The connection to the subgroup problem is discussed.

Todd and Coxeter's method for enumerating cosets of finitely generated subgroups in finitely presented groups (abbreviated by Tc here) is one famous method from combinatorial group theory for studying the subgroup problem. Since prefix string rewriting is also an appropriate method to study this problem, prefix string rewriting methods have been compared to Tc. We recall and compare two of them briefly, one by Kuhn and Madlener [4] and one by Sims [15]. A new approach using prefix string rewriting in free groups is derived from the algebraic method presented by Reinert, Mora and Madlener in [14] which directly emulates Tc. It is extended to free monoids and an algebraic characterization for the "cosets" enumerated in this setting is provided.