### Refine

#### Year of publication

- 1995 (3) (remove)

In this paper, the complexity of full solution of Fredholm integral equations of the second kind with data from the Sobolev class \(W^r_2\) is studied. The exact order of information complexity is derived. The lower bound is proved using a Gelfand number technique. The upper bound is shown by providing a concrete algorithm of optimal order, based on a specific hyperbolic cross approximation of the kernel function. Numerical experiments are included, comparing the optimal algorithm with the standard Galerkin method.

A new variance reduction technique for the Monte Carlo solution of integral
equations is introduced. It is based on separation of the main part. A neighboring equation with exactly known solution is constructed by the help of a deterministic Galerkin scheme. The variance of the method is analyzed, and an application to the radiosity equation of computer graphics, together with numerical test results is given.

The \(L_2\)-discrepancy is a quantitative measure of precision for multivariate quadrature rules. It can be computed explicitly. Previously known algorithms needed \(O(m^2\)) operations, where \(m\) is the number of nodes. In this paper we present algorithms which require
\(O(m(log m)^d)\) operations.