Refine
Year of publication
Document Type
- Preprint (346)
- Doctoral Thesis (199)
- Report (139)
- Article (117)
- Master's Thesis (45)
- Study Thesis (13)
- Conference Proceeding (8)
- Bachelor Thesis (3)
- Habilitation (2)
- Part of a Book (1)
Has Fulltext
- yes (873)
Is part of the Bibliography
- no (873)
Keywords
- AG-RESY (64)
- PARO (31)
- Case-Based Reasoning (20)
- Visualisierung (19)
- SKALP (16)
- CoMo-Kit (15)
- Fallbasiertes Schliessen (12)
- RODEO (12)
- Robotik (12)
- HANDFLEX (11)
- META-AKAD (9)
- Robotics (8)
- Visualization (8)
- Abstraction (6)
- Case Based Reasoning (6)
- motion planning (6)
- COMOKIT (5)
- Case-Based Planning (5)
- Computergraphik (5)
- Evaluation (5)
- Fallbasiertes Schließen (5)
- Force-Torque (5)
- RONAF (5)
- SDL (5)
- SIMERO (5)
- case-based problem solving (5)
- industrial robots (5)
- parallel processing (5)
- Assembly (4)
- Dienstgüte (4)
- Implementierung (4)
- Java 2 Enterprise Edition (4)
- Knowledge Acquisition (4)
- LOADBAL (4)
- Manipulation skills (4)
- Maschinelles Lernen (4)
- Mensch-Roboter-Kooperation (4)
- Wissensverarbeitung (4)
- case-based reasoning (4)
- deformable objects (4)
- resolution (4)
- safe human robot cooperation (4)
- search algorithms (4)
- Bildverarbeitung (3)
- CODET (3)
- Expertensysteme (3)
- Fallbasiertes Planen (3)
- Formalisierung (3)
- Geoinformationssystem (3)
- Internet (3)
- Java (3)
- Knowledge acquisition (3)
- Kooperation (3)
- Model Checking (3)
- Mustererkennung (3)
- Navigation (3)
- Optimierung (3)
- Optische Zeichenerkennung (3)
- Ray casting (3)
- Recommender Systems (3)
- Requirements/Specifications (3)
- Roboter (3)
- Scientific Visualization (3)
- Semantic Web (3)
- Simulation (3)
- Software Engineering (3)
- case-based planning (3)
- computer aided planning (3)
- computer graphics (3)
- distributed software development (3)
- distributed software development process (3)
- document analysis (3)
- explanation-based learning (3)
- on-line algorithms (3)
- optical character recognition (3)
- path planning (3)
- problem solving (3)
- reuse (3)
- theorem prover (3)
- theorem proving (3)
- verification (3)
- vibration (3)
- visualization (3)
- AKLEON (2)
- Activity recognition (2)
- Algorithmus (2)
- Automation (2)
- Automatische Differentiation (2)
- Bahnplanung (2)
- CAP (2)
- CAPlan (2)
- CIM-OSA (2)
- Code Generation (2)
- Computational Fluid Dynamics (2)
- Datenanalyse (2)
- Datenbank (2)
- Decision Trees (2)
- Deduction (2)
- Deep Learning (2)
- Deformable Objects (2)
- Diagnose technischer Systeme (2)
- Distributed Software Development (2)
- Dreidimensionale Bildverarbeitung (2)
- Effizienter Algorithmus (2)
- Eingebettetes System (2)
- Endlicher Automat (2)
- Entscheidungsbäume (2)
- Experiment (2)
- Fallbasierte Planning (2)
- Fallbasierte Planung (2)
- Fräsen (2)
- GPU (2)
- HOT (2)
- Hals-Nasen-Ohren-Chirurgie (2)
- Hals-Nasen-Ohren-Heilkunde (2)
- Interaction (2)
- Interaktion (2)
- KLUEDO (2)
- Kommunikation (2)
- Kontextbezogenes System (2)
- Layout (2)
- MOLTKE-Projekt (2)
- Machine Learning (2)
- Manipulation (2)
- Mapping (2)
- Mensch-Maschine-Kommunikation (2)
- Mensch-Roboter-Koexistenz (2)
- Merkmalsextraktion (2)
- Modellgetriebene Entwicklung (2)
- Modellierung (2)
- Natural Language Processing (2)
- Network Calculus (2)
- Network Protocols (2)
- Netzwerk (2)
- PATDEX (2)
- Partial functions (2)
- Pattern Recognition (2)
- Prozesssteuerung (2)
- Raumakustik (2)
- Regelung (2)
- Room acoustics (2)
- SWEEPING (2)
- Scattered-Data-Interpolation (2)
- Server (2)
- Software (2)
- Software Agents (2)
- Software engineering (2)
- Softwareentwicklung (2)
- Sprachprofile (2)
- Suchraum (2)
- Systemarchitektur (2)
- TOVE (2)
- Term rewriting systems (2)
- Topology (2)
- Translation Validation (2)
- UML (2)
- UML 2 (2)
- Uncertain Data (2)
- Uncertainty Visualization (2)
- Voronoi-Diagramm (2)
- Wearable computing (2)
- Wissensakquisition (2)
- World Wide Web (2)
- XML (2)
- analogy (2)
- analysis of algorithms (2)
- application (2)
- artificial intelligence (2)
- artificial neural networks (2)
- automated theorem proving (2)
- building automation (2)
- case based reasoning (2)
- combined systems with sha (2)
- computer-supported cooperative work (2)
- confluence (2)
- conservative extension (2)
- consistency (2)
- design patterns (2)
- discretization (2)
- disjoint union (2)
- distributed (2)
- distributed computing (2)
- experience base (2)
- fallbasiertes Schliessen (2)
- formal specification (2)
- frames (2)
- genetic algorithms (2)
- graph search (2)
- human robot cooperation (2)
- image processing (2)
- innermost termination (2)
- layout analysis (2)
- learning system (2)
- load balancing (2)
- machine learning (2)
- many-valued logic (2)
- mobile robots (2)
- modularity (2)
- parallel algorithms (2)
- problem formulation (2)
- regelbasiertes Problemlösen (2)
- requirements engineering (2)
- self-organization (2)
- semantic web (2)
- sensor fusion (2)
- tactics (2)
- temporal logic (2)
- termination (2)
- trajectory planning (2)
- virtual acoustics (2)
- weak termination (2)
- 3D Gene Expression (1)
- 3D Point Data (1)
- ASM (1)
- AUTOSAR (1)
- Ablagestruktur (1)
- Ableitungsschätzung (1)
- Abrechnungsmanagement (1)
- Abstandsregeltempomat (1)
- Abstraction-Based Controller Design (1)
- Abstraktion (1)
- Access Points (1)
- Access System (1)
- Accounting (1)
- Accounting Agent (1)
- Ad-hoc workflow (1)
- Ad-hoc-Netz (1)
- Adaption (1)
- Adaptive Data Structure (1)
- Affine Arithmetic (1)
- Agents (1)
- Akquisition (1)
- Algorithm (1)
- Algorithmic Differentiation (1)
- Ambient Intelligence (1)
- Amharic, Attention, Factored Convolutional Neural Network, OCR (1)
- Anfrageverarbeitung (1)
- Application Framework (1)
- Artificial Intelligence (1)
- Aspektorientierte Programmierung (1)
- Association (1)
- Audiodeskription (1)
- Ausdrucksfähig (1)
- Ausdrucksfähigkeit (1)
- Automat <Automatentheorie> (1)
- Automated Calibration (1)
- Automated Reasoning (1)
- Automated theorem proving (1)
- Automatic Differentiation (1)
- Automatic Image Captioning (1)
- Automatic Theorem Provi (1)
- Automatische Indexierung (1)
- Automatische Klassifikation (1)
- Automatische Messung (1)
- Automatisches Beweisverfahren (1)
- Automotive (1)
- Autonomer Agent (1)
- Autonomer Roboter (1)
- Autonomous mobile robots (1)
- Autorensystem (1)
- Bebauungsplanung (1)
- Befahrbarkeitsanalyse (1)
- Benutzer (1)
- Beschränkte Arithmetik (1)
- Bewegungsplanung (1)
- Bibliothekskatalog (1)
- Bio-inspired (1)
- Bioinformatik (1)
- Bipedal Locomotion (1)
- Bitlisten (1)
- Blackboard architecture (1)
- Bluetooth (1)
- Boosting (1)
- C (1)
- CAN-Bus (1)
- CAR <Roboter> (1)
- CAS (1)
- CBR (1)
- CNC-Maschine (1)
- CUDA (1)
- Caching (1)
- Carbon footprint (1)
- Case Study (1)
- Case Study Erfahrungsdatenbank (1)
- Case-Based Classification Algorithms (1)
- Case-Based Diagnosis (1)
- Case-Based Learning (1)
- Case-Based Reasoning Systems (1)
- Case-Based Representability (1)
- Case-based problem solving (1)
- Castor (1)
- Causal Ordering (1)
- Causality (1)
- Certifying Compilers (1)
- Channel Hopping (1)
- Channel Scheduling (1)
- Chromium Browser (1)
- Classification (1)
- Classification Tasks (1)
- Cluster-Analyse (1)
- Clustering (1)
- Cochlea Implant (1)
- Cochlea Implantat (1)
- Cognitive Amplification (1)
- Collaboration (1)
- Combinatorial Testing (1)
- Compiler (1)
- Completion (1)
- Computer Graphic (1)
- Computer Science (1)
- Computer Supported Cooperative Work (1)
- Computer assistierte Chirurgie (1)
- Computer assistierte Chirurgie (CAS) (1)
- Computer graphics (1)
- Computer supported cooperative work (1)
- Computerphysik (1)
- Computersimulation (1)
- Computertomographie (1)
- Computerunterstütztes Lernen (1)
- Computervision (1)
- Concept mapping (1)
- Concept maps (1)
- Concurrent data structures (1)
- Congitive Radio Networks (1)
- Constraint Graphs (1)
- Containertypen (1)
- Containertypes (1)
- Content Management (1)
- Context of Use (1)
- Contract net (1)
- Controller Synthesis (1)
- Cooperative decision making (1)
- Coq (1)
- Correct-by-Design Controller Synthesis (1)
- Correlation (1)
- Cyber-Physical Systems (1)
- Cycle Accuracy (1)
- DCE <Programm> (1)
- DES (1)
- DFG (1)
- DPN (1)
- Data Modeling (1)
- Dataset (1)
- Datenbanken (1)
- Datenreduktion (1)
- Decision Support Systems (1)
- Declarative and Procedural Knowledge (1)
- Delaunay-Triangulierung (1)
- Dependency Factors (1)
- Derivative Estimation (1)
- Design Rationales (1)
- Diagnosesystem (1)
- Didaktik (1)
- Dienstschnittstellen (1)
- Difference Reduction (1)
- Direct Numerical Simulation (1)
- Discrete Event Simulation (DES) (1)
- Distributed Computation (1)
- Distributed Deb (1)
- Distributed Multimedia Applications (1)
- Distributed Rendering (1)
- Distributed Software Development Projects (1)
- Distributed System (1)
- Distributed software development support (1)
- Distributed system (1)
- Distributed systems (1)
- Distribution and Combination of Theorem Provers (1)
- DoS (1)
- DoS-Attacke (1)
- Domänenspezifische Sprachen (1)
- Doppler-Radar (1)
- Drahtloses lokales Netz (1)
- Dreidimensionale Rekonstruktion (1)
- Dreidimensionale Strömung (1)
- Dublin Core (1)
- Duplicate Identification (1)
- Duplikaterkennung (1)
- Dynamischer Test (1)
- E-Learning (1)
- EBG (1)
- ECMAScript (1)
- ESTELLE (1)
- Earley-Parser (1)
- Ecommerce (1)
- Effizienz (1)
- Effizienzsteigerung (1)
- Eingebettete Systeme (1)
- Elektrizitätsverbrauch (1)
- Embedded software (1)
- Empfehlungssysteme (1)
- Energie (1)
- Engineering 4.0 (1)
- Ensemble Visualization (1)
- Enterprise modeling (1)
- Enterprise modelling (1)
- Entwurf (1)
- Equality reasoning (1)
- Equational Reasoning (1)
- Ernergie effiziente Bewegung (1)
- Erstellung von Expertensystemen (1)
- Eventual consistency (1)
- Evolutionary Algorithm (1)
- Experience Base (1)
- Experience Database (1)
- Experimentation (1)
- Exposed Datapath Architectures (1)
- Expressiveness (1)
- Extensibility (1)
- Extraction (1)
- Extrapolation (1)
- Eyewear Computing (1)
- FERAL (1)
- Fachdidaktik (1)
- Fahrassistenzsysteme (1)
- Fahrtkostenmodelle (1)
- Fallbasierte Diagnose (1)
- Fallstu (1)
- Farbmodell (1)
- Fast Mode-Signaling (1)
- Fault Tree Analysis (1)
- Feasibility study (1)
- Feature (1)
- Feature Detection (1)
- Feature Extraction (1)
- Fehlerbaumanalyse (1)
- Fließanalyse (1)
- Flooding Attack (1)
- Flow Visualization (1)
- Force Feedback (1)
- Formal Semantics (1)
- Formale Beschreibungstechnik (1)
- Formale Grammatik (1)
- Formale Sprache (1)
- Formaler Beweis (1)
- Framework (1)
- Framework <Informatik> (1)
- Functional Programs (1)
- Functional Safety (1)
- Funknetz (1)
- Funktionale Sicherheit (1)
- Fusion (1)
- Future Internet (1)
- GRAPHICS (1)
- Gateway (1)
- Gauß-Filter (1)
- Gebäude (1)
- Gebäudeautomation (1)
- Gefahren- und Risikoanalyse (1)
- Gene expression programming (1)
- General Knowledge (1)
- Generic Methods (1)
- Generierung (1)
- Genetic Algorithm (1)
- Geovisualization (1)
- Global Predicate Detection (1)
- Global Software Highway (1)
- Google Earth (1)
- HOL (1)
- HPC (1)
- HTE (1)
- HTML (1)
- Harvest (1)
- Hazard Analysis (1)
- Heterogeneous (1)
- Hitting families (1)
- Hub-and-Spoke-System (1)
- Huffman (1)
- Huffman-Code (1)
- Human-Computer Interaction (1)
- Human-Robot-Coexistence (1)
- Human-Robot-Cooperation (1)
- Hybrid CBR (1)
- Hybridregler (1)
- Hypergraph (1)
- Hörgerät (1)
- IDEA (1)
- IEEE 802.15.4 (1)
- INRECA (1)
- IP Address (1)
- IP Traffic Accounting (1)
- IP-XACT (1)
- ISO 26262 (1)
- ISO26262 (1)
- Image Processing (1)
- Imote2 (1)
- Implan (1)
- Implantation (1)
- Implementation (1)
- Incremental recomputation (1)
- Indexierung <Inhaltserschließung> (1)
- Inductive Theorem Proving (1)
- Induktive Logische Programmierung (1)
- Induktive logische Programmierung (1)
- Induktivem Schliessen (1)
- Induktiven Logischen Programmierung (1)
- Information Extraction (1)
- Information Visualization (1)
- Instance-based Learning (1)
- Intel XScale (1)
- Intelligent Agents (1)
- Intelligent Object Fusion (1)
- Intelligent agents (1)
- Intensity estimation (1)
- Interleaved Planning (1)
- Intermediate Composition (1)
- Internet Based Software Process Management Environment (1)
- Internet knowledge base (1)
- Internet knowledge reuse (1)
- Interpolation (1)
- Invariante (1)
- Invariante Momente (1)
- Isabelle/HOL (1)
- JSR 170 JCR (1)
- Jacobian (1)
- JavaScript (1)
- Kellerautomat (1)
- Klassifikation (1)
- Knowledge Management (1)
- Knowledge-based Techniques (1)
- Knuth-Bendix completion (1)
- Knuth-Bendix completion algorithm (1)
- Knuth-Bendix-Vervollständigung (1)
- Kollisionserkennung (1)
- Kommunikationsprotokoll (1)
- Komplexitätsklasse NP (1)
- Komponente <Software> (1)
- Komponentenmodell (1)
- Kompression (1)
- Komprimierung (1)
- Korrelationsanalyse (1)
- Kraftregelung (1)
- Kraftrückkopplung (1)
- Kryptographie (1)
- Kryptologie (1)
- Kurve (1)
- Künstliche Intelligenz (1)
- LIDAR (1)
- LIR-Tree (1)
- Language Constructs (1)
- Large Data (1)
- Large High-Resolution Displays (1)
- Laser Wakefield Particle Accelerator (1)
- Laufkomprimierung (1)
- Learning Analytics (1)
- Leistungsmessung (1)
- Lernalgorithmen (1)
- Linked Data (1)
- Linking Data Analysis and Visualization (1)
- Linux (1)
- Location Awareness (1)
- Logical Time (1)
- Logische Programmierung (1)
- Lokalisierung (1)
- Lärmbelastung (1)
- Lärmimmission (1)
- MAC protocols (1)
- MDA <Vorgehensmodell> (1)
- MEGI (1)
- MHEG (1)
- MIDI <Musikelektronik> (1)
- MIP-Emissionsspektroskopie (1)
- MIP-Massenspektrometrie (1)
- MIR (1)
- MOO (1)
- MP3 (1)
- MVP-L (1)
- Machine learning (1)
- Magnetfeldbasierter Lokalisierung (1)
- Magnetfelder (1)
- Manufacturing (1)
- Map Building (1)
- MapReduce (1)
- Maschinelle Übersetzung (1)
- Mastoid (1)
- Mastoidektomie (1)
- Matrix Completion (1)
- Maturity of Software Engineering (1)
- Maximum Intensity Projection (1)
- Mehragentensystem (1)
- Memory Architecture (1)
- Memory Consistency (1)
- Menschenmenge (1)
- Merkmalsraum (1)
- Mesh-Free (1)
- Metadaten (1)
- Meter (1)
- Methods (1)
- Mikrocontroller AVR (1)
- Mikroskopie (1)
- Minimal Cut Set Visualization (1)
- Minimal training (1)
- MoCAS/2 (1)
- Mobile Computing (1)
- Mobile system (1)
- Mobiler Roboter (1)
- Mode-Based Scheduling with Fast Mode-Signaling (1)
- Model Based User Interface Development (1)
- Modelling (1)
- Modularisierung (1)
- Modusbasierte Signalisierung (1)
- Molekulare Bioinformatik (1)
- Moment Invariants (1)
- Moment-Generating Functions (1)
- Mood-based Music Recommendations (1)
- Multi-Edge Graph (1)
- Multi-Field (1)
- Multi-Variate Data (1)
- Multidisciplinary Optimization (1)
- Multifield Data (1)
- Mund-Kiefer-Gesichts-Chirurgie (1)
- Music Information Retrieval (1)
- Musik / Artes liberales (1)
- NP-hard (1)
- Nachhaltigkeit (1)
- Natural Neighbor (1)
- Natural Neighbor Interpolation (1)
- Natürliche Nachbarn (1)
- Nearest-Neighbor Classification (1)
- Network Architecture (1)
- Netz-Architekturen (1)
- Netzwerkmanagement (1)
- Neural Networks (1)
- NoSQL (1)
- Node-Link Diagram (1)
- Numerische Strömungssimulation (1)
- Nvidia (1)
- OCL 2.0 (1)
- OCR (1)
- OWL (1)
- Object-OrientedCase Representation (1)
- Object-Relational DataBase Management Systems (ORDBMS) (1)
- Object-Relational Database Systems (1)
- Object-orientation (1)
- Objektorientierung (1)
- Off-road Robotics (1)
- Off-road Robotik (1)
- Ohrenchirurgie (1)
- Online chain partitioning (1)
- Ontolingua (1)
- Ontology (1)
- Open Estelle (1)
- Open-Source (1)
- Operationsroboter (1)
- Optimierender Compiler (1)
- P2P (1)
- PABS-Methode (1)
- PATDEX 2 (1)
- PC-based robot control (1)
- PDF <Dateiformat> (1)
- PERA (1)
- PI-Regler (1)
- PLAN Abstraction (1)
- PVM (1)
- Parallel Virtual Machines (1)
- Paralleler Hybrid (1)
- Pareto Optimality (1)
- Parser (1)
- Partial Differential Equations (1)
- Partially ordered sets (1)
- Participatory Sensing (1)
- Peer-to-Peer-Netz (1)
- Performance (1)
- Personalisation (1)
- Pervasive health (1)
- Physical activity monitoring (1)
- Planar Pressure (1)
- Planning and Verification (1)
- Position Sensitive Device (1)
- Position- and Orientation Estimation (1)
- Problem Solvers (1)
- Problemlösung (1)
- Process Data (1)
- Process Management (1)
- Process configuration (1)
- Process creation (1)
- Process support (1)
- Processor Architecture (1)
- Processor Architectures (1)
- Produktionsdesign (1)
- Profiles (1)
- Project Management (1)
- Protocol Composition (1)
- Prototyp (1)
- Prototype (1)
- Prozessmodellen (1)
- Prozessvisualisierung (1)
- Quality (1)
- Quality Improvement Paradigm (QIP) (1)
- Qualität (1)
- Quantitative Bildanalyse (1)
- Quartz (1)
- Quicksort (1)
- RDF (1)
- RGB (1)
- RLE (1)
- RNA interaction (1)
- RSA (1)
- Radar (1)
- Random testing (1)
- Raumordnung (1)
- Ray tracing (1)
- ReasoningSystems (1)
- Rechnernetze (1)
- Rechtecksgitter (1)
- Rectilinear Grid (1)
- Redundanzvermeidung (1)
- Regler (1)
- Reglerentwurf (1)
- Reinforcement Learning (1)
- Rekonstruktion (1)
- Relationales Datenbanksystem (1)
- Repositories (1)
- Repository <Informatik> (1)
- Representation (1)
- Requirements engineering (1)
- Reservierungsprotokoll (1)
- Resource Description Framework (1)
- Reuse (1)
- Risikobewertung (1)
- Risk Assessment (1)
- Robot Calibration (1)
- Roboterarm (1)
- Rogue AP (1)
- Routing (1)
- Räumliche Statistik (1)
- SAHARA (1)
- SAX2 (1)
- SCAD (1)
- SCM (1)
- SDL extensions (1)
- SDL-2000 (1)
- SDL-oriented Object Modeling Technique (1)
- SDL-pattern a (1)
- SFB-EB (1)
- SIMD architectures (1)
- SOMT (1)
- SPARQL (1)
- SPARQL query learning (1)
- SQL (1)
- Safety Analysis (1)
- Scalar (1)
- Scheduling (1)
- Schema <Informatik> (1)
- Schematisation (1)
- Schematisierung (1)
- Schädelbasis (1)
- Schädelchirurgie (1)
- Scientific Computing (1)
- Self-Referencing (1)
- Semantic Wikis (1)
- Semantics of Programming Languages (1)
- Semantische Modellierung (1)
- Semantisches Datenmodell (1)
- Sensing (1)
- Service Access Points (1)
- Shared Resource Modeling (1)
- Sicherheit (1)
- Sicherheitsanalyse (1)
- Similarity Assessment (1)
- Similarity Join (1)
- Similarity Joins (1)
- Simulationen (1)
- Simultaneous quantifier elimination (1)
- Skalar (1)
- Skalierbarkeit (1)
- Smalltalk (1)
- Smart City (1)
- Smart Device (1)
- Smart Mobile Device (1)
- Smart Textile (1)
- SmartFactory (1)
- Smartphone (1)
- Smartwatch (1)
- Socio-Semantic Web (1)
- Software Comprehension (1)
- Software Configuration Management (1)
- Software Dependencies (1)
- Software Evolution (1)
- Software Maintenance (1)
- Software Measurement (1)
- Software Process Support (1)
- Software Testing (1)
- Software Visualization (1)
- Software development (1)
- Software development environment (1)
- Software transactional memory (1)
- Software-Architektur (1)
- Software-Entwicklung (1)
- Softwaremetrie (1)
- Softwarespezifikation (1)
- Softwarewartung (1)
- Spezifikation (1)
- Sprachdefinition (1)
- Sprache (1)
- Sprachen (1)
- Stereovision (1)
- Stimmungsbasierte Musikempfehlungen (1)
- Stochastic Dependence (1)
- Stochastic Network Calculus (1)
- Stokes Equations (1)
- Streaming (1)
- Structural Adaptation (1)
- Structure (1)
- Structuring Approach (1)
- Strukturiertes Gitter (1)
- Strömung (1)
- Suchve (1)
- Support-Vektor-Maschine (1)
- Surface Reconstruction (1)
- Symbolic Methods (1)
- Synchronous Control Asynchronous Dataflow (1)
- System Abstractions (1)
- SystemC (1)
- Systemdesign (1)
- TCP/IP (1)
- Tactics (1)
- Task-based (1)
- Tcl (1)
- Technology combination (1)
- Technology decision (1)
- Technology selection (1)
- Temporal Decoupling (1)
- Temporal Logic (1)
- Temporal data processing (1)
- Tensor (1)
- Tensorfeld (1)
- Termination (1)
- Tesselation (1)
- Tetraeder (1)
- Tetraedergi (1)
- Tetrahedral Grid (1)
- Tetrahedral Mesh (1)
- Textual CBR (1)
- Themenbasierte Empfehlungen von Ressourcen (1)
- Time-motion-Ultraschallkardiographie (1)
- Tonsignal (1)
- Topic-based Resource Recommendations (1)
- Topologie (1)
- Topology Preserving Networks (1)
- Topology visualization (1)
- Transaction Level Modeling (TLM) (1)
- Transport Protocol (1)
- Traversability Analysis (1)
- UML Profile (1)
- Ubiquitous system (1)
- Ultraschallkardiographie (1)
- Umweltinformatik (1)
- Universal Control Device (1)
- Unobtrusive instrumentations (1)
- Unorganized Data (1)
- Unsicherheit (1)
- Unstrukturiertes Gitter (1)
- Unterricht (1)
- Urban sprawl (1)
- UrbanSim (1)
- Usage Control (1)
- User Model (1)
- VIACOBI (1)
- VIROP (1)
- Validierung (1)
- Vector (1)
- Vector Field (1)
- Vector Time (1)
- Vektor (1)
- Vektorfelder (1)
- Verifikation (1)
- Versionierungssysteme (1)
- Verteiltes System (1)
- Verzerrungstensor (1)
- Virtual Corporation (1)
- Virtual Prototyping (1)
- Virtual Software Projects (1)
- Vision (1)
- Visual Analytics (1)
- Visual Queries (1)
- Visualization Theory (1)
- Volume rendering (1)
- Volumen-Rendering (1)
- Voronoi diagram (1)
- WETICE 98 (1)
- Weak Memory Model (1)
- Wearable Computing (1)
- WiFi (1)
- Wide Area Multimedia Group Interaction (1)
- Wide-column stores (1)
- Wireless Networks (1)
- Wissenschaftliches Rechnen (1)
- Wissenserwerb (1)
- Workflow Replication (1)
- Workflowmanagement (1)
- Workstation-Cluster (1)
- World-Wide Web (1)
- XDBMS (1)
- XEC (1)
- XML query estimation (1)
- XML summary (1)
- Yaroslavskiy-Bentley-Bloch Quicksort (1)
- Zeitplanung (1)
- Zugriffstruktur (1)
- Zugriffsystem (1)
- abstract description (1)
- access rights (1)
- acoustic modeling (1)
- active damping (1)
- adaption (1)
- affective user interface (1)
- affine arithmetic (1)
- aliasing (1)
- analogical reasoning (1)
- artificial neural network (1)
- aspect-oriented programming (1)
- assembly sequence design (1)
- associations (1)
- authentication (1)
- automated code generation (1)
- automated computer learning (1)
- automated proof planner (1)
- automated synchronization (1)
- automotive (1)
- autonomes Lernen (1)
- autonomous learning (1)
- autonomous systems (1)
- average-case analysis (1)
- bedingte Aktionen (1)
- behaviour-based system (1)
- behaviourbased (1)
- bi-directional search (1)
- bidirectional search (1)
- binary countdown protocol (1)
- biological motivated (1)
- biologisch motiviert (1)
- black bursts (1)
- body-IMU calibration (1)
- branch-and-bound (1)
- business process modelling (1)
- business process reengineering (1)
- byte code (1)
- case-based planner (1)
- classification (1)
- client/server-architecture (1)
- co-learning (1)
- collaborative information visualization (1)
- collaborative mobile sensing (1)
- collective intelligence (1)
- collision detection (1)
- combinatorial algorithms (1)
- communication architectures (1)
- communication protocols (1)
- communication subsystem (1)
- compilation (1)
- compiler (1)
- completeness (1)
- complex System Development (1)
- component-based (1)
- comprehensive reuse (1)
- computational biology (1)
- computational fluid dynamics (1)
- concept representation (1)
- conceptual design (1)
- conceptual representation (1)
- concurrent (1)
- concurrent software (1)
- constraint exploration (1)
- constraint satisfaction problem (CSP) (1)
- constraint-based reasoning (1)
- content-and-structure summary (1)
- continuous master theorem (1)
- continuous media (1)
- cooperative problem solving (1)
- crowd condition estimation (1)
- crowd density estimation (1)
- crowd scanning (1)
- crowd sensing (1)
- crowdsourcing (1)
- curves and surfaces (1)
- customization of communication protocols (1)
- data sets (1)
- data-flow (1)
- dataset (1)
- decidability (1)
- decision support (1)
- deep learning (1)
- deformable object (1)
- dependability (1)
- dependable systems (1)
- dependency management (1)
- description of reactive systems (1)
- design (1)
- design processes (1)
- deterministic arbitration (1)
- diagnostic problems (1)
- directed graphs (1)
- display algorithms (1)
- distributed and parallel processing (1)
- distributed c (1)
- distributed compliant control (1)
- distributed control system (1)
- distributed deduction (1)
- distributed document management (1)
- distributed enterprise (1)
- distributed groupware environment (1)
- distributed multi-platform software development (1)
- distributed multi-platform software development projects (1)
- distributed processing (1)
- distributed real-time systems (1)
- distributed software configuration management (1)
- distributed softwaredevelopment tools (1)
- distributed tasks (1)
- distributedknowledge-based systems (1)
- domain-specific language (1)
- domains (1)
- efficiency (1)
- embedded (1)
- embedding (1)
- emotion visualization (1)
- encapsulation (1)
- end-to-end learning (1)
- energy consumption (1)
- environmental noise (1)
- epidemic algorithms (1)
- epidemische Algorithmen (1)
- ernergy effcient motion (1)
- evolutionary algorithm (1)
- experience management (1)
- experimental software engineering (1)
- fallbasiertes planen (1)
- firewall (1)
- flexible workflows (1)
- flexible-link (1)
- flexible-link robot (1)
- flow visualization (1)
- force control (1)
- force following (1)
- formal description techniques (1)
- formal reasoning (1)
- foundational translation validation (1)
- frame buffer operations (1)
- framework (1)
- gaussian filter (1)
- generative Programmierung (1)
- generative programming (1)
- generic design of a customized communication subsystem (1)
- geographic information systems (1)
- geology (1)
- goal oriented completion (1)
- graph drawing algorithm (1)
- graph embedding (1)
- graph layout (1)
- graphic processors (1)
- guarded actions (1)
- hand pose, hand shape, depth image, convolutional neural networks (1)
- heterogeneous large-scale distributed DBMS (1)
- high-level caching of potentially shared networked documents (1)
- higher order logic (1)
- higher order tableau (1)
- higher-order calculi (1)
- higher-order tableaux calculus (1)
- higher-order theorem prover (1)
- historical documents (1)
- hub location (1)
- human body motion tracking (1)
- humanoid robot (1)
- humanoide Roboter (1)
- hybrid control (1)
- hybrid knowledge representation (1)
- hypercubes (1)
- hypergraph (1)
- iB2C (1)
- idle times (1)
- image analysis (1)
- implementation (1)
- industrial supervision (1)
- inertial sensors (1)
- information systems (1)
- information systems engineering (1)
- intelligent agents (1)
- intentional programming (1)
- interference (1)
- internet event synchronizer (1)
- interpolation (1)
- interpreter (1)
- interval arithmetic (1)
- invariant (1)
- inverses Pendel (1)
- isochronous streams (1)
- knowledge processing (1)
- knowledge space (1)
- knowledge-based planning (1)
- konzeptuelle Modelierung (1)
- kraftbasiertes Führen (1)
- language definition (1)
- language modeling (1)
- language profiles (1)
- learning (1)
- learning algorithms (1)
- linked abstraction workflows (1)
- linked data (1)
- load sharing (1)
- local communication (1)
- long short-term memory (1)
- long tail (1)
- machine-checkable proof (1)
- magnetic field based localization (1)
- magnetometer calibration (1)
- manipulation (1)
- mastoid (1)
- mastoidectomy (1)
- mathematical concept (1)
- matrix visualization (1)
- measurement (1)
- message-passing (1)
- metadata (1)
- microelectronics ontology (1)
- middleware (1)
- migration (1)
- mixed-signal (1)
- mobile agents (1)
- mobile agents approach (1)
- modelling time (1)
- modularisation (1)
- moment (1)
- monitoring and managing distributed development processes (1)
- morphism (1)
- multi-agent architecture (1)
- multi-language (1)
- multicore (1)
- multidimensional datasets (1)
- multimedia (1)
- multinomial regression (1)
- multiple context free grammar (1)
- multiple-view product modeling (1)
- multithreading (1)
- multitype code coupling (1)
- multiway partitioning (1)
- narrowing (1)
- natural language semantics (1)
- navigation (1)
- negotiation (1)
- nestable tangibles (1)
- object frameworks (1)
- object-orientation (1)
- object-oriented software modeling (1)
- off-line programming (1)
- operations research (1)
- optimization (1)
- optimization correctness (1)
- order-sorted logic (1)
- oscillating magnetic fields (1)
- oscillation (1)
- otorhinolaryngological surgery (1)
- out-of-order (1)
- ownership (1)
- parallel (1)
- parallelism and concurrency (1)
- paramodulation (1)
- participatory sensing (1)
- path cost models (1)
- pattern recognition (1)
- peer-to-peer (1)
- persistence (1)
- pivot sampling (1)
- plan enactment (1)
- planning (1)
- point cloud (1)
- point-to-point (1)
- problem solvers (1)
- process model (1)
- process modelling (1)
- process support system (PROSYT) (1)
- process-centred environments (1)
- profiles (1)
- programmable client-server systems (1)
- programming by demonstration (1)
- project coordination (1)
- proof generating optimizer (1)
- proof plans (1)
- proof presentation (1)
- protocol (1)
- rapid authoring (1)
- raster graphics (1)
- rate control (1)
- ray casting (1)
- ray tracing (1)
- reactive systems (1)
- real time (1)
- real-time (1)
- real-time tasks (1)
- real-time temporal logic (1)
- reasoning (1)
- receptive safety properties (1)
- redundancy (1)
- redundant robots (1)
- rekursiv aufzählbare Sprachfamilien (1)
- relaxed memory models (1)
- reliability (1)
- requirements (1)
- reuse repositories (1)
- review (1)
- rings (1)
- risk management (1)
- robot (1)
- robot calibration (1)
- robot control (1)
- robot control architectures (1)
- robot kinematics (1)
- robot motion planning (1)
- robotergestützt (1)
- robotics (1)
- robustness (1)
- roles (1)
- rule-based reasoning (1)
- safe human robot coexistence (1)
- scene flow (1)
- search algorithm (1)
- search alogorithms (1)
- search-space-problem (1)
- second order logic (1)
- secondary structure prediction (1)
- security domain (1)
- seed filling (1)
- self-localization (1)
- semiring parsing (1)
- sequent calculus (1)
- shortest sequence (1)
- similarity measure (1)
- skolemization (1)
- small-multiples node-link visualization (1)
- social media (1)
- software agents (1)
- software comprehension (1)
- software engineering (1)
- software engineering task (1)
- software project (1)
- software project management (1)
- software reuse (1)
- sorted logic (1)
- soundness (1)
- sparse-to-dense (1)
- spatial statistics (1)
- state-based formalism (1)
- static load balancing (1)
- static software structure (1)
- stationary sensing (1)
- statistics (1)
- stochastic context free grammar (1)
- structural summary (1)
- subjective evaluation (1)
- symbolic simulation (1)
- synchrone Sprachen (1)
- synchronous (1)
- synchronous languages (1)
- system architecture (1)
- system behaviour (1)
- tableau (1)
- tabletop (1)
- task sequence (1)
- tensor (1)
- tensorfield (1)
- terrain rendering (1)
- time-varying flow fields (1)
- topology preserving maps (1)
- tori (1)
- touch surfaces (1)
- traceability (1)
- trajectory optimization (1)
- translation (1)
- translation contract (1)
- translation validation (1)
- traveling salesman problem (1)
- types (1)
- typical examples (1)
- typical instance (1)
- urban planning (1)
- user-centered design (1)
- vector field visualization (1)
- vectorfield (1)
- verhaltensbasiert (1)
- verlustfrei (1)
- verlässlichkeit (1)
- verteilte Berechnung (1)
- vetreilte nachgiebige Regelung (1)
- virtual market place (1)
- virtual programming (1)
- virtual reality (1)
- visual analytics, machine learning, interaction, user experience, assistive technologies (1)
- visual process modelling environment (1)
- visual structure (1)
- wearable systems (1)
- weighted finite-state transducers (1)
- wireless signal (1)
- wissensbasierte Systeme (1)
- wissensbasierter Systeme der Arbeitsplanerstellung (1)
- work coordination (1)
- world modelling (1)
- world-modelling (1)
- zeitabhängige Strömungen (1)
- Ähnlichkeit (1)
- Übersetzung (1)
Faculty / Organisational entity
- Fachbereich Informatik (873) (remove)
Dealing with Dependence in the End-to-End Performance Analysis in Stochastic Network Calculus
(2022)
Communication networks, in particular the Internet, have become a pivotal part of our life. Since their beginnings, a key aspect of their applicability has been the performance. Safety-critical applications, for example, can sometimes only be implemented in a responsible manner if guarantees about their end-to-end delay can be made. A mathematical modeling and performance evaluation of communication networks requires a powerful set of tools that is able to incorporate their increasing complexity.
The stochastic network calculus (SNC) is a versatile, mathematical framework that allows for a calculation of probabilistic end-to-end performance bounds of distributed systems. Its flexibility enables to incorporate a large class of different schedulers as well as different models of traffic processes beyond the assumption of Poisson arrivals that is predominant in queueing theory-based analyses. It originates in the so-called deterministic network analysis (DNC) in the 90's of the 20th century that was introduced to provide deterministic, ``hard'' guarantees that are of relevance, e.g., in the context of real-time systems. While the DNC of today can be used to calculate fast and accurate delay bounds of arbitrary feedforward networks, the SNC is still in a significantly earlier stage. In particular, method-pertinent dependencies, i.e., a phenomenon that occurs when independent flows become stochastically dependent after sharing resources in the network, can be considered a major challenge in the SNC with moment-generating functions (MGFs).
This thesis argues to contribute to the SNC in several ways. First, we show that the ``pay multiplexing only once'' (PMOO) analysis known from the DNC is also possible in the SNC. Not only does it significantly improve end-to-end delay bounds, it also needs to consider less method-pertinent dependencies. Therefore, complexity and runtimes of the calculation are greatly reduced. Second, we introduce the concept of negative dependence to the SNC with MGFs and give numerical evidence that this can further lead to better performance bounds. Third, for the larger problem of end-to-end performance bounds of tree networks, we introduce so-called ''h-mitigators'', a modification in the calculation of MGF output bounds. It is minimally invasive, all existing results and procedures are still applicable, and improves performance bounds. As a fourth contribution, we conduct extensive numerical evaluations to substantiate our claims. Moreover, we made the respective code, the ''SNC MGF toolbox'', publicly available to ensure that the results are reproducible. At last, we conduct different stochastic analyses of a popular fair scheduler, generalized processor sharing (GPS). We give an overview of the state-of-the-art analyses in the SNC and substantiate the comparison through numerical evaluations.
To support scientific work with large and complex data the field of scientific visualization emerged in computer science and produces images through computational analysis of the data. Frameworks for combination of different analysis and visualization modules allow the user to create flexible pipelines for this purpose and set the standard for interactive scientific visualization used by domain scientists.
Existing frameworks employ a thread-parallel message-passing approach to parallel and distributed scalability, leaving the field of scientific visualization in high performance computing to specialized ad-hoc implementations. The task-parallel programming paradigm proves promising to improve scalability and portability in high performance computing implementations and thus, this thesis aims towards the creation of a framework for distributed, task-based visualization modules and pipelines.
The major contribution of the thesis is the establishment of modules for Merge Tree construction and (based on the former) topological simplification. Such modules already form a necessary first step for most visualization pipelines and can be expected to increase in importance for larger and more complex data produced and/or analysed by high performance computing.
To create a task-parallel, distributed Merge Tree construction module the construction process has to be completely revised. We derive a novel property of Merge Tree saddles and introduce a novel task-parallel, distributed Merge Tree construction method that has both good performance and scalability. This forms the basis for a module for topological simplification which we extend by introducing novel alternative simplification parameters that aim to reduce the importance of prior domain knowledge to increase flexibility in typical high performance computing scenarios.
Both modules lay the groundwork for continuative analysis and visualization steps and form a fundamental step towards an extensive task-parallel visualization pipeline framework for high performance computing.
This dissertation was developed in the context of the BMBF and EU/ECSEL funded
projects GENIAL! and Arrowhead Tools. In these projects the chair examines methods
of specifications and cooperations in the automotive value chain from OEM-Tier1-Tier2.
Goal of the projects is to improve communication and collaborative planning, especially
in early development stages. Besides SysML, the use of agreed vocabularies and on-
tologies for modeling requirements, overall context, variants, and many other items, is
targeted. This thesis proposes a web database, where data from the collaborative requirements elicitation is combined with an ontology-based approach that uses reasoning
capabilities.
For this purpose, state-of-the-art ontologies have been investigated and integrated that
entail domains like hardware/software, roadmapping, IoT, context, innovation and oth-
ers. New ontologies have been designed like a HW / SW allocation ontology and a
domain-specific "eFuse ontology" as well as some prototypes. The result is a modular
ontology suite and the GENIAL! Basic Ontology that allows us to model automotive
and microelectronic functions, components, properties and dependencies based on the
ISO26262 standard among these elements. Furthermore, context knowledge that influences design decisions such as future trends in legislation, society, environment, etc. is
included. These knowledge bases are integrated in a novel tool that allows for collabo-
rative innovation planning and requirements communication along the automotive value
chain. To start off the work of the project, an architecture and prototype tool was developed. Designing ontologies and knowing how to use them proved to be a non-trivial
task, requiring a lot of context and background knowledge. Some of this background
knowledge has been selected for presentation and was utilized either in designing models
or for later immersion. Examples are basic foundations like design guidelines for ontologies, ontology categories and a continuum of expressiveness of languages and advanced
content like multi-level theory, foundational ontologies and reasoning.
Finally, at the end, we demonstrate the overall framework, and show the ontology with
reasoning, database and APPEL/SysMD (AGILA ProPErty and Dependency Descrip-
tion Language / System MarkDown) and constraints of the hardware / software knowledge base. There, by example, we explore and solve roadmap constraints that are coupled
with a car model through a constraint solver.
Controller design for continuous dynamical systems is a core algorithmic problem in the design of cyber-physical systems (CPS). When the CPS application is safety critical, additionally we require the controller to have strong correctness guarantees. One approach for this design problem is to use simpler discrete abstraction of the original continuous system, on which known reactive synthesis methods can be used to design the controller. This approach is known as the abstraction-based controller design (ABCD) paradigm.
In this thesis, we build ABCD procedures which are faster and more modular compared to the state-of-the-art, and can handle problems which were beyond the scope of the existing techniques.
Usually, existing ABCD approaches use state space discretization for computing the abstractions, for which the procedures do not scale well for larger systems. Our first contribution is a multi-layered ABCD algorithm, where we combine coarse abstractions and lazily computed fine abstractions to improve scalability. So far, we only address reach-avoid and safety specifications, for which our prototype tool (called Mascot) showed up to an order of magnitude speedup on standard benchmark examples.
Second, we consider the problem of modular design of sound local controllers for a network of local discrete abstractions communicating via discrete/boolean variables and having local specifications. We propose a sound algorithm, where the systems negotiate a pair of local assume-guarantee contracts, in order to synchronize on a set of non-conflicting and correct behaviors. As a by-product, we also obtain a set of local controllers for the systems which ensure simultaneous satisfaction of the local specifications. We show the effectiveness of the our algorithm using a prototype tool (called Agnes) on a set of discrete benchmark examples.
Our third contribution is a novel ABCD algorithm for a more expressive model of nonlinear dynamical systems with stochastic disturbances and ω-regular specifications. This part has two subparts, which are of significant merits on their own rights. First, we present an abstraction algorithm for nonlinear stochastic systems using 2.5-player games (turn-based stochastic graph games). We show that an almost sure winning strategy in this abstract 2.5-player game gives us a sound controller for the original system for satisfying the specification with probability one. Second, we present symbolic algorithms for a seemingly different class of 2-player games with certain environmental fairness assumptions, which can also be used to efficiently compute winning strategies in the aforementioned abstract 2.5-player game. Using our prototype tool (Mascot-SDS), we show that our algorithm significantly outperforms the state-of-the-art implementation on standard benchmark examples from the literature.
Comparative Uncertainty Visualization for High-Level Analysis of Scalar- and Vector-Valued Ensembles
(2022)
With this thesis, I contribute to the research field of uncertainty visualization, considering parameter dependencies in multi valued fields and the uncertainty of automated data analysis. Like uncertainty visualization in general, both of these fields are becoming more and more important due to increasing computational power, growing importance and availability of complex models and collected data, and progress in artificial intelligence. I contribute in the following application areas:
Uncertain Topology of Scalar Field Ensembles.
The generalization of topology-based visualizations to multi valued data involves many challenges. An example is the comparative visualization of multiple contour trees, complicated by the random nature of prevalent contour tree layout algorithms. I present a novel approach for the comparative visualization of contour trees - the Fuzzy Contour Tree.
Uncertain Topological Features in Time-Dependent Scalar Fields.
Tracking features in time-dependent scalar fields is an active field of research, where most approaches rely on the comparison of consecutive time steps. I created a more holistic visualization for time-varying scalar field topology by adapting Fuzzy Contour Trees to the time-dependent setting.
Uncertain Trajectories in Vector Field Ensembles.
Visitation maps are an intuitive and well-known visualization of uncertain trajectories in vector field ensembles. For large ensembles, visitation maps are not applicable, or only with extensive time requirements. I developed Visitation Graphs, a new representation and data reduction method for vector field ensembles that can be calculated in situ and is an optimal basis for the efficient generation of visitation maps. This is accomplished by bringing forward calculation times to the pre-processing.
Visually Supported Anomaly Detection in Cyber Security.
Numerous cyber attacks and the increasing complexity of networks and their protection necessitate the application of automated data analysis in cyber security. Due to uncertainty in automated anomaly detection, the results need to be communicated to analysts to ensure appropriate reactions. I introduce a visualization system combining device readings and anomaly detection results: the Security in Process System. To further support analysts I developed an application agnostic framework that supports the integration of knowledge assistance and applied it to the Security in Process System. I present this Knowledge Rocks Framework, its application and the results of evaluations for both, the original and the knowledge assisted Security in Process System. For all presented systems, I provide implementation details, illustrations and applications.
Robotic systems are entering the stage. Enabled by advances in both hardware components and software techniques, robots are increasingly able to operate outside of factories, assist humans, and work alongside them. The limiting factor of robots’ expansion remains the programming of robotic systems. Due to the many diverse skills necessary to build a multi-robot system, only the biggest organizations are able to innovate in the space of services provided by robots.
To make developing new robotic services easier, in this dissertation I propose a program- ming model in which users (programmers) give a declarative specification of what needs to be accomplished, and then a backend system makes sure that the specification is safely and reliably executed. I present Antlab, one such backend system. Antlab accepts Linear Temporal Logic (LTL) specifications from multiple users and executes them using a set of robots of different capabilities.
Building on the experience acquired implementing Antlab, I identify problems arising from the proposed programming model. These problems fall into two broad categories, specification and planning.
In the category of specification problems, I solve the problem of inferring an LTL formula from sets of positive and negative example traces, as well as from a set of positive examples only. Building on top of these solutions, I develop a method to help users transfer their intent into a formal specification. The approach taken in this dissertation is combining the intent signals from a single demonstration and a natural language description given by a user. A set of candidate specifications is inferred by encoding the problem as a satisfiability problem for propositional logic. This set is narrowed down to a single specification through interaction with the user; the user approves or declines generated simulations of the robot’s behavior in different situations.
In the category of planning problems, I first solve the problem of planning for robots that are currently executing their tasks. In such a situation, it is unclear what to take as the initial state for planning. I solve the problem by considering multiple, speculative initial states. The paths from those states are explored based on a quality function that repeatedly estimates the planning time. The second problem is a problem of reinforcement learning when the reward function is non-Markovian. The proposed solution consists of iteratively learning an automaton representing the reward function and using it to guide the exploration.
Data-driven and Sparse-to-Dense Concepts in Scene Flow Estimation for Automotive Applications
(2022)
Highly assisted driving and autonomous vehicles require a detailed and accurate perception of the environment. This includes the perception of the 3D geometry of the scene and the 3D motion of other road users. The estimation of both based on images is known as the scene flow problem in computer vision. This thesis deals with a solution to the scene flow problem that is suitable for application in autonomous vehicles. This application imposes strict requirements on accuracy, robustness, and speed. Previous work was lagging behind in at least one of these metrics. To work towards the fulfillment of those requirements, the sparse-to-dense concept for scene flow estimation is introduced in this thesis. The idea can be summarized as follows: First, scene flow is estimated for some points of the scene for which this can be done comparatively easily and reliably. Then, an interpolation is performed to obtain a dense estimate for the entire scene. Because of the separation into two steps, each part can be optimized individually. In a series of experiments, it is shown that the proposed methods achieve competitive results and are preferable to previous techniques in some aspects. As a second contribution, individual components in the sparse-to-dense pipeline are replaced by deep learning modules. These are a highly localized and highly accurate feature descriptor to represent pixels for dense matching, and a network for robust and generic sparse-to-dense interpolation. Compared to end-to-end architectures, the advantage of deep modules is that they can be trained more effciently with data from different domains. The recombination approach applies a similar concept as the sparse-to-dense approach by solving and combining less diffcult, auxiliary sub-problems. 3D geometry and 2D motion are estimated separately, the individual results are combined, and then also interpolated into a dense scene flow. As a final contribution, the thesis proposes a set of monolithic end-to-end networks for scene flow estimation.
Today’s digital world would be unthinkable without complex data sets. Whether in private, business or industrial environments, complex data provide the basis for important and critical decisions and determine many processes, some of which are automated. This is often associated with Big Data. However, often only one aspect of the usual Big Data definitions is sufficient and a human observer can no longer capture the data completely and correctly. In this thesis, different approaches are presented in order to master selected challenges in a more effective, efficient and userfriendly way. The approaches range from easier pre-processing of data sets for later analysis and the identification of design guidelines of such assistants, new visualization techniques for presenting uncertainty, extensions of existing visualizations for categorical data, concepts for time-saving selection methods for subsets of data points and faster navigation and zoom interaction–especially in the web-based area with enormous amounts of data–to new and innovative orientation-based interaction metaphors for mobile devices as well as stationary working environments. Evaluations and appropriate use case of the individual approaches show the usability also in comparison with state-of-the-art techniques.
Industrial manufacturing companies have different IT control functions that can be represented with a so-called hierarchical automation pyramid. While these conventional software systems especially support the mass production with consistent demand, the future project “Industry 4.0” focuses on customer-oriented and adaptable production processes. In order to move from conventional production systems to a factory of the future, the control levels must be redistributed. With the help of cyber-physical production systems, an interoperable architecture must be, implemented which removes the hierarchical connection of the former control levels. The accompanied digitalisation of industrial companies makes the transition to modular production possible. At the same time, the requirements for production planning and control are increasing, which can be solved with approaches such as multi-agent systems (MASs). These software solutions are autonomous and intelligent objects with a distinct collaborative ability. There are different modelling methods, communication and interaction structures, as well as different development frameworks for these new systems. Since multi-agent systems have not yet been established as an industrial standard due to their high complexity, they are usually only tested in simulations. In this bachelor thesis, a detailed literature review on the topic of MASs in the field of production planning and control is presented. In addition, selected multi-agent approaches are evaluated and compared using specific classification criteria. In addition, the applicability of using these systems in digital and modular production is assessed.
Sequence learning describes the process of understanding the spatio-temporal
relations in a sequence in order to classify it, label its elements or generate
new sequences. Due to the prevalence of structured sequences in nature
and everyday life, it has many practical applications including any language
related processing task. One particular such task that has seen recent success
using sequence learning techniques is the optical recognition of characters
(OCR).
State-of-the-art sequence learning solutions for OCR achieve high performance
through supervised training, which requires large amounts of transcribed
training data. On the other hand, few solutions have been proposed on how
to apply sequence learning in the absence of such data, which is especially
common for hard to transcribe historical documents. Rather than solving
the unsupervised training problem, research has focused on creating efficient
methods for collecting training data through smart annotation tools or generating
synthetic training data. These solutions come with various limitations
and do not solve all of the related problems.
In this work, first the use of erroneous transcriptions for supervised sequence
learning is introduced and it is described how this concept can be applied in
unsupervised training scenarios by collecting or generating such transcriptions.
The proposed OCR pipeline reduces the need of domain specific expertise
to apply OCR, with the goal of making it more accessible. Furthermore, an
approach for evaluating sequence learning OCR models in the absence of
reference transcriptions is presented and its different properties compared
to the standard method are discussed. In a second approach, unsupervised
OCR is treated as an alignment problem between the latent features of the
different language modalities. The outlined solution is to extract language
properties from both the text and image domain through adversarial training
and learn to align them by adding a cycle consistency constraint. The proposed
approach has some strict limitations on the input data, but the results
encourage future research into more widespread applications.
Recommender systems recommend items (e.g., movies, products, books) to users. In this thesis, we proposed two comprehensive and cluster-induced recommendation-based methods: Orthogonal Inductive Matrix Completion (OMIC) and Burst-induced Multi-armed Bandit (BMAB). Given the presence of side information, the first method is categorized as context-aware. OMIC is the first matrix completion method to approach the problem of incorporating biases, side information terms and a pure low-rank term into a single flexible framework with a well-principled optimization procedure. The second method, BMAB, is context-free. That is, it does not require any side data about users or items. Unlike previous context-free multi-armed bandit approaches, our method considers the temporal dynamics of human communication on the web and treats the problem in a continuous time setting. We built our models' assumptions under solid theoretical foundations. For OMIC, we provided theoretical guarantees in the form of generalization bounds by considering the distribution-free case: no assumptions about the sampling distribution are made. Additionally, we conducted a theoretical analysis of community side information when the sampling distribution is known and an adjusted nuclear norm regularization is applied. We showed that our method requires just a few entries to accurately recover the ratings matrix if the structure of the ground truth closely matches the cluster side information. For BMAB, we provided regret guarantees under mild conditions that demonstrate how the system's stability affects the expected reward. Furthermore, we conducted extensive experiments to validate our proposed methodologies. In a controlled environment, we implemented synthetic data generation techniques capable of replicating the domains for which OMIC and BMAB were designed. As a result, we were able to analyze our algorithms' performance across a broad spectrum of ground truth regimes. Finally, we replicated a real-world scenario by utilizing well-established recommender datasets. After comparing our approaches to several baselines, we observe that they achieved state-of-the-art results in terms of accuracy. Apart from being highly accurate, these methods improve interpretability by describing and quantifying features of the datasets they characterize.
In the past, information and knowledge dissemination was relegated to the
brick-and-mortar classrooms, newspapers, radio, and television. As these
processes were simple and centralized, the models behind them were well
understood and so were the empirical methods for optimizing them. In today’s
world, the internet and social media has become a powerful tool for information
and knowledge dissemination: Wikipedia gets more than 1 million edits per day,
Stack Overflow has more than 17 million questions, 25% of US population visits
Yahoo! News for articles and discussions, Twitter has more than 60 million
active monthly users, and Duolingo has 25 million users learning languages
online. These developments have introduced a paradigm shift in the process of
dissemination. Not only has the nature of the task moved from being centralized
to decentralized, but the developments have also blurred the boundary between
the creator and the consumer of the content, i.e., information and knowledge.
These changes have made it necessary to develop new models, which are better
suited to understanding and analysing the dissemination, and to develop new
methods to optimize them.
At a broad level, we can view the participation of users in the process of
dissemination as falling in one of two settings: collaborative or competitive.
In the collaborative setting, the participants work together in crafting
knowledge online, e.g., by asking questions and contributing answers, or by
discussing news or opinion pieces. In contrast, as competitors, they vie for
the attention of their followers on social media. This thesis investigates both
these settings.
The first part of the thesis focuses on the understanding and analysis of
content being created online collaboratively. To this end, I propose models for
understanding the complexity of the content of collaborative online discussions
by looking exclusively at the signals of agreement and disagreement expressed
by the crowd. This leads to a formal notion of complexity of opinions and
online discussions. Next, I turn my attention to the participants of the crowd,
i.e., the creators and consumers themselves, and propose an intuitive model for
both, the evolution of their expertise and the value of the content they
collaboratively contribute and learn from on online Q&A based forums. The
second part of the thesis explores the competitive setting. It provides methods
to help the creators gain more attention from their followers on social media.
In particular, I consider the problem of controlling the timing of the posts of
users with the aim of maximizing the attention that their posts receive under
the idealized setting of full-knowledge of timing of posts of others. To solve
it, I develop a general reinforcement learning based method which is shown to
have good performance on the when-to-post problem and which can be employed in
many other settings as well, e.g., determining the reviewing times for spaced
repetition which lead to optimal learning. The last part of the thesis looks at
methods for relaxing the idealized assumption of full knowledge. This basic
question of determining the visibility of one’s posts on the followers’ feeds
becomes difficult to answer on the internet when constantly observing the feeds
of all the followers becomes unscalable. I explore the links of this problem to
the well-studied problem of web-crawling to update a search engine’s index and
provide algorithms with performance guarantees for feed observation policies
which minimize the error in the estimate of visibility of one’s posts.
Data is the new gold and serves as a key to answer the five W’s (Who, What, Where, When, Why) and How’s of any business. Companies are now mining data more than ever and one of the most important aspects while analyzing this data is to detect anomalous patterns to identify critical patterns and points. To tackle the vital aspects of timeseries analysis, this thesis presents a novel hybrid framework that stands on three pillars: Anomaly Detection, Uncertainty Estimation,
and Interpretability and Explainability.
The first pillar is comprised of contributions in the area of time-series anomaly detection. Deep Anomaly Detection for Time-series (DeepAnT), a novel deep learning-based anomaly detection method, lies at the foundation of the proposed hybrid framework and addresses the inadequacy of traditional anomaly detection methods. To the best of the author’s knowledge, Convolutional Neural Network (CNN) was used for the first time in Deep Anomaly Detection for Time-series (DeepAnT) to robustly detect multiple types of anomalies in the tricky
and continuously changing time-series data. To further improve the anomaly detection performance, a fusion-based method, Fusion of
Statistical and Deep Learning for Anomaly Detection (FuseAD) is proposed. This method aims to combine the strengths of existing wellfounded
statistical methods and powerful data-driven methods.
In the second pillar of this framework, a hybrid approach that combines the high accuracy of the deterministic models with the posterior distribution approximation of Bayesian neural networks is proposed.
In the third pillar of the proposed framework, mechanisms to enable both HOW and WHY parts are presented.
In order to improve performance or conserve energy, modern hardware implementations have adopted weak memory models; that is, models of concurrency that allow more outcomes than the classic sequentially consistent (SC) model of execution. Modern programming languages similarly provide their own language-level memory models, which strive to allow all the behaviors allowed by the various hardware-level memory models, as well as those that can occur as a result of desired compiler optimizations.
As these weak memory models are often rather intricate, it can be difficult for programmers to keep track of all the possible behaviors of their programs. It is therefore very useful to have an abstraction layer over the model that can be used to ensure program correctness without reasoning about the underlying memory model. Program logics are a way of constructing such an abstraction—one can use their syntactic rules to reason about programs, without needing to understand the messy details of the memory model for which the logic has been proven sound.
Unfortunately, most of the work on formal verification in general, and program logics in particular, has so far assumed the SC model of execution. This means that new logics for weak memory have to be developed.
This thesis presents two such logics—fenced separation logic (FSL) and weak separation logic (Weasel)—which are sound for reasoning under two different weak memory models.
FSL considers the C/C++ concurrency memory model, supporting several of its advanced features. The soundness of FSL depends crucially on a specific strengthening of the model which eliminates a certain class of undesired behaviors (so-called out-of-thin-air behaviors) that were inadvertently allowed by the original C/C++ model.
Weasel works under weaker assumptions than FSL, considering a model which takes a more fine-grained approach to the out-of-thin-air problem. Weasel's focus is on exploring the programming constructs directly related to out-of-thin-air behaviors, and is therefore significantly less feature-rich than FSL.
Using FSL and Weasel, the thesis explores the key challenges in reasoning under weak memory models, and what effect different solutions to the out-of-thin-air problem have on such reasoning. It explains which reasoning principles are preserved when moving from a stronger to a weaker model, and develops novel proof techniques to establish soundness of logics under weaker models.
Using Enhanced Logic Programming Semantics for Extending and Optimizing Synchronous System Design
(2021)
The semantics of programming languages assign a meaning to the written program syntax.
Currently, the meaning of synchronous programming languages, which are especially designed to develop programs for reactive and embedded systems, is based on a formal semantics definition similar to Fitting`s fixpoint semantics for logic programs.
Nevertheless, it is possible to write a synchronous program code that does not evaluate to concrete values with the current semantics, which means those programs are currently seen to be not constructive.
In the last decades, the theoretical knowledge and representation of semantics for logic programming has increased, but not all theoretical results and achievements have found their way to practice and application in system design.
This thesis, in a first part, focuses on extensions to the semantics of synchronous programming languages to an evaluation similar to a well-founded semantics as defined in logic programming by van Gelder, Ross and Schlipf and to the stable model semantics as defined by Gelfond and Lifschitz. Particularly, this allows an evaluation for some of the currently not constructive programs where the semantics based on Fitting`s fixpoint fails.
It is shown that the extension to well-founded semantics is a conservative extension of Fitting`s semantics, so that the meaning for programs which were already constructive does not change. Finally, it is considered how one can still generate circuits that implement the considered synchronous programs with the well-founded semantics. Again, this is a conservative approach that does not modify the circuits generated by the so-far used synthesis procedures.
Answer set programming and the underlying stable model semantics describe problems by constraints and the related answer set solvers give all solutions to that problem as so-called answers. This allows the formulation of searching and planning problems as well as efficient solutions without having the need to develop special and possibly error-prone algorithms for every single application.
The semantics of the synchronous programming language Quartz is also extended to the stable model semantics. For this extension, two alternatives are discussed: First of all, a direct extension similar to the extension to well-founded semantics is discussed. Second, a transformation of synchronous programs to the available answer set programming languages is given, as this allows to directly use answer set solvers for the synthesis and optimization of synchronous systems.
The second part of the thesis contains further examples of the use of answer set programming in system design to emphasis their benefits for system design in general. The first example is hereby the generation of optimal/minimal interconnection-networks which allow non-blocking connections between n sources and n targets in parallel. As a second example, the stable model semantics is used to build a complete compiler chain, which transforms a given program to an optimal assembler code (called move code) for the new SCAD processor architecture which was developed at the University of Kaiserslautern. As a final part, the lessons learned from the two examples are shown by the means of some enhancement ideas for the synchronous programming language paradigm.
Deep learning has achieved significant improvements in a variety of tasks in computer vision applications with an open image dataset which has a large amount of data. However, the acquisition of a large number of the dataset is a challenge in real-world applications, especially if they are new eras for deep learning. Furthermore, the distribution of class in the dataset is often imbalanced. The data imbalance problem is frequently bottlenecks of the neural network performance in classification. Recently, the potential of generative adversarial networks (GAN) as a data augmentation method on minority data has been studied.
This dissertation investigates using GAN and transfer learning to improve the performance of the classification under imbalanced data conditions. We first propose a classification enhancement generative adversarial networks (CEGAN) to enhance the quality of generated synthetic minority data and more importantly, to improve the prediction accuracy in data imbalanced condition. Our experiments show that approximating the real data distribution using CEGAN improves the classification performance significantly in data imbalanced conditions compared with various standard data augmentation methods.
To further improve the performance of the classification, we propose a novel supervised discriminative feature generation method (DFG) for minority class dataset. DFG is based on the modified structure of Generative Adversarial Network consisting of four independent networks: generator, discriminator, feature extractor, and classifier. To augment the selected discriminative features of minority class data by adopting attention mechanism, the generator for class-imbalanced target task is trained while feature extractor and classifier are regularized with the pre-trained ones from large source data. The experimental results show that the generator of DFG enhances the augmentation of label-preserved and diverse features, and classification results are significantly improved on the target task.
In this thesis, these proposals are deployed to bearing fault detection and diagnosis of induction motor and shipping label recognition and validation for logistics. The experimental results for bearing fault detection and diagnosis conclude that the proposed GAN-based framework has good performance on the imbalanced fault diagnosis of rotating machinery. The experimental results for shipping label recognition and validation also show that the proposed method achieves better performance than many classical and state-of-the-art algorithms.
Medical cyber-physical systems (MCPS) emerged as an evolution of the relations between connected health systems, healthcare providers, and modern medical devices. Such systems combine independent medical devices at runtime in order to render new patient monitoring/control functionalities, such as physiological closed loops for controlling drug infusion or optimization of alarms. Despite the advances regarding alarm precision, healthcare providers still struggle with alarm flooding caused by the limited risk assessment models. Furthermore, these limitations also impose severe barriers on the adoption of automated supervision through autonomous actions, such as safety interlocks for avoiding overdosage. The literature has focused on the verification of safety parameters to assure the safety of treatment at runtime and thus optimize alarms and automated actions. Such solutions have relied on the definition of actuation ranges based on thresholds for a few monitored parameters. Given the very dynamic nature of the relevant context conditions (e.g., the patient’s condition, treatment details, system configurations, etc.), fixed thresholds are a weak means for assessing the current risk. This thesis presents an approach for enabling dynamic risk assessment for cooperative MCPS based on an adaptive Bayesian Networks (BN) model. The main aim of the approach is to support continuous runtime risk assessment of the current situation based on relevant context and system information. The presented approach comprises (i) a dynamic risk analysis constituent, which corresponds to the elicitation of relevant risk parameters, risk metric building, and risk metric management; and (ii) a runtime risk classification constituent, which aims to analyze the current situation risk, establish risk classes, and identify and deploy mitigation measures. The proposed approach was evaluated and its feasibility proved by means of simulated experiments guided by an international team of medical experts with a focus on the requirements of efficacy, efficiency, and availability of patient treatment.
Dataflow process networks (DPNs) consist of statically defined process nodes with First-In-First-Out (FIFO) buffered point-to-point connections. DPNs are intrinsically data-driven, i.e., node actions are not synchronized among each other and may fire whenever sufficient input operands arrived at a node. In this original form, DPNs are data-driven and therefore a suitable model of computation (MoC) for asynchronous and distributed systems. For DPNs having nodes with only static consumption/production rates, however, one can easily derive an optimal schedule that can then be used to implement the DPN in a time-driven (clock-driven) way, where each node fires according to the schedule.
Both data-driven and time-driven MoCs have their own advantages and disadvantages. For this reason, desynchronization techniques are used to convert clock-driven models into data-driven ones in order to more efficiently support distributed implementations. These techniques preserve the functional specification of the synchronous models and moreover preserve properties like deadlock-freedom and bounded memory usage that are otherwise difficult to ensure in DPNs. These desynchronized models are the starting point of this thesis.
While the general MoC of DPNs does not impose further restrictions, many different subclasses of DPNs representing different dataflow MoCs have been considered over time like Kahn process networks, cyclo-static and synchronous DPNs. These classes mainly differ in the kinds of behaviors of the processes which affect on the one hand the expressiveness of the DPN class as well as the methods for their analysis (predictability) and synthesis (efficiency). A DPN may be heterogeneous in the sense that different processes in the network may exhibit different kinds of behaviors. A heterogeneous DPN therefore can be effectively used to model and implement different components of a system with different kinds of processes and therefore different dataflow MoCs.
Design tools for modeling like Ptolemy and FERAL are used to model and to design parallel embedded systems using well-defined and precise MoCs, including different dataflow MoCs. However, there is a lack of automatic synthesis methods to analyze and to evaluate the artifacts exhibited by particular MoCs. Second, the existing design tools for synthesis are usually restricted to the weakest classes of DPNs, i.e., cyclo-static and synchronous DPNs where each tool only supports a specific dataflow MoC.
This thesis presents a model-based design based on different dataflow MoCs including their heterogeneous combinations. This model-based design covers in particular the automatic software synthesis of systems from DPN models. The main objective is to validate, evaluate and compare the artifacts exhibited by different dataflow MoCs at the implementation level of embedded systems under the supervision of a common design tool. We are mainly concerned about how these different dataflow MoCs affect the synthesis, in particular, how they affect the code generation and the final implementation on the target hardware. Moreover, this thesis also aims at offering an efficient synthesis method that targets and exploits heterogeneity in DPNs by generating implementations based on the kinds of behaviors of the processes.
The proposed synthesis design flow therefore generally starts from the desynchronized dataflow models and automatically synthesizes them for cross-vendor target hardware. In particular, it provides a synthesis tool chain, including different specialized code generators for specific dataflow MoCs, and a runtime system that finally maps models using a combination of different dataflow MoCs on the target hardware. Moreover, the tool chain offers a platform-independent code synthesis method based on the open computing language (OpenCL) that enables a more generalized synthesis targeting cross-vendor commercial off-the-shelf (COTS) heterogeneous platforms.
DeepKAF: A Knowledge Intensive Framework for Heterogeneous Case-Based Reasoning in Textual Domains
(2021)
Business-relevant domain knowledge can be found in plain text across message exchanges
among customer support tickets, employee message exchanges and other business transactions.
Decoding text-based domain knowledge can be a very demanding task since traditional
methods focus on a comprehensive representation of the business and its relevant paths. Such
a process can be highly complex, time-costly and of high maintenance effort, especially in
environments that change dynamically.
In this thesis, a novel approach is presented for developing hybrid case-based reasoning
(CBR) systems that bring together the benefits of deep learning approaches with CBR advantages.
Deep Knowledge Acquisition Framework (DeepKAF) is a domain-independent
framework that features the usage of deep neural networks and big data technologies to decode
the domain knowledge with the minimum involvement from the domain experts. While
this thesis is focusing more on the textual data because of the availability of the datasets, the
target CBR systems based on DeepKAF are able to deal with heterogeneous data where a
case can be represented by different attribute types and automatically extract the necessary
domain knowledge while keeping the ability to provide an adequate level of explainability.
The main focus within this thesis are automatic knowledge acquisition, building similarity
measures and cases retrieval.
Throughout the progress of this research, several sets of experiments have been conducted
and validated by domain experts. Past textual data produced over around 15 years have
been used for the needs of the conducted experiments. The text produced is a mixture
between English and German texts that were used to describe specific domain problems
with a lot of abbreviations. Based on these, the necessary knowledge repositories were built
and used afterwards in order to evaluate the suggested approach towards effective monitoring
and diagnosis of business workflows. Another public dataset has been used, the CaseLaw
dataset, to validate DeepKAF when dealing with longer text and cases with more attributes.
The CaseLaw dataset represents around 22 million cases from different US states.
Further work motivated by this thesis could investigate how different deep learning models
can be used within the CBR paradigm to solve some of the chronic CBR challenges and be
of benefit to large-scale multi-dimensional enterprises.
Today, information systems are often distributed to achieve high availability and low latency.
These systems can be realized by building on a highly available database to manage the distribution of data.
However, it is well known that high availability and low latency are not compatible with strong consistency guarantees.
For application developers, the lack of strong consistency on the database layer can make it difficult to reason about their programs and ensure that applications work as intended.
We address this problem from the perspective of formal verification.
We present a specification technique, which allows specifying functional properties of the application.
In addition to data invariants, we support history properties.
These let us express relations between events, including invocations of the application API and operations on the database.
To address the verification problem, we have developed a proof technique that handles concurrency using invariants and thereby reduces the problem to sequential verification.
The underlying system semantics, technique and its soundness proof are all formalized in the interactive theorem prover Isabelle/HOL.
Additionally, we have developed a tool named Repliss which uses the proof technique to enable partially automated verification and testing of applications.
For verification, Repliss generates verification conditions via symbolic execution and then uses an SMT solver to discharge them.
This work presents a visual analytics-driven workflow for an interpretable and understandable machine learning model. The model is driven by a reverse
engineering task in automotive assembly processes. The model aims
to predict the assembly parameters leading to the given displacement field
on the geometries surface. The derived model can work on both measurement
and simulation data. The proposed approach is driven by the scientific
goals from visual analytics and interpretable artificial intelligence alike. First, a concept for systematic uncertainty monitoring, an object-oriented, virtual reference scheme (OOVRS), is developed. Afterward, the prediction task is solved via a regressive machine learning model using adversarial neural networks.
A profound model parameter study is conducted and assisted with an interactive visual analytics pipeline. Further, the effects of the learned
variance in displacement fields are analyzed in detail. Therefore a visual analytics pipeline is developed, resulting in a sensitivity benchmarking tool. This allows the testing of various segmentation approaches to lower the machine learning input dimensions. The effects of the assembly parameters are
investigated in domain space to find a suitable segmentation of the training
data set’s geometry. Therefore, a sensitivity matrix visualization is developed. Further, it is shown how this concept could directly compare results
from various segmentation methods, e.g., topological segmentation, concerning the assembly parameters and their impact on the displacement field variance. The resulting databases are still of substantial size for complex simulations with large and high-dimensional parameter spaces. Finally, the applicability of video compression techniques towards compressing visualization image databases is studied.
In the increasingly competitive public-cloud marketplace, improving the efficiency of data centers is a major concern. One way to improve efficiency is to consolidate as many VMs onto as few physical cores as possible, provided that performance expectations are not violated. However, as a prerequisite for increased VM densities, the hypervisor’s VM scheduler must allocate processor time efficiently and in a timely fashion. As we show in this thesis, contemporary VM schedulers leave substantial room for improvements in both regards when facing challenging high-VM-density workloads that frequently trigger the VM scheduler. As root causes, we identify (i) high runtime overheads and (ii) unpredictable scheduling heuristics.
To better support high VM densities, we propose Tableau, a VM scheduler that guarantees a minimum processor share and a maximum bound on scheduling delay for every VM in the system. Tableau combines a low-overhead, core-local, table-driven dispatcher with a fast on-demand table-generation procedure (triggered on VM creation/teardown) that employs scheduling techniques typically used in hard real-time systems. Further, we show that, owing to its focus on efficiency and scalability, Tableau provides comparable or better throughput than existing Xen schedulers in dedicated-core scenarios as are commonly employed in public clouds today.
Tableau also extends this design by providing the ability to use idle cycles in the system to perform low-priority background work, without affecting the performance of primary VMs, a common requirement in public clouds.
Finally, VM churn and workload variations in multi-tenant public clouds result in changing interference patterns at runtime, resulting in performance variation. In particular, variation in last-level cache (LLC) interference has been shown to have a significant impact on virtualized application performance in cloud environments. Tableau employs a novel technique for dealing with dynamically changing interference, which involves periodically regenerating tables with the same guarantees on utilization and scheduling latency for all VMs in the system, but having different LLC interference characteristics. We present two strategies to mitigate LLC interference: a randomized approach, and one that uses performance counters to detect VMs running cache-intensive workloads and selectively mitigate interference.
In recent decades, there has been increasing interest in analyzing the behavior of complex systems. A popular approach for analyzing such systems is a network analytic approach where the system is represented by a graph structure (Wassermann&Faust 1994, Boccaletti et al. 2006, Brandes&Erlebach 2005, Vespignani 2018): Nodes represent the system’s entities, edges their interactions. A large toolbox of network analytic methods, such as measures for structural properties (Newman 2010), centrality measures (Koschützki et al. 2005), or methods for identifying communities (Fortunato 2010), is readily available to be applied on any network structure. However, it is often overlooked that a network representation of a system and the (technically applicable) methods contain assumptions that need to be met; otherwise, the results are not interpretable or even misleading. The most important assumption of a network representation is the presence of indirect effects: If A has an impact on B, and B has an impact on C, then A has an impact on C (Zweig 2016, Brandes et al. 2013). The presence of indirect effects can be explained by ”something” flowing through the network by moving from node to node. Such network flows (or network processes) may be the propagation of information in social networks, the spread of infections, or entities using the network as infrastructure, such as in transportation networks. Also several network measures, particularly most centrality measures, assume the presence of such a network process, but additionally assume specific properties of the network processes (Borgatti 2005). Then, a centrality value indicates a node’s importance with respect to a process with these properties.
While this has been known for several years, only recently have datasets containing real-world network flows become accessible. In this context, the goal of this dissertation is to provide a better understanding of the actual behavior of real-world network processes, with a particular focus on centrality measures: If real-world network processes turn out to show different properties than those assumed by classic centrality measures, these measures might considerably under- or overestimate the importance of nodes for the actual network flow. To the best of our knowledge, there are only very few works addressing this topic.
The contributions of this thesis are therefore as follows: (i) We investigate in which aspects real-world network flows meet the assumptions contained about them in centrality measures. (ii) Since we find that the real-world flows show considerably different properties than assumed, we test to which extent the found properties can be explained by models, i.e., models based on shortest paths or random walks. (iii) We study whether the deviations from the assumed behavior have an impact on the results of centrality measures.
To this end, we introduce flow-based variants of centrality measures which are either based on the assumed behavior or on the actual behavior of the real-world network flow. This enables systematic evaluation of the impact of each assumption on the resulting rankings of centrality measures.
While–on a large scale–we observe a surprisingly large robustness of the measures against deviations in their assumptions, there are nodes whose importance is rated very differently when the real-world network flow is taken into account. (iv) As a technical contribution, we provide a method for an efficient handling of large sets of flow trajectories by summarizing them into groups of similar trajectories. (v) We furthermore present the results of an interdisciplinary research project in which the trajectories of humans in a network were analyzed in detail. In general, we are convinced that a process-driven perspective on network analysis in which the network process is considered in addition to the network representation, can help to better understand the behavior of complex systems.
Wearable systems have been applied in various studies as a convenient and efficient solution for
monitoring health and fitness. There is a large number of commercial products in the growing market
of wearable systems that can be worn as wristbands, clasps, or in the form of clothing. However,
these systems only provide general information about the intensity and possibly the type of
user activity, which is not sufficient for monitoring strength and conditioning exercises. To achieve
optimal muscular development and reduce the risk of exercise-related injury, a wearable system
should provide reliable biomechanical details of body movements as well as real-time feedback
during training. In addition, it should be an affordable, comfortable, and easy-to-use platform for
different types of users with different levels of movement intensity and work autonomously over
long periods of time. These requirements impose many challenges on the design of such systems.
This study presents most of these challenges and proposes solutions.
In this work, a low-cost and light-weight tracking suit is designed and developed, which integrates
multiple Inertial measurement units (IMUs). A novel data acquisition approach is proposed to
improve the energy efficiency of the system without the use of additional devices.
Given a valid calibration, IMUs, comprising inertial sensors and magnetometers, can provide accurate
orientation in three dimensions (3D). Unlike the inertial sensors, magnetometer measurements
are easily disturbed by ferromagnetic materials in the vicinity of the sensor, either inside the IMU
casing or in the final mounting position. Therefore, this work proposes a practical method for
in-field magnetometer calibration and alignment to the coordinate system of an IMU. This method
is verified experimentally in terms of magnitude deviation, heading error, plane projections, and
repeatability. The results show a higher accuracy compared to the related works.
Sensor to body calibration is a critical requirement for capturing accurate body movements.
Therefore, a theoretical analysis of an existing method is carried out, showing its limited applicability
for hip and knee joints. On this basis, by applying geometric constraints, a method is
proposed for estimating the positions of three IMUs (mounted on the pelvis, upper leg, and lower
leg) simultaneously. The result of experiments with different types of movements and arbitrary
intensity shows that the proposed method outperforms the previous method.
Moreover, two real-time tracking algorithms based on the extended Kalman filter (EKF) are proposed
for lower body motion estimation. The first approach provides an estimate of the pelvis
orientation. The second approach estimates the position of IMUs and the joint angles with respect
to the pelvis by incorporating the result of body-IMU calibration. The modeling of the biomechanical
constraint compensates for lack of a reliable horizontal reference, e.g. Earth’s magnetic field.
Experiments to track strength exercises such as squat and hip abduction/adduction show promising
results.
In order to finally provide a monitoring application in which users can follow the exercises according
to the instructions and taking into account their health status, this work proposes an approach
for the identification of exercises based on an online template matching algorithm, which detects
the correct performance using a previously recorded exercise in the presence of a supervisor.
Therefore, unlike most identification algorithms, no large datasets are required for training. The
algorithm is optimized here to reduce execution time while maintaining the accuracy. Experiments
show that for the specific application of this study, i.e. squat exercise monitoring, the proposed
method outperforms the related works in optimization of online template matching.
Visual analytics has been widely studied in the past decade both in academia and industry to improve data exploration, minimize the overall cost, and improve data analysis. In this chapter, we explore the idea of visual analytics in the context of simulation data. This would then provide us with the capability to not only explore our data visually but also to apply machine learning models in order to answer high-level questions with respect to scheduling, choosing optimal simulation parameters, finding correlations, etc. More specifically, we examine state-of-the-art tools to be able to perform these above-mentioned tasks. Further, to test and validate our methodology we followed the human-centered design process to build a prototype tool called ViDAS (Visual Data Analytics of Simulated Data). Our preliminary evaluation study illustrates the intuitiveness and ease-of-use of our approach with regards to visual analysis of simulated data.
To improve efficiency of memory accesses, modern multiprocessor architectures implement a whole range of different weak memory models. The behavior of performance-critical code depends on the underlying hardware. There is a rising demand for verification tools that take the underlying memory model into account. This work examines a variety of prevalent problems in the field of program verification of increasing complexities: testing, reachability, portability and memory model synthesis.
We give efficient tools to solve these problems. What sets the presented methods apart is that they are not limited to some few given architectures. They are universal: The memory model is given as part of the input. We make use of the CAT language to succinctly describe axiomatic memory models. CAT has been used to define the semantics of assembly for x86/TSO, ARMv7, ARMv8, and POWER but also the semantics of programming languages such as C/C++, including the Linux kernel concurrency primitives.
This work shows that even the simple testing problem is NP-hard for most memory models. It does so using a general reduction technique that applies to a range of models. It examines the more difficult program verification under a memory model and introduces Dartagnan, a bounded model checker (BMC) that encodes the problem as an SMT-query and makes use of advanced encoding techniques. The program portability problem is shown to be even harder. Despite this, it is solved efficiently by the tool Porthos which uses a guided search to produce fast results for most practical instances. A memory model is synthesized by Aramis for a given set of reachability results. Concurrent program verification is generally undecidable even for sequential consistency. As an alternative to BMC, we propose a new CEGAR method for Petri net invariant synthesis. We again use SMT-queries as a back-end.
Drahtlose Kommunikationssysteme dringen in immer mehr Anwendungsbereiche vor. Für einige Anwendungsszenarien, wie etwa die Prozessautomatisierung in Fabriken und Industrieanlagen, ist die Zuverlässigkeit vieler drahtloser Kommunikationssysteme wie IEEE 802.11 (WLAN) oder Bluetooth aber noch unzureichend. Daher wurden für diese Anwendungsbereiche spezielle Kommunikationssysteme wie WirelessHART oder ISA 100.11a entwickelt. Diese basieren meist auf Time Division Multiple Access (TDMA) und erreichen durch exklusive Reservierungen deterministische Zuverlässigkeit, falls kein anderes Kommunikationssystem die genutzten Kanäle stört.
Diese Arbeit behandelt geeignete Protokolle und Algorithmen, um die Zuverlässigkeit drahtloser Kommunikationssysteme zu verbessern. Im ersten Teil der Arbeit werden Verfahren für TDMA-basierte Kommunikationssysteme betrachtet. Basierend auf IEEE 802.15.4 werden mehrere Funktionalitäten für ProNet 4.0, einem an der Arbeitsgruppe Vernetzte Systeme der TU Kaiserslautern entwickelten Kommunikations-Stack für Industrie 4.0, entworfen und auf Imote 2 Sensorknoten implementiert. Zuverlässige Kommunikation bedarf Kenntnis von sowohl der Kommunikationstopologie, über die Knoten miteinander kommunizieren können, als auch der Interferenztopologie, die angibt, wie Knoten sich gegenseitig stören können. Dazu stellt die Arbeit mit dem Automatic Topology Discovery Protocol (ATDP) ein Verfahren zur automatischen Topologieerkennung vor. Anschließend wird QoS Multicast Routing betrachtet und mit dem QoS Multicast Routing Protocol (QMRP) ein Verfahren für partiell mobile Netzwerke entwickelt. Weiterhin wird mit ProMid eine Kommunikations-Middleware beschrieben, die ein hohes Abstraktionslevel aufweist und die darunter liegenden Schichten steuert. Die dienstorientierte Architektur nutzt eine verteilte Service Registry, wobei die Auswahl der Registry-Knoten anhand eines dafür entwickelten Clustering-Algorithmus erfolgt. Das Heterogeneous Network Clustering (HNC) genannte Verfahren berücksichtigt ein heterogenes Netzwerkmodell mit Knoten, die Clusterhead bzw. Gateway werden müssen, können bzw. nicht dürfen.
Der zweite Teil der Arbeit behandelt Protokolle und Algorithmen für zuverlässige wettbewerbsbasierte Kommunikationssysteme. Die in diesem Kapitel vorgestellten Verfahren sind in einem auf WLAN basierenden Kommunikations-Stack implementiert und evaluiert worden. Zunächst wird ein Verfahren für die Topologieerkennung in WLAN-Netzwerken vorgestellt. Anschließend wird ein auf dem Token Bucket-Mechanismus basierendes Verfahren zur Verkehrskontrolle entwickelt. Daraus wird mit der Unusable Wasted Bandwidth Ratio eine Metrik abgeleitet, die es erlaubt, die Auslastung des Mediums abzuschätzen. Aufbauend auf dem Verfahren zur Verkehrskontrolle wird eine kooperative faire Bandbreitenskalierung für WLAN vorgestellt. Das Verfahren verteilt die Bandbreite fair unter den internen Knoten unter Berücksichtigung der Quality of Service (QoS) Anforderungen. Dabei reagiert es dynamisch auf Änderungen des externen Verkehrs und verhindert so Überlastsituationen. Letztlich wird ein Clustering-Protokoll vorgestellt, welches durch das Anwendungsszenario der Überwachung von Güterzügen motiviert ist und Linientopologien bildet sowie dynamisch repariert. Das auf Bluetooth LE aufbauende Verfahren dient dazu, Energie einzusparen, und wurde in einer Kooperation mit der Bosch Engineering GmbH entwickelt.
Optical Character Recognition (OCR) is one of the central problems in pattern recognition. Its
applications have played a great role in the digitization of document images collected from het-
erogeneous sources. Many of the well-known scripts have OCR systems with sufficiently high
performance that enables OCR applications in industrial/commercial settings. However, OCR sys-
tems yield very-good results only on a narrow domain and very-specific use cases. Thus, it is still
a challenging task, and there are other exotic languages with indigenous scripts, such as Amharic,
for which no well-developed OCR systems exist.
As many as 100 million people speak Amharic, and it is an official working language of Ethiopia.
Amharic script contains about 317 different alphabets derived from 34 consonants with small changes.
The change involves shortening or elongating one of its main legs or adding small diacritics to the
right, left, top, or bottom of the consonant character. Such modifications lead the characters to have
similar shapes and make the recognition task complex, but this is particularly interesting for charac-
ter recognition research. So far, Amharic script recognition models are developed based on classical
machine learning techniques, and they are very limited in addressing the issues for Amharic OCR.
The motivation of this thesis is, therefore, to explore and tailor contemporary deep learning tech-
niques for the OCR of Amharic.
This thesis addresses the challenges in Amharic OCR through two main contributions. The first
contribution is an algorithmic contribution in which we investigate deep learning approaches that
suit the demand for Amharic OCR. The second is a technical contribution that comprises several
works towards the OCR model development; thus, it introduces a new Amharic database consisting
of collections of images annotated at a character and text-line level. It also presents a novel CNN-
based framework designed by leveraging the grapheme of characters in Fidel-Gebeta (where Fidel-
Gebeta consists of the full set of Amharic characters in matrix structure) and achieves 94.97%
overall character recognition accuracy.
In addition to character level methods, text-line level methods are also investigated and devel-
oped based on sequence-to-sequence learning. These models avoid several of the pre-processing
stages used in prior works by eliminating the need to segment individual characters. In this design,
we use a stack of CNNs, before the Bi-LSTM layers and train from end-to-end. This model out-
performs the LSTM-CTC based network, on average, by a CER of 3.75% with the ADOCR test
set. Motivated by the success of attention, in addressing the problems’ of long sequences in Neural
Machine Translation (NMT), we proposed a novel attention-based methodology by blending the
attention mechanism into CTC objective function. This model performs far better than the existing
techniques with a CER of 1.04% and 0.93% on printed and synthetic text-line images respectively.
Finally, this thesis provides details on various tasks that have been performed for the development
of Amharic OCR. As per our empirical analysis, the majority of the errors are due to poor annotation
of the dataset. As future work, the methods proposed in this thesis should be further investigated
and extended to deal with handwritten and historical Amharic documents.
Multidisciplinary optimizations (MDOs) encompass optimization problems that combine different disciplines into a single optimization with the aim of converging towards a design that simultaneously fulfills multiple criteria. For example, considering both fluid and structural disciplines to obtain a shape that is not only aerodynamically efficient, but also respects structural constraints. Combined with CAD-based parametrizations, the optimization produces an improved, manufacturable shape. For turbomachinery applications, this method has been successfully applied using gradient-free optimization methods such as genetic algorithms, surrogate modeling, and others. While such algorithms can be easily applied without access to the source code, the number of iterations to converge is dependent on the number of design parameters. This results in high computational costs and limited design spaces. A competitive alternative is offered by gradient-based optimization algorithms combined with adjoint methods, where the computational complexity of the gradient calculation is no longer dependent on the number of design parameters, but rather on the number of outputs. Such methods have been extensively used in single-disciplinary aerodynamic optimizations using adjoint fluid solvers and CAD parametrizations. However, CAD-based MDOs leveraging adjoint methods are just beginning to emerge.
This thesis contributes to this field of research by setting up a CAD-based adjoint MDO framework for turbomachinery design using both fluid and structural disciplines. To achieve this, the von Kármán Institute’s existing CAD-based optimization framework cado is augmented by the development of a FEM-based structural solver which has been differentiated using the algorithmic differentiation tool CoDiPack of TU Kaiserslautern. While most of the code could be differentiated in a black-box fashion, special treatment is required for the iterative linear and eigenvalue solvers to ensure accuracy and reduce memory consumption. As a result, the solver has the capability of computing both stress and vibration gradients at a cost independent on the number of design parameters. For the presented application case of a radial turbine optimization, the full gradient calculation has a computational cost of approximately 3.14 times the cost of a primal run and the peak memory usage of approximately 2.76 times that of a primal run.
The FEM code leverages object-oriented design such that the same base structure can be reused for different purposes with minimal re-differentiation. This is demonstrated by considering a composite material test case where the gradients could be easily calculated with respect to an extended design space that includes material properties. Additionally, the structural solver is reused within a CAD-based mesh deformation, which propagates the structural FEM mesh gradients through to the CAD parameters. This closes the link between the CAD shape and FEM mesh. Finally, the MDO framework is applied by optimizing the aerodynamic efficiency of a radial turbine while respecting structural constraints.
In recent years, business intelligence applications become more real-time and traditional data warehouse tables become fresher as they are continuously refreshed by streaming ETL jobs within seconds. Besides, a new type of federated system emerged that unifies domain-specific computation engines to address a wide range of complex analytical applications, which needs streaming ETL to migrate data across computation systems.
From daily-sales reports to up-to-the-second cross-/up-sell campaign activities, we observed various latency and freshness requirements set in these analytical applications. Hence, streaming ETL jobs with regular batches are not flexible enough to fit in such a mixed workload. Jobs with small batches can cause resource overprovision for queries with low freshness needs while jobs with large batches would starve queries with high freshness needs. Therefore, we argue that ETL jobs should be self-adaptive to varying SLA demands by setting appropriate batches as needed.
The major contributions are summarized as follows.
• We defined a consistency model for “On-Demand ETL” which addresses correct batches for queries to see consistent states. Furthermore, we proposed an “Incremental ETL Pipeline” which reduces the performance impact of on-demand ETL processing.
• A distributed, incremental ETL pipeline (called HBelt) was introduced in distributed warehouse systems. HBelt aims at providing consistent, distributed snapshot maintenance for concurrent table scans across different analytics jobs.
• We addressed the elasticity property for incremental ETL pipeline to guarantee that ETL jobs with batches of varying sizes can be finished within strict deadlines. Hence, we proposed Elastic Queue Middleware and HBaqueue which replace memory-based data exchange queues with a scalable distributed store - HBase.
• We also implemented lazy maintenance logic in the extraction and the loading phases to make these two phases workload-aware. Besides, we discuss how our “On-Demand ETL” thinking can be exploited in analytic flows running on heterogeneous execution engines.
Scaling up conventional processor architectures cannot translate the ever-increasing number of transistors into comparable application performance. Although the trend is to shift from single-core to multi-core architectures, utilizing these multiple cores is not a trivial task for many applications due to thread synchronization and weak memory consistency issues. This is especially true for applications in real-time embedded systems since timing analysis becomes more complicated due to contention on shared resources. One inherent reason for the limited use of instruction-level parallelism (ILP) by conventional processors is the use of registers. Therefore, some recent processors bypass register usage by directly communicating values from producer processing units to consumer processing units. In widely used superscalar processors, this direct instruction communication is organized by hardware at runtime, adversely affecting its scalability. The exposed datapath architectures provide a scalable alternative by allowing compilers to move values directly from output ports to the input ports of processing units. Though exposed datapath architectures have already been studied in great detail, they still use registers for executing programs, thus limiting the amount of ILP they can exploit. This limitation stems from a drawback in their execution paradigm, code generator, or both.
This thesis considers a novel exposed datapath architecture named Synchronous Control Asynchronous Dataflow (SCAD) that follows a hybrid control-flow dataflow execution paradigm. The SCAD architecture employs first-in-first-out (FIFO) buffers at the output and input ports of processing units. It is programmed by move instructions that transport values from the head of output buffers to the tail of input buffers. Thus, direct instruction communication is facilitated by the architecture. The processing unit triggers the execution of an operation when operand values are available at the heads of its input buffers. We propose a code generation technique for SCAD processors inspired by classical queue machines that completely eliminates the use of registers. On this basis, we first generate optimal code by using satisfiability (SAT) solvers after establishing that optimal code generation is hard. Heuristics based on a novel buffer interference analysis are then developed to compile larger programs. The experimental results demonstrate the efficacy of the execution paradigm of SCAD using our queue-oriented code generation technique.
Kinetic models of human motion rely on boundary conditions which are defined by the interaction of the body with its environment. In the simplest case, this interaction is limited to the foot contact with the ground and is given by the so called ground reaction force (GRF). A major challenge in the reconstruction of GRF from kinematic data is the double support phase, referring to the state with multiple ground contacts. In this case, the GRF prediction is not well defined. In this work we present an approach to reconstruct and distribute vertical GRF (vGRF) to each foot separately, using only kinematic data. We propose the biomechanically inspired force shadow method (FSM) to obtain a unique solution for any contact phase, including double support, of an arbitrary motion. We create a kinematic based function, model an anatomical foot shape and mimic the effect of hip muscle activations. We compare our estimations with the measurements of a Zebris pressure plate and obtain correlations of 0.39≤r≤0.94 for double support motions and 0.83≤r≤0.87 for a walking motion. The presented data is based on inertial human motion capture, showing the applicability for scenarios outside the laboratory. The proposed approach has low computational complexity and allows for online vGRF estimation.
In today’s computer networks we see an ongoing trend towards wireless communication technologies, such as Wireless LAN, Bluetooth, ZigBee and cellular networks. As the electromagnetic spectrum usable for wireless communication is finite and largely allocated for exclusive use by respective license holders, there are only few frequency bands left for general, i.e. unlicensed, use. Subsequently, it becomes apparent, that there will be an overload situation in the unlicensed bands, up to a point where no communication is possible anymore. On the other hand, it has been observed that licensed frequency bands often go unused, at least at some places or over time. Mitola combined both observations and found the term Cognitive Radio Networks [Mit00], denoting a solution for spectrum scarcity. In this concept, so called Secondary Users are allowed to also use licensed bands (attributed to a Primary User) as long as it is vacant.
In such networks, all obligations reside with Secondary Users, especially, they must avoid any interference with the Primary User. They must therefore reliably sense the presence of Primary Users and must decide which available spectrum to use. These two functionalities are called Spectrum Sensing and Spectrum Mobility and describe 2 out of 4 core functionalities of Cognitive Radio Networks and are considered in this thesis.
Regarding Spectrum Sensing, we present our own approach for energy detection in this thesis. Energy detection essentially works by comparing measured energy levels to a threshold. The inherent problem is on how to find such thresholds. Based on existing work we found in literature, we improve techniques and assert the effectiveness of our additions by conducting real world experiments.
Regarding Spectrum Mobility, we concentrate on the point, where the Primary User shows up. At this point, nodes must not use the current channel anymore, i.e. they also have no possibility to agree on another channel to switch to. We solve this problem by employing channel switching, i.e. we change channels proactively, following a schedule shared by all nodes of the network. The main contribution of this thesis is on how to synthesize those schedules to guarantee robust operation under changing conditions. For integration, we considered three dimensions of robustness (of time, of space and of channel) and, based on our algorithms and findings, defined a network protocol, which addresses perturbation within those dimensions. In an evaluation, we showed that the protocol is actually able to maintain robust operation, even if there are large drops in channel quality.
3D hand pose and shape estimation from a single depth image is a challenging computer vision and graphics problem with many applications such as
human computer interaction and animation of a personalized hand shape in
augmented reality (AR). This problem is challenging due to several factors
for instance high degrees of freedom, view-point variations and varying hand
shapes. Hybrid approaches based on deep learning followed by model fitting
preserve the structure of hand. However, a pre-calibrated hand model limits
the generalization of these approaches. To address this limitation, we proposed a novel hybrid algorithm for simultaneous estimation of 3D hand pose
and bone-lengths of a hand model which allows training on datasets that contain varying hand shapes. On the other hand, direct joint regression methods
achieve high accuracy but they do not incorporate the structure of hand in
the learning process. Therefore, we introduced a novel structure-aware algorithm which learns to estimate 3D hand pose jointly with new structural constraints. These constraints include fingers lengths, distances of joints along
the kinematic chain and fingers inter-distances. Learning these constraints
help to maintain a structural relation between the estimated joint keypoints.
Previous methods addressed the problem of 3D hand pose estimation. We
open a new research topic and proposed the first deep network which jointly
estimates 3D hand shape and pose from a single depth image. Manually annotating real data for shape is laborious and sub-optimal. Hence, we created a
million-scale synthetic dataset with accurate joint annotations and mesh files
of depth maps. However, the performance of this deep network is restricted by
limited representation capacity of the hand model. Therefore, we proposed a
novel regression-based approach in which the 3D dense hand mesh is recovered
from sparse 3D hand pose, and weak-supervision is provided by a depth image synthesizer. The above mentioned approaches regressed 3D hand meshes
from 2D depth images via 2D convolutional neural networks, which leads to
artefacts in the estimations due to perspective distortions in the images. To
overcome this limitation, we proposed a novel voxel-based deep network with
3D convolutions trained in a weakly-supervised manner. Finally, an interesting
application is presented which is in-air signature acquisition and verification
based on deep hand pose estimation. Experiments showed that depth itself is
an important feature, which is sufficient for verification.
In the avionics domain, “ultra-reliability” refers to the practice of ensuring quantifiably negligible residual failure rates in the presence of transient and permanent hardware faults. If autonomous Cyber- Physical Systems (CPS) in other domains, e.g., autonomous vehicles, drones, and industrial automation systems, are to permeate our everyday life in the not so distant future, then they also need to become ultra-reliable. However, the rigorous reliability engineering and analysis practices used in the avionics domain are expensive and time consuming, and cannot be transferred to most other CPS domains. The increasing adoption of faster and cheaper, but less reliable, Commercial Off-The-Shelf (COTS) hardware is also an impediment in this regard.
Motivated by the goal of ultra-reliable CPS, this dissertation shows how to soundly analyze the reliability of COTS-based implementations of actively replicated Networked Control Systems (NCSs)—which are key building blocks of modern CPS—in the presence of transient hard- ware faults. When an NCS is deployed over field buses such as the Controller Area Network (CAN), transient faults are known to cause host crashes, network retransmissions, and incorrect computations. In addition, when an NCS is deployed over point-to-point networks such as Ethernet, even Byzantine errors (i.e., inconsistent broadcast transmissions) are possible. The analyses proposed in this dissertation account for NCS failures due to each of these error categories, and consider NCS failures in both time and value domains. The analyses are also provably free of reliability anomalies. Such anomalies are problematic because they can result in unsound failure rate estimates, which might lead us to believe that a system is safer than it actually is.
Specifically, this dissertation makes four main contributions. (1) To reduce the failure rate of NCSs in the presence of Byzantine errors, we present a hard real-time design of a Byzantine Fault Tolerance (BFT) protocol for Ethernet-based systems. (2) We then propose a quantitative reliability analysis of the presented design in the presence of transient faults. (3) Next, we propose a similar analysis to upper-bound the failure probability of an actively replicated CAN-based NCS. (4) Finally, to upper-bound the long-term failure rate of the NCS more accurately, we propose analyses that take into account the temporal robustness properties of an NCS expressed as weakly-hard constraints.
By design, our analyses can be applied in the context of full-system analyses. For instance, to certify a system consisting of multiple actively replicated NCSs deployed over a BFT atomic broadcast layer, the upper bounds on the failure rates of each NCS and the atomic broadcast layer can be composed using the sum-of-failure-rates model.
Learning From Networked-data: Methods and Models for Understanding Online Social Networks Dynamics
(2020)
Abstract
Nowadays, people and systems created by people are generating an unprecedented amount of
data. This data has brought us data-driven services with a variety of applications that affect
people’s behavior. One of these applications is the emergent online social networks as a method
for communicating with each other, getting and sharing information, looking for jobs, and many
other things. However, the tremendous growth of these online social networks has also led to many
new challenges that need to be addressed. In this context, the goal of this thesis is to better understand
the dynamics between the members of online social networks from two perspectives. The
first perspective is to better understand the process and the motives underlying link formation in
online social networks. We utilize external information to predict whether two members of an online
social network are friends or not. Also, we contribute a framework for assessing the strength of
friendship ties. The second perspective is to better understand the decay dynamics of online social
networks resulting from the inactivity of their members. Hence, we contribute a model, methods,
and frameworks for understanding the decay mechanics among the members, for predicting members’
inactivity, and for understanding and analyzing inactivity cascades occurring during the decay.
The results of this thesis are: (1) The link formation process is at least partly driven by interactions
among members that take place outside the social network itself; (2) external interactions might
help reduce the noise in social networks and for ranking the strength of the ties in these networks;
(3) inactivity dynamics can be modeled, predicted, and controlled using the models contributed in
this thesis, which are based on network measures. The contributions and the results of this thesis
can be beneficial in many respects. For example, improving the quality of a social network by introducing
new meaningful links and removing noisy ones help to improve the quality of the services
provided by the social network, which, e.g., enables better friend recommendations and helps to
eliminate fake accounts. Moreover, understanding the decay processes involved in the interaction
among the members of a social network can help to prolong the engagement of these members. This
is useful in designing more resilient social networks and can assist in finding influential members
whose inactivity may trigger an inactivity cascade resulting in a potential decay of a network.
Background: The use of health apps to support the treatment of chronic pain is gaining importance. Most available pain management apps are still lacking in content quality and quantity as their developers neither involve health experts to ensure target group suitability nor use gamification to engage and motivate the user. To close this gap, we aimed to develop a gamified pain management app, Pain-Mentor.
Objective: To determine whether medical professionals would approve of Pain-Mentor’s concept and content, this study aimed to evaluate the quality of the app’s first prototype with experts from the field of chronic pain management and to discover necessary improvements.
Methods: A total of 11 health professionals with a background in chronic pain treatment and 2 mobile health experts participated in this study. Each expert first received a detailed presentation of the app. Afterward, they tested Pain-Mentor and then rated its quality using the mobile application rating scale (MARS) in a semistructured interview.
Results: The experts found the app to be of excellent general (mean 4.54, SD 0.55) and subjective quality (mean 4.57, SD 0.43). The app-specific section was rated as good (mean 4.38, SD 0.75). Overall, the experts approved of the app’s content, namely, pain and stress management techniques, behavior change techniques, and gamification. They believed that the use of gamification in Pain-Mentor positively influences the patients’ motivation and engagement and thus has the potential to promote the learning of pain management techniques. Moreover, applying the MARS in a semistructured interview provided in-depth insight into the ratings and concrete suggestions for improvement.
Conclusions: The experts rated Pain-Mentor to be of excellent quality. It can be concluded that experts perceived the use of gamification in this pain management app in a positive manner. This showed that combining pain management with gamification did not negatively affect the app’s integrity. This study was therefore a promising first step in the development of Pain-Mentor.
To assess ergonomic aspects of a (future) workplace already in the design phase where no physical prototypes exist, the use of digital human models (DHMs) becomes essential. Thereby, the prediction of human motions is a key aspect when simulating human work tasks. For ergonomic assessment e.g. the resulting postures, joint angles, the duration of the motion and muscle loads are important quantities. From a physical point of view, there is an infinite number of possible ways for a human to fulfill a given goal (trajectories, velocities...), which makes human motions and behavior hard to predict. A common approach used in state of the art commercial DHMs is the manual definition of joint angles by the user, which requires expert knowledge and is limited to postural assessments. Another way is to make use of pre-recorded motions from a real human that operates on a physical prototype, which limits assessments to scenarios which have been measured before. Both approaches need further post processing and inverse dynamics calculations with other software tools to get information about inner loads and muscle data, which leads to further uncertainties concerning validity of the simulated data.
In this thesis work a DHM control and validation framework is developed, which allows to investigate in how far the implemented human like actuation and control principles directly lead to human like motions and muscle actuations. From experiments performed in the motion laboratory, motion data is captured and muscle activations are measured using surface electromyography measurements (EMG). From the EMG data, time invariant muscle synergies are extracted by the use of a non-negative Matrix Factorization algorithm (NMF). Muscle synergies are one hypothesis from neuroscience to explain how the human central nervous system might reduce control complexity: instead of activating each muscle separately, muscles are grouped into functional units, whereas each muscle is present in each unit with a fixed amplitude. The measured experiment is then simulated in an optimal control framework. The used framework allows to build up DHMs as multibody system (MBS): bones are modeled as rigid bodies connected via joints, actuated by joint torques or by Hill type muscle models (1D string elements transferring fundamental characteristics of muscle force generation in humans). The OC code calculates the actuation signals for the modeled DHM in a way that a certain goal is fulfilled (e.g. reach for an object) while minimizing some cost function (e.g. minimizing time) and considering the side constraints that the equations of motion of the MBS are fulfilled. Therefore, three different Actuation Modes (AM) can be used (joint torques (AM-T), direct muscle actuation (AM-M) and muscle synergy actuation (AM-S), using the before extracted synergies as control parameters)). Simulation results are then compared with measured data, to investigate the influence of the different Actuation Modes and the solved OC cost function. The approach is applied to three different experiments, the basic reaching test, the weight lift test and a box lifting task, where a human arm model actuated by 29 Hill muscles is used for simulation. It is shown that, in contrast to a joint torque actuation (AM-T), using muscles as actuators (AM-M & AM-S) leads to very human like motion trajectories. Muscle synergies as control parameters, resulted in smoother velocity profiles, which were closer to those measured and appeared to be more robust, concerning the underlying muscle activation signals (compared to AM-M). In combination with a developed biomechanical cost function (a mix of different OC cost functions), the approach showed promising results, concerning the simulation of valid, human like motions, in a predictive manner.
In recent years, the Internet has become a major source of visual information exchange. Popular social platforms have reported an average of 80 million photo uploads a day. These images, are often accompanied with a user provided text one-liner, called an image caption. Deep Learning techniques have made significant advances towards automatic generation of factual image captions. However, captions generated by humans are much more than mere factual image descriptions. This work takes a step towards enhancing a machine's ability to generate image captions with human-like properties. We name this field as Affective Image Captioning, to differentiate it from the other areas of research focused on generating factual descriptions.
To deepen our understanding of human generated captions, we first perform a large-scale Crowd-Sourcing study on a subset of Yahoo Flickr Creative Commons 100 Million Dataset (YFCC100M). Three thousand random image-caption pairs were evaluated by native English speakers w.r.t different dimensions like focus, intent, emotion, meaning, and visibility. Our findings indicate three important underlying properties of human captions: subjectivity, sentiment, and variability. Based on these results, we develop Deep Learning models to address each of these dimensions.
To address the subjectivity dimension, we propose the Focus-Aspect-Value (FAV) model (along with a new task of aspect-detection) to structure the process of capturing subjectivity. We also introduce a novel dataset, aspects-DB, following this way of modeling. To implement the model, we propose a novel architecture called Tensor Fusion. Our experiments show that Tensor Fusion outperforms the state-of-the-art cross residual networks (XResNet) in aspect-detection.
Towards the sentiment dimension, we propose two models:Concept & Syntax Transition Network (CAST) and Show & Tell with Emotions (STEM). The CAST model uses a graphical structure to generate sentiment. The STEM model uses a neural network to inject adjectives into a neutral caption. Achieving a high score of 93% with human evaluation, these models were selected as the top-3 at the ACMMM Grand Challenge 2016.
To address the last dimension, variability, we take a generative approach called Generative Adversarial Networks (GAN) along with multimodal fusion. Our modified GAN, with two discriminators, is trained using Reinforcement Learning. We also show that it is possible to control the properties of the generated caption-variations with an external signal. Using sentiment as the external signal, we show that we can easily outperform state-of-the-art sentiment caption models.
B-spline surfaces are a well-established tool to analytically describe objects. They are commonly used in various fields, e.g., mechanical and aerospace engineering, computer aided design, and computer graphics. Obtaining and using B-spline surface models of real-life objects is an intricate process. Initial virtual representations are usually obtained via scanning technologies in the form of discrete data, e.g., point clouds, surface meshes, or volume images. This data often requires pre-processing to remove noise and artifacts. Even with high quality data, obtaining models of complex or very large structures needs specialized solutions that are viable for the available hardware. Once B-spline models are constructed, their properties can be utilized and combined with application-specific knowledge to provide efficient solutions for practical problems.
This thesis contributes to various aspects of the processing pipeline. It addresses pre-processing, creating B-spline models of large and topologically challenging data, and the use of such models within the context of visual surface inspection. Proposed methods improve existing solutions in terms of efficiency, hardware restrictions, and quality of the results. The following contributions are presented:
Fast and memory-efficient quantile filter: Quantile filters are widely used operations in image processing. The most common instance is the median filter which is a standard solution to treat noise while preserving the shape of an object. Various implementations of such filters are available offering either high performance or low memory complexity, but not both. This thesis proposes a generalization of two existing algorithms: one that favors speed and one that favors low memory usage. An adaptable hybrid algorithm is introduced. It can be tuned for optimal performance on the available hardware. Results show that it outperforms both state-of-the-art reference methods for most practical filter sizes.
Robust B-spline reconstructions of isosurfaces in volume images: The micro-structure of wood-based thermal insulation materials is analyzed to research heat conductivity properties. High-quality scans reveal a complex system of cellulose fibers. B-spline models of individual fibers are highly desirable to conduct simulations. Due to the physical processing of the material, the surfaces of those fibers consist of challenging elements like loose filaments, holes, and tunnels. Standard solutions fail to partition the data into a small number of quadrilateral cells which is required for the B-spline construction step. A novel approach is presented that splits up the data processing into separate topology and geometry pipelines. This robust method is demonstrated by constructing B-spline models with 236 to 676 surfaces from triangulated isosurfaces with 423628 to 1203844 triangles.
Local method for smooth B-spline surface approximations: Constructing smooth B-spline models to approximate discrete data is a challenging task. Various standard solutions exist, often imposing restrictions to knot vectors, spline order, or available degrees of freedom for the data approximation. This thesis presents a local approach with less restrictions aiming for approximate \(G^1\)-continuity. Nonlinear terms are added to standard minimization problems. The local design of the algorithm compensates for the higher computational complexity. Results are shown and evaluated for objects of varying complexity. A comparison with an exact \(G^1\)-continuous method shows that the novel method improves approximation accuracy on average by a factor of 10 at the cost of having small discontinuities in normal vectors of less than 1 degree.
Model-based viewpoint generation for surface inspection: Within modern and flexible factories, surface inspection of products is still a very rigid process. An automated inspection system requires the definition of viewpoints from which a robot then takes pictures during the inspection process. Setting up such a system is a time-intensive process which is primarily done manually by experts. This work presents a purely virtual approach for the generation of viewpoints. Based on an intuitive definition of analytic feature functionals, a non-uniform sampling with respect to inspection-specific criteria is performed on given B-spline models. This leads to the definition of a low number of viewpoint candidates. Results of applying this method to several test objects with varying parameters indicate that good viewpoints can be obtained through a fast process that can be performed fully automatically or interactively through the use of meaningful parameters.
With the technological advancement in the field of robotics, it is now quite practical to acknowledge the actuality of social robots being a part of human's daily life in the next decades. Concerning HRI, the basic expectations from a social robot are to perceive words, emotions, and behaviours, in order to draw several conclusions and adapt its behaviour to realize natural HRI. Henceforth, assessment of human personality traits is essential to bring a sense of appeal and acceptance towards the robot during interaction.
Knowledge of human personality is highly relevant as far as natural and efficient HRI is concerned. The idea is taken from human behaviourism, with humans behaving differently based on the personality trait of the communicating partners. This thesis contributes to the development of personality trait assessment system for intelligent human-robot interaction.
The personality trait assessment system is organized in three separate levels. The first level, known as perceptual level, is responsible for enabling the robot to perceive, recognize and understand human actions in the surrounding environment in order to make sense of the situation. Using psychological concepts and theories, several percepts have been extracted. A study has been conducted to validate the significance of these percepts towards personality traits.
The second level, known as affective level, helps the robot to connect the knowledge acquired in the first level to make higher order evaluations such as assessment of human personality traits. The affective system of the robot is responsible for analysing human personality traits. To the best of our knowledge, this thesis is the first work in the field of human-robot interaction that presents an automatic assessment of human personality traits in real-time using visual information. Using psychology and cognitive studies, many theories has been studied. Two theories have been been used to build the personality trait assessment system: Big Five personality traits assessment and temperament framework for personality traits assessment.
By using the information from the perceptual and affective level, the last level, known as behavioural level, enables the robot to synthesize an appropriate behaviour adapted to human personality traits. Multiple experiments have been conducted with different scenarios. It has been shown that the robot, ROBIN, assesses personality traits correctly during interaction and uses the similarity-attraction principle to behave with similar personality type. For example, if the person is found out to be extrovert, the robot also behaves like an extrovert. However, it also uses the complementary attraction theory to adapt its behaviour and complement the personality of the interaction partner. For example, if the person is found out to be self-centred, the robot behaves like an agreeable in order to flourish human-robot interaction.
Interconnection networks enable fast data communication between components of a digital system. The selection of an appropriate interconnection network and its architecture plays an important role in the development process of the system. The selection of a bad network architecture may significantly delay the communication between components and decrease the overall system performance.
There are various interconnection networks available. Most of them are blocking networks. Blocking means that even though a pair of source and target components may be free, a connection between them might still not be possible due to limited capabilities of the network. Moreover, routing algorithms of blocking networks have to avoid deadlocks and livelocks, which typically does only allow poor real-time guarantees for delivering a message. Nonblocking networks can always manage all requests that are coming from their input components and can therefore deliver all messages in guaranteed time, i.e, with strong real-time guarantees. However, only a few networks are nonblocking and easy to implement. The simplest one is the crossbar network which is a comparably simple circuit with also a simple routing algorithm. However, while its circuit depth of O(log(n)) is optimal, its size increases with O(n^2) and quickly becomes infeasible for large networks. Therefore, the construction of nonblocking networks with a quasipolynomial size O(nlog(n)^a) and polylogarithmic depth O(log(n)^b) turned out as a research problem.
Benes [Clos53; Bene65] networks were the first non blocking networks having an optimal size of O(nlog(n)) and an optimal depth of O(log(n)), but their routing algorithms are quite complicated and require circuits of depth O(log(n)^2) [NaSa82].
Other nonblocking interconnection networks are derived from sorting networks. Essentially, there are merge-based (MBS) and radix-based (RBS) sorting networks. MBS and RBS networks can be both implemented in a pipelined fashion which leads to a big advantage for their circuit implementation. While these networks are nonblocking and can implement all n! permutations, they cannot directly handle partial permutations that frequently occur in practice since not every input component communicates at every point of time with an output component. For merge-based sorting networks, there is a well known general solution called the Batcher-Banyan network. However, for the larger class of radix-based sorting networks this does not work, and there is only one solution known for a particular permutation network.
In this thesis, new nonblocking radix-based interconnection networks are presented. In particular, for a certain permutation network, three routing algorithms are developed and their circuit implementations are evaluated concerning their size, depth, and power consumption. A special extension of these networks allows them to route also partial permutations. Moreover, three general constructions to convert any binary sorter into a ternary split module were presented which is the key to construct a radix-based interconnection network that can cope with partial permutations. The thesis compares also chip designs of these networks with other radix-based sorting networks as well as with the Batcher-Banyan networks as competitors. As a result, it turns out that the proposed radix-based networks are superior and could form the basis of larger manycore architectures.
Although today’s bipeds are capable of demonstrating impressive locomotion skills, in many aspects, there’s still a big gap compared to the capabilities observed in humans. Partially, this is due to the deployed control paradigms that are mostly based on analytical approaches. The analytical nature of those approaches entails strong model dependencies – regarding the robotic platform as well as the environment – which makes them prone to unknown disturbances. Recently, an increasing number of biologically-inspired control approaches have been presented from which a human-like bipedal gait emerges. Although the control structures only rely on proprioceptive sensory information, the smoothness of the motions and the robustness against external disturbances is impressive. Due to the lack of suitable robotic platforms, until today the controllers have been mostly applied to
simulations.
Therefore, as the first step towards a suitable platform, this thesis presents the Compliant Robotic Leg (CARL) that features mono- as well as biarticular actuation. The design is driven by a set of core-requirements that is primarily derived from the biologically-inspired behavior-based bipedal locomotion control (B4LC) and complemented by further functional aspects from biomechanical research. Throughout the design process, CARL is understood as a unified dynamic system that emerges from the interplay of the mechanics, the electronics, and the control. Thus, having an explicit control approach and the respective gait in mind, the influence of each subsystem on the characteristics of the overall system is considered
carefully.
The result is a planar robotic leg whose three joints are driven by five highly integrated linear SEAs– three mono- and two biarticular actuators – with minimized reflected inertia. The SEAs are encapsulated by FPGA-based embedded nodes that are designed to meet the hard application requirements while enabling the deployment of a full-featured robotic framework. CARL’s foot is implemented using a COTS prosthetic foot; the sensor information is obtained from the deformation of its main structure. Both subsystems are integrated into a leg structure that matches the proportions of a human with a size of 1.7 m.
The functionality of the subsystems, as well as the overall system, is validated experimentally. In particular, the final experiment demonstrates a coordinated walking motion and thereby confirms that CARL can produce the desired behavior – a natural looking, human-like gait is emerging from the interplay of the behavior-based walking control and the mechatronic system. CARL is robust regarding impacts, the redundant actuation system can render the desired joint torques/impedances, and the foot system supports the walking structurally while it provides the necessary sensory information. Considering that there is no movement of the upper trunk, the angle and torque profiles are comparable to the ones found in humans.
This thesis investigates how smart sensors can quantify the process of learning. Traditionally, human beings have obtained various skills by inventing technologies. Those who integrate technologies into daily life and enhance their capabilities are called augmented humans. While most existing augmenting human technologies focus on directly assisting specific skills, the objective of this thesis is to assist learning -- the meta-skill to master new skills -- with the aim of long-term augmentations.
Learning consists of cognitive activities such as reading, writing, and watching. It has been considered that tracking them by motion sensors (in the same way as the recognition of physical activities) is a challenging task because dynamic body movements could not be observed during cognitive activities. I have solved this problem with smart sensors monitoring eye movements and physiological signals.
I propose activity recognition methods using sensors built into eyewear computers. Head movements and eye blinks measured by an infrared proximity sensor on Google Glass could classify five activities including reading with 82% accuracy. Head and eye movements measured by electrooculography on JINS MEME could classify four activities with 70% accuracy. In a wild experiment involving seven participants who wore JINS MEME more than two weeks, deep neural networks could detect natural reading activities with 74% accuracy. I demonstrate Wordometer 2.0, an application to estimate the number of rear words on JINS MEME, which was evaluated in a dataset involving five readers with 11% error rate.
Smart sensors can recognize not only activities but also internal states during the activities. I present an expertise recognition method using an eye tracker which performs 70% classification accuracy into three classes using one minute data of reading a textbook, a positive correlation between interest and pupil diameter (p < 0.01), a negative correlation between mental workload and nose temperature measured by an infrared thermal camera (p < 0.05), an interest detection on newspaper articles, and effective gaze and physiological features to estimate self-confidence while solving multiple choice questions and spelling tests of English vocabulary.
The quantified learning process can be utilized for feedback to each learner on the basis of the context. I present HyperMind, an interactive intelligent digital textbook. It can be developed on HyperMind Builder which may be employed to augment any electronic text by multimedia aspects activated via gaze.
Applications mentioned above have already been deployed at several laboratories including Immersive Quantified Learning Lab (iQL-Lab) at the German Research Center for Artificial Intelligence (DFKI).
As visualization as a field matures, the discussion about the development of a
theory of the field becomes increasingly vivid. Despite some voices claiming that
visualization applications would be too different from each other to generalize,
there is a significant push towards a better understanding of the principles underlying
visual data analysis. As of today, visualization is primarily data-driven.
Years of experience in the visalization of all kinds of different data accumulated
a vast reservoir of implicit knowledge in the community of how to best represent
data according to its shape, its format, and what it is meant to express.
This knowledge is complemented by knowledge imported to visualization from
a variety of other fields, for example psychology, vision science, color theory,
and information theory. Yet, a theory of visualization is still only nascent. One
major reason for that is the field's too strong focus on the quantitative aspects
of data analysis. Although when designing visualizations major design decisions
also consider perception and other human factors, the overall appearance
of visualizations as of now is determined primarily by the type and format of
the data to be visualized and its quantitative attributes like scale, range, or
density. This is also reflected by the current approaches in theoretical work on
visualization. The models developed in this regard also concentrate primarily
on perceptual and quantitative aspects of visual data analysis. Qualitative considerations
like the interpretations made by viewers and the conclusions drawn
by analysts currently only play a minor role in the literature. This Thesis contributes
to the nascent theory of visualization by investigating approaches to
the explicit integration of qualitative considerations into visual data analysis.
To this end, it promotes qualitative visual analysis, the explicit discussion of
the interpretation of artifacts and structures in the visualization, of efficient
workflows designed to optimally support an analyst's reasoning strategy and
capturing information about insight provenance, and of design methodology
tailoring visualizations towards the insights they are meant to provide rather
than to the data they show. Towards this aim, three central qualitative principles
of visual information encodings are identified during the development of
a model for the visual data analysis process that explicitly includes the anticipated
reasoning structure into the consideration. This model can be applied
throughout the whole life cycle of a visualization application, from the early
design phase to the documentation of insight provenance during analysis using
the developed visualization application. The three principles identified inspire
novel visual data analysis workflows aiming for an insight-driven data analysis
process. Moreover, two case studies prove the benefit of following the qualitative
principles of visual information encodings for the design of visualization
applications. The formalism applied to the development of the presented theoretical
framework is founded in formal logics, mathematical set theory, and the
theory of formal languages and automata. The models discussed in this Thesis
and the findings derived from them are therefore based on a mathematically
well-founded theoretical underpinning. This Thesis establishes a sound theoretical
framework for the design and description of visualization applications and
the prediction of the conclusions an analyst is capable of drawing from working
with the visualization. Thereby, it contributes an important piece to the yet
unsolved puzzle of developing a visualization theory.
In this paper we present the results of the project “#Datenspende” where during the German election in 2017 more than 4000 people contributed their search results regarding keywords connected to the German election campaign.
Analyzing the donated result lists we prove, that the room for personalization of the search results is very small. Thus the opportunity for the effect mentioned in Eli Pariser’s filter bubble theory to occur in this data is also very small, to a degree that it is negligible. We achieved these results by applying various similarity measures to the result lists that were donated. The first approach using the number of common results as a similarity measure showed that the space for personalization is less than two results out of ten on average when searching for persons and at most four regarding the search for parties. Application of other, more specific measures show that the space is indeed smaller, so that the presence of filter bubbles is not evident.
Moreover this project is also a proof of concept, as it enables society to permanently monitor a search engine’s degree of personalization for any desired search terms. The general design can also be transferred to intermediaries, if appropriate APIs restrict selective access to contents relevant to the study in order to establish a similar degree of trustworthiness.
The advent of heterogeneous many-core systems has increased the spectrum
of achievable performance from multi-threaded programming. As the processor components become more distributed, the cost of synchronization and
communication needed to access the shared resources increases. Concurrent
linearizable access to shared objects can be prohibitively expensive in a high
contention workload. Though there are various mechanisms (e.g., lock-free
data structures) to circumvent the synchronization overhead in linearizable
objects, it still incurs performance overhead for many concurrent data types.
Moreover, many applications do not require linearizable objects and apply
ad-hoc techniques to eliminate synchronous atomic updates.
In this thesis, we propose the Global-Local View Model. This programming model exploits the heterogeneous access latencies in many-core systems.
In this model, each thread maintains different views on the shared object: a
thread-local view and a global view. As the thread-local view is not shared,
it can be updated without incurring synchronization costs. The local updates
become visible to other threads only after the thread-local view is merged
with the global view. This scheme improves the performance at the expense
of linearizability.
Besides the weak operations on the local view, the model also allows strong
operations on the global view. Combining operations on the global and the
local views, we can build data types with customizable consistency semantics
on the spectrum between sequential and purely mergeable data types. Thus
the model provides a framework that captures the semantics of Multi-View
Data Types. We discuss a formal operational semantics of the model. We
also introduce a verification method to verify the correctness of the implementation of several multi-view data types.
Frequently, applications require updating shared objects in an “all-or-nothing” manner. Therefore, the mechanisms to synchronize access to individual objects are not sufficient. Software Transactional Memory (STM)
is a mechanism that helps the programmer to correctly synchronize access to
multiple mutable shared data by serializing the transactional reads and writes.
But under high contention, serializable transactions incur frequent aborts and
limit parallelism, which can lead to severe performance degradation.
Mergeable Transactional Memory (MTM), proposed in this thesis, allows accessing multi-view data types within a transaction. Instead of aborting
and re-executing the transaction, MTM merges its changes using the data-type
specific merge semantics. Thus it provides a consistency semantics that allows
for more scalability even under contention. The evaluation of our prototype
implementation in Haskell shows that mergeable transactions outperform serializable transactions even under low contention while providing a structured
and type-safe interface.
Activity recognition has continued to be a large field in computer science over the last two decades. Research questions from 15 years ago have led to solutions that today support our daily lives. Specifically, the success of smartphones or more recent developments of other smart devices (e.g., smart-watches) is rooted in applications that leverage on activity analysis and location tracking (fitness applications and maps). Today we can track our physical health and fitness and support our physical needs by merely owning (and using) a smart-phone. Still, the quality of our lives does not solely rely on fitness and physical health but also more increasingly on our mental well-being. Since we have learned how practical and easy it is to have a lot of functions, including health support on just one device, it would be specifically helpful if we could also use the smart-phone to support our mental and cognitive health if need be.
The ultimate goal of this work is to use sensor-assisted location and motion analysis to support various aspects of medically valid cognitive assessments.
In this regard, this thesis builds on Hypothesis 3: Sensors in our ubiquitous environment can collect information about our cognitive state, and it is possible to extract that information. In addition, these data can be used to derive complex cognitive states and to predict possible pathological changes in humans. After all, not only is it possible to determine the cognitive state through sensors but also to assist people in difficult situations through these sensors.
Thus, in the first part, this thesis focuses on the detection of mental state and state changes.
The primary purpose is to evaluate possible starting points for sensor systems in order to enable a clinically accurate assessment of mental states. These assessments must work on the condition that a developed system must be able to function within the given limits of a real clinical environment.
Despite the limitations and challenges of real-life deployments, it was possible to develop methods for determining the cognitive state and well-being of the residents. The analysis of the location data provides a correct classification of cognitive state with an average accuracy of 70% to 90%.
Methods to determine the state of bipolar patients provide an accuracy of 70-80\% for the detection of different cognitive states (total seven classes) using single sensors and 76% for merging data from different sensors. Methods for detecting the occurrence of state changes, a highlight of this work, even achieved a precision and recall of 95%.
The comparison of these results with currently used standard methods in psychiatric care even shows a clear advantage of the sensor-based method. The accuracy of the sensor-based analysis is 60% higher than the accuracy of the currently used methods.
The second part of this thesis introduces methods to support people’s actions in stressful situations on the one hand and analyzes the interaction between people during high-pressure activities on the other.
A simple, acceleration based, smartwatch instant feedback application was used to help laypeople to learn to perform CPR (cardiopulmonary resuscitation) in an emergency on the fly.
The evaluation of this application in a study with 43 laypersons showed an instant improvement in the CPR performance of 50%. An investigation of whether training with such an instant feedback device can support improved learning and lead to more permanent effects for gaining skills was able to confirm this theory.
Last but not least, with the main interest shifting from the individual to a group of people at the end of this work, the question: how can we determine the interaction between individuals within a group of people? was answered by developing a methodology to detect un-voiced collaboration in random ad-hoc groups. An evaluation with data retrieved from video footage provides an accuracy of up to more than 95%, and even with artificially introduced errors rates of 20%, still an accuracy of 70% precision, and 90% recall can be achieved.
All scenarios in this thesis address different practical issues of today’s health care. The methods developed are based on real-life datasets and real-world studies.
Private data analytics systems preferably provide required analytic accuracy to analysts and specified privacy to individuals whose data is analyzed. Devising a general system that works for a broad range of datasets and analytic scenarios has proven to be difficult.
Despite the advent of differentially private systems with proven formal privacy guarantees, industry still uses inferior ad-hoc mechanisms that provide better analytic accuracy. Differentially private mechanisms often need to add large amounts of noise to statistical results, which impairs their usability.
In my thesis I follow two approaches to improve the usability of private data analytics systems in general and differentially private systems in particular. First, I revisit ad-hoc mechanisms and explore the possibilities of systems that do not provide Differential Privacy or only a weak version thereof. Based on an attack analysis I devise a set of new protection mechanisms including Query Based Bookkeeping (QBB). In contrast to previous systems QBB only requires the history of analysts’ queries in order to provide privacy protection. In particular, QBB does not require knowledge about the protected individuals’ data.
In my second approach I use the insights gained with QBB to propose UniTraX, the first differentially private analytics system that allows to analyze part of a protected dataset without affecting the other parts and without giving up on accuracy. I show UniTraX’s usability by way of multiple case studies on real-world datasets across different domains. UniTraX allows more queries than previous differentially private data analytics systems at moderate runtime overheads.
Patients after total hip arthroplasty (THA) suffer from lingering musculoskeletal restrictions. Three-dimensional (3D) gait analysis in combination with machine-learning approaches is used to detect these impairments. In this work, features from the 3D gait kinematics, spatio temporal parameters (Set 1) and joint angles (Set 2), of an inertial sensor (IMU) system are proposed as an input for a support vector machine (SVM) model, to differentiate impaired and non-impaired gait. The features were divided into two subsets. The IMU-based features were validated against an optical motion capture (OMC) system by means of 20 patients after THA and a healthy control group of 24 subjects. Then the SVM model was trained on both subsets. The validation of the IMU system-based kinematic features revealed root mean squared errors in the joint kinematics from 0.24° to 1.25°. The validity of the spatio-temporal gait parameters (STP) revealed a similarly high accuracy. The SVM models based on IMU data showed an accuracy of 87.2% (Set 1) and 97.0% (Set 2). The current work presents valid IMU-based features, employed in an SVM model for the classification of the gait of patients after THA and a healthy control. The study reveals that the features of Set 2 are more significant concerning the classification problem. The present IMU system proves its potential to provide accurate features for the incorporation in a mobile gait-feedback system for patients after THA.
IoT systems consist of Hardware/Software systems (e.g., sensors) that are embedded in a physical world, networked and that interact with complex software platforms. The validation of such systems is a challenge and currently mostly done by prototypes. This paper presents the virtual environment for simulation, emulation and validation of an IoT platform and its semantic model in real life scenarios. It is based on a decentralized, bottom up approach that offers interoperability of IoT devices and the value-added services they want to use across different domains. The framework is demonstrated by a comprehensive case study. The example consists of the complete IoT “Smart Energy” use case with focus on data privacy by homomorphic encryption. The performance of the network is compared while using partially homomorphic encryption, fully homomorphic encryption and no encryption at all.As a major result, we found that our framework is capable of simulating big IoT networks and the overhead introduced by homomorphic encryption is feasible for VICINITY.
3D joint kinematics can provide important information about the quality of movements. Optical motion capture systems (OMC) are considered the gold standard in motion analysis. However, in recent years, inertial measurement units (IMU) have become a promising alternative. The aim of this study was to validate IMU-based 3D joint kinematics of the lower extremities during different movements. Twenty-eight healthy subjects participated in this study. They performed bilateral squats (SQ), single-leg squats (SLS) and countermovement jumps (CMJ). The IMU kinematics was calculated using a recently-described sensor-fusion algorithm. A marker based OMC system served as a reference. Only the technical error based on algorithm performance was considered, incorporating OMC data for the calibration, initialization, and a biomechanical model. To evaluate the validity of IMU-based 3D joint kinematics, root mean squared error (RMSE), range of motion error (ROME), Bland-Altman (BA) analysis as well as the coefficient of multiple correlation (CMC) were calculated. The evaluation was twofold. First, the IMU data was compared to OMC data based on marker clusters; and, second based on skin markers attached to anatomical landmarks. The first evaluation revealed means for RMSE and ROME for all joints and tasks below 3°. The more dynamic task, CMJ, revealed error measures approximately 1° higher than the remaining tasks. Mean CMC values ranged from 0.77 to 1 over all joint angles and all tasks. The second evaluation showed an increase in the RMSE of 2.28°– 2.58° on average for all joints and tasks. Hip flexion revealed the highest average RMSE in all tasks (4.87°– 8.27°). The present study revealed a valid IMU-based approach for the measurement of 3D joint kinematics in functional movements of varying demands. The high validity of the results encourages further development and the extension of the present approach into clinical settings.
Planar force or pressure is a fundamental physical aspect during any people-vs-people and people-vs-environment activities and interactions. It is as significant as the more established linear and angular acceleration (usually acquired by inertial measurement units). There have been several studies involving planar pressure in the discipline of activity recognition, as reviewed in the first chapter. These studies have shown that planar pressure is a promising sensing modality for activity recognition. However, they still take a niche part in the entire discipline, using ad hoc systems and data analysis methods. Mostly these studies were not followed by further elaborative works. The situation calls for a general framework that can help push planar pressure sensing into the mainstream.
This dissertation systematically investigates using planar pressure distribution sensing technology for ubiquitous and wearable activity recognition purposes. We propose a generic Textile Pressure Mapping (TPM) Framework, which encapsulates (1) design knowledge and guidelines, (2) a multi-layered tool including hardware, software and algorithms, and (3) an ensemble of empirical study examples. Through validation with various empirical studies, the unified TPM framework covers the full scope of application recognition, including the ambient, object, and wearable subspaces.
The hardware part constructs a general architecture and implementations in the large-scale and mobile directions separately. The software toolkit consists of four heterogeneous tiers: driver, data processing, machine learning, visualization/feedback. The algorithm chapter describes generic data processing techniques and a unified TPM feature set. The TPM framework offers a universal solution for other researchers and developers to evaluate TPM sensing modality in their application scenarios.
The significant findings from the empirical studies have shown that TPM is a versatile sensing modality. Specifically, in the ambient subspace, a sports mat or carpet with TPM sensors embedded underneath can distinguish different sports activities or different people's gait based on the dynamic change of body-print; a pressure sensitive tablecloth can detect various dining actions by the force propagated from the cutlery through the plates to the tabletop. In the object subspace, swirl office chairs with TPM sensors under the cover can be used to detect the seater's real-time posture; TPM can be used to detect emotion-related touch interactions for smart objects, toys or robots. In the wearable subspace, TPM sensors can be used to perform pressure-based mechanomyography to detect muscle and body movement; it can also be tailored to cover the surface of a soccer shoe to distinguish different kicking angles and intensities.
All the empirical evaluations have resulted in accuracies well-above the chance level of the corresponding number of classes, e.g., the `swirl chair' study has classification accuracy of 79.5% out of 10 posture classes and in the `soccer shoe' study the accuracy is 98.8% among 17 combinations of angle and intensity.
Under the notion of Cyber-Physical Systems an increasingly important research area has
evolved with the aim of improving the connectivity and interoperability of previously
separate system functions. Today, the advanced networking and processing capabilities
of embedded systems make it possible to establish strongly distributed, heterogeneous
systems of systems. In such configurations, the system boundary does not necessarily
end with the hardware, but can also take into account the wider context such as people
and environmental factors. In addition to being open and adaptive to other networked
systems at integration time, such systems need to be able to adapt themselves in accordance
with dynamic changes in their application environments. Considering that many
of the potential application domains are inherently safety-critical, it has to be ensured
that the necessary modifications in the individual system behavior are safe. However,
currently available state-of-the-practice and state-of-the-art approaches for safety assurance
and certification are not applicable to this context.
To provide a feasible solution approach, this thesis introduces a framework that allows
“just-in-time” safety certification for the dynamic adaptation behavior of networked
systems. Dynamic safety contracts (DSCs) are presented as the core solution concept
for monitoring and synthesis of decentralized safety knowledge. Ultimately, this opens
up a path towards standardized service provision concepts as a set of safety-related runtime
evidences. DSCs enable the modular specification of relevant safety features in
networked applications as a series of formalized demand-guarantee dependencies. The
specified safety features can be hierarchically integrated and linked to an interpretation
level for accessing the scope of possible safe behavioral adaptations. In this way, the networked
adaptation behavior can be conditionally certified with respect to the fulfilled
DSC safety features during operation. As long as the continuous evaluation process
provides safe adaptation behavior for a networked application context, safety can be
guaranteed for a networked system mode at runtime. Significant safety-related changes
in the application context, however, can lead to situations in which no safe adaptation
behavior is available for the current system state. In such cases, the remaining DSC
guarantees can be utilized to determine optimal degradation concepts for the dynamic
applications.
For the operationalization of the DSCs approach, suitable specification elements and
mechanisms have been defined. Based on a dedicated GUI-engineering framework it is
shown how DSCs can be systematically developed and transformed into appropriate runtime
representations. Furthermore, a safety engineering backbone is outlined to support
the DSC modeling process in concrete application scenarios. The conducted validation
activities show the feasibility and adequacy of the proposed DSCs approach. In parallel,
limitations and areas of future improvement are pointed out.
In computer graphics, realistic rendering of virtual scenes is a computationally complex problem. State-of-the-art rendering technology must become more scalable to
meet the performance requirements for demanding real-time applications.
This dissertation is concerned with core algorithms for rendering, focusing on the
ray tracing method in particular, to support and saturate recent massively parallel computer systems, i.e., to distribute the complex computations very efficiently
among a large number of processing elements. More specifically, the three targeted
main contributions are:
1. Collaboration framework for large-scale distributed memory computers
The purpose of the collaboration framework is to enable scalable rendering
in real-time on a distributed memory computer. As an infrastructure layer it
manages the explicit communication within a network of distributed memory
nodes transparently for the rendering application. The research is focused on
designing a communication protocol resilient against delays and negligible in
overhead, relying exclusively on one-sided and asynchronous data transfers.
The hypothesis is that a loosely coupled system like this is able to scale linearly
with the number of nodes, which is tested by directly measuring all possible
communication-induced delays as well as the overall rendering throughput.
2. Ray tracing algorithms designed for vector processing
Vector processors are to be efficiently utilized for improved ray tracing performance. This requires the basic, scalar traversal algorithm to be reformulated
in order to expose a high degree of fine-grained data parallelism. Two approaches are investigated: traversing multiple rays simultaneously, and performing
multiple traversal steps at once. Efficiently establishing coherence in a group
of rays as well as avoiding sorting of the nodes in a multi-traversal step are the
defining research goals.
3. Multi-threaded schedule and memory management for the ray tracing acceleration structure
Construction times of high-quality acceleration structures are to be reduced by
improvements to multi-threaded scalability and utilization of vector processors. Research is directed at eliminating the following scalability bottlenecks:
dynamic memory growth caused by the primitive splits required for high-
quality structures, and top-level hierarchy construction where simple task par-
allelism is not readily available. Additional research addresses how to expose
scatter/gather-free data-parallelism for efficient vector processing.
Together, these contributions form a scalable, high-performance basis for real-time,
ray tracing-based rendering, and a prototype path tracing application implemented
on top of this basis serves as a demonstration.
The key insight driving this dissertation is that the computational power necessary
for realistic light transport for real-time rendering applications demands massively
parallel computers, which in turn require highly scalable algorithms. Therefore this
dissertation provides important research along the path towards virtual reality.
While the design step should be free from computational related constraints and operations due to its artistic aspect, the modeling phase has to prepare the model for the later stages of the pipeline.
This dissertation is concerned with the design and implementation of a framework for local remeshing and optimization. Based on the experience gathered, a full study about mesh quality criteria is also part of this work.
The contributions can be highlighted as: (1) a local meshing technique based on a completely novel approach constrained to the preservation of the mesh of non interesting areas. With this concept, designers can work on the design details of specific regions of the model without introducing more polygons elsewhere; (2) a tool capable of recovering the shape of a refined area to its decimated version, enabling details on optimized meshes of detailed models; (3) the integration of novel techniques into a single framework for meshing and smoothing which is constrained to surface structure; (4) the development of a mesh quality criteria priority structure, being able to classify and prioritize according to the application of the mesh.
Although efficient meshing techniques have been proposed along the years, most of them lack the possibility to mesh smaller regions of the base mesh, preserving the mesh quality and density of outer areas.
Considering this limitation, this dissertation seeks answers to the following research questions:
1. Given that mesh quality is relative to the application it is intended for, is it possible to design a general mesh evaluation plan?
2. How to prioritize specific mesh criteria over others?
3. Given an optimized mesh and its original design, how to improve the representation of single regions of the first, without degrading the mesh quality elsewhere?
Four main achievements came from the respective answers:
1. The Application Driven Mesh Quality Criteria Structure: Due to high variation in mesh standards because of various computer aided operations performed for different applications, e.g. animation or stress simulation, a structure for better visualization of mesh quality criteria is proposed. The criteria can be used to guide the mesh optimization, making the task consistent and reliable. This dissertation also proposes a methodology to optimize the criteria values, which is adaptable to the needs of a specific application.
2. Curvature Driven Meshing Algorithm: A novel approach, a local meshing technique, which works on a desired area of the mesh while preserving its boundaries as well as the rest of the topology. It causes a slow growth in the overall amount of polygons by making only small regions denser. The method can also be used to recover the details of a reference mesh to its decimated version while refining it. Moreover, it employs a geometric fast and easy to implement approach representing surface features as simple circles, being used to guide the meshing. It also generates quad-dominant meshes, with triangle count directly dependent on the size of the boundary.
3. Curvature-based Method for Anisotropic Mesh Smoothing: A geometric-based method is extended to 3D space to be able to produce anisotropic elements where needed. It is made possible by mapping the original space to another which embeds the surface curvature. This methodology is used to enhance the smoothing algorithm by making the nearly regularized elements follow the surface features, preserving the original design. The mesh optimization method also preserves mesh topology, while resizing elements according to the local mesh resolution, effectively enhancing the design aspects intended.
4. Framework for Local Restructure of Meshed Surfaces: The combination of both methods creates a complete tool for recovering surface details through mesh refinement and curvature aware mesh smoothing.
In this thesis, we consider the problem of processing similarity queries over a dataset of top-k rankings and class constrained objects. Top-k rankings are the most natural and widely used technique to compress a large amount of information into a concise form. Spearman’s Footrule distance is used to compute the similarity between rankings, considering how well rankings agree on the positions (ranks) of ranked items. This setup allows the application of metric distance-based pruning strategies, and, alternatively, enables the use of traditional inverted indices for retrieving rankings that overlap in items. Although both techniques can be individually applied, we hypothesize that blending these two would lead to better performance. First, we formulate theoretical bounds over the rankings, based on Spearman's Footrule distance, which are essential for adapting existing, inverted index based techniques to the setting of top-k rankings. Further, we propose a hybrid indexing strategy, designed for efficiently processing similarity range queries, which incorporates inverted indices and metric space indices, such as M- or BK-trees, resulting in a structure that resembles both indexing methods with tunable emphasis on one or the other. Moreover, optimizations to the inverted index component are presented, for early termination and minimizing bookkeeping. As vast amounts of data are being generated on a daily bases, we further present a distributed, highly tunable, approach, implemented in Apache Spark, for efficiently processing similarity join queries over top-k rankings. To combine distance-based filtering with inverted indices, the algorithm works in several phases. The partial results are joined for the computation of the final result set. As the last contribution of the thesis, we consider processing k-nearest-neighbor (k-NN) queries over class-constrained objects, with the additional requirement that the result objects are of a specific type. We introduce the MISP index, which first indexes the objects by their (combination of) class belonging, followed by a similarity search sub index for each subset of objects. The number of such subsets can combinatorially explode, thus, we provide a cost model that analyzes the performance of the MISP index structure under different configurations, with the aim of finding the most efficient one for the dataset being searched.
Visualization is vital to the scientific discovery process.
An interactive high-fidelity rendering provides accelerated insight into complex structures, models and relationships.
However, the efficient mapping of visualization tasks to high performance architectures is often difficult, being subject to a challenging mixture of hardware and software architectural complexities in combination with domain-specific hurdles.
These difficulties are often exacerbated on heterogeneous architectures.
In this thesis, a variety of ray casting-based techniques are developed and investigated with respect to a more efficient usage of heterogeneous HPC systems for distributed visualization, addressing challenges in mesh-free rendering, in-situ compression, task-based workload formulation, and remote visualization at large scale.
A novel direct raytracing scheme for on-the-fly free surface reconstruction of particle-based simulations using an extended anisoptropic kernel model is investigated on different state-of-the-art cluster setups.
The versatile system renders up to 170 million particles on 32 distributed compute nodes at close to interactive frame rates at 4K resolution with ambient occlusion.
To address the widening gap between high computational throughput and prohibitively slow I/O subsystems, in situ topological contour tree analysis is combined with a compact image-based data representation to provide an effective and easy-to-control trade-off between storage overhead and visualization fidelity.
Experiments show significant reductions in storage requirements, while preserving flexibility for exploration and analysis.
Driven by an increasingly heterogeneous system landscape, a flexible distributed direct volume rendering and hybrid compositing framework is presented.
Based on a task-based dynamic runtime environment, it enables adaptable performance-oriented deployment on various platform configurations.
Comprehensive benchmarks with respect to task granularity and scaling are conducted to verify the characteristics and potential of the novel task-based system design.
A core challenge of HPC visualization is the physical separation of visualization resources and end-users.
Using more tiles than previously thought reasonable, a distributed, low-latency multi-tile streaming system is demonstrated, being able to sustain a stable 80 Hz when streaming up to 256 synchronized 3840x2160 tiles and achieve 365 Hz at 3840x2160 for sort-first compositing over the internet, thereby enabling lightweight visualization clients and leaving all the heavy lifting to the remote supercomputer.
Topology-Based Characterization and Visual Analysis of Feature Evolution in Large-Scale Simulations
(2019)
This manuscript presents a topology-based analysis and visualization framework that enables the effective exploration of feature evolution in large-scale simulations. Such simulations pose additional challenges to the already complex task of feature tracking and visualization, since the vast number of features and the size of the simulation data make it infeasible to naively identify, track, analyze, render, store, and interact with data. The presented methodology addresses these issues via three core contributions. First, the manuscript defines a novel topological abstraction, called the Nested Tracking Graph (NTG), that records the temporal evolution of features that exhibit a nesting hierarchy, such as superlevel set components for multiple levels, or filtered features across multiple thresholds. In contrast to common tracking graphs that are only capable of describing feature evolution at one hierarchy level, NTGs effectively summarize their evolution across all hierarchy levels in one compact visualization. The second core contribution is a view-approximation oriented image database generation approach (VOIDGA) that stores, at simulation runtime, a reduced set of feature images. Instead of storing the features themselves---which is often infeasable due to bandwidth constraints---the images of these databases can be used to approximate the depicted features from any view angle within an acceptable visual error, which requires far less disk space and only introduces a neglectable overhead. The final core contribution combines these approaches into a methodology that stores in situ the least amount of information necessary to support flexible post hoc analysis utilizing NTGs and view approximation techniques.
Shared memory concurrency is the pervasive programming model for multicore architectures
such as x86, Power, and ARM. Depending on the memory organization, each architecture follows
a somewhat different shared memory model. All these models, however, have one common
feature: they allow certain outcomes for concurrent programs that cannot be explained
by interleaving execution. In addition to the complexity due to architectures, compilers like
GCC and LLVM perform various program transformations, which also affect the outcomes of
concurrent programs.
To be able to program these systems correctly and effectively, it is important to define a
formal language-level concurrency model. For efficiency, it is important that the model is
weak enough to allow various compiler optimizations on shared memory accesses as well
as efficient mappings to the architectures. For programmability, the model should be strong
enough to disallow bogus “out-of-thin-air” executions and provide strong guarantees for well-synchronized
programs. Because of these conflicting requirements, defining such a formal
model is very difficult. This is why, despite years of research, major programming languages
such as C/C++ and Java do not yet have completely adequate formal models defining their
concurrency semantics.
In this thesis, we address this challenge and develop a formal concurrency model that is very
good both in terms of compilation efficiency and of programmability. Unlike most previous
approaches, which were defined either operationally or axiomatically on single executions,
our formal model is based on event structures, which represents multiple program executions,
and thus gives us more structure to define the semantics of concurrency.
In more detail, our formalization has two variants: the weaker version, WEAKEST, and the
stronger version, WEAKESTMO. The WEAKEST model simulates the promising semantics proposed
by Kang et al., while WEAKESTMO is incomparable to the promising semantics. Moreover,
WEAKESTMO discards certain questionable behaviors allowed by the promising semantics.
We show that the proposed WEAKESTMO model resolve out-of-thin-air problem, provide
standard data-race-freedom (DRF) guarantees, allow the desirable optimizations, and can be
mapped to the architectures like x86, PowerPC, and ARMv7. Additionally, our models are
flexible enough to leverage existing results from the literature to establish data-race-freedom
(DRF) guarantees and correctness of compilation.
In addition, in order to ensure the correctness of compilation by a major compiler, we developed
a translation validator targeting LLVM’s “opt” transformations of concurrent C/C++
programs. Using the validator, we identified a few subtle compilation bugs, which were reported
and were fixed. Additionally, we observe that LLVM concurrency semantics differs
from that of C11; there are transformations which are justified in C11 but not in LLVM and
vice versa. Considering the subtle aspects of LLVM concurrency, we formalized a fragment
of LLVM’s concurrency semantics and integrated it into our WEAKESTMO model.
The systems in industrial automation management (IAM) are information systems. The management parts of such systems are software components that support the manufacturing processes. The operational parts control highly plug-compatible devices, such as controllers, sensors and motors. Process variability and topology variability are the two main characteristics of software families in this domain. Furthermore, three roles of stakeholders -- requirement engineers, hardware-oriented engineers, and software developers -- participate in different derivation stages and have different variability concerns. In current practice, the development and reuse of such systems is costly and time-consuming, due to the complexity of topology and process variability. To overcome these challenges, the goal of this thesis is to develop an approach to improve the software product derivation process for systems in industrial automation management, where different variability types are concerned in different derivation stages. Current state-of-the-art approaches commonly use general-purpose variability modeling languages to represent variability, which is not sufficient for IAM systems. The process and topology variability requires more user-centered modeling and representation. The insufficiency of variability modeling leads to low efficiency during the staged derivation process involving different stakeholders. Up to now, product line approaches for systematic variability modeling and realization have not been well established for such complex domains. The model-based derivation approach presented in this thesis integrates feature modeling with domain-specific models for expressing processes and topology. The multi-variability modeling framework includes the meta-models of the three variability types and their associations. The realization and implementation of the multi-variability involves the mapping and the tracing of variants to their corresponding software product line assets. Based on the foundation of multi-variability modeling and realization, a derivation infrastructure is developed, which enables a semi-automated software derivation approach. It supports the configuration of different variability types to be integrated into the staged derivation process of the involved stakeholders. The derivation approach is evaluated in an industry-grade case study of a complex software system. The feasibility is demonstrated by applying the approach in the case study. By using the approach, both the size of the reusable core assets and the automation level of derivation are significantly improved. Furthermore, semi-structured interviews with engineers in practice have evaluated the usefulness and ease-of-use of the proposed approach. The results show a positive attitude towards applying the approach in practice, and high potential to generalize it to other related domains.
Postmortem Analysis of Decayed Online Social Communities: Cascade Pattern Analysis and Prediction
(2018)
Recently, many online social networks, such as MySpace, Orkut, and Friendster, have faced inactivity decay of their members, which contributed to the collapse of these networks. The reasons, mechanics, and prevention mechanisms of such inactivity decay are not fully understood. In this work, we analyze decayed and alive subwebsites from the Stack Exchange platform. The analysis mainly focuses on the inactivity cascades that occur among the members of these communities. We provide measures to understand the decay process and statistical analysis to extract the patterns that accompany the inactivity decay. Additionally, we predict cascade size and cascade virality using machine learning. The results of this work include a statistically significant difference of the decay patterns between the decayed and the alive subwebsites. These patterns are mainly cascade size, cascade virality, cascade duration, and cascade similarity. Additionally, the contributed prediction framework showed satisfactorily prediction results compared to a baseline predictor. Supported by empirical evidence, the main findings of this work are (1) there are significantly different decay patterns in the alive and the decayed subwebsites of the Stack Exchange; (2) the cascade’s node degrees contribute more to the decay process than the cascade’s virality, which indicates that the expert members of the Stack Exchange subwebsites were mainly responsible for the activity or inactivity of the Stack Exchange subwebsites; (3) the Statistics subwebsite is going through decay dynamics that may lead to it becoming fully-decayed; (4) the decay process is not governed by only one network measure, it is better described using multiple measures; (5) decayed subwebsites were originally less resilient to inactivity decay, unlike the alive subwebsites; and (6) network’s structure in the early stages of its evolution dictates the activity/inactivity characteristics of the network.
The usage of sensors in modern technical systems and consumer products is in a rapid increase. This advancement can be characterized by two major factors, namely, the mass introduction of consumer oriented sensing devices to the market and the sheer amount of sensor data being generated. These characteristics raise subsequent challenges regarding both the consumer sensing devices' reliability and the management and utilization of the generated sensor data. This thesis addresses these challenges through two main contributions. It presents a novel framework that leverages sentiment analysis techniques in order to assess the quality of consumer sensing devices. It also couples semantic technologies with big data technologies to present a new optimized approach for realization and management of semantic sensor data, hence providing a robust means of integration, analysis, and reuse of the generated data. The thesis also presents several applications that show the potential of the contributions in real-life scenarios.
Due to the broad range, growing feature set and fast release pace of new sensor-based products, evaluating these products is very challenging as standard product testing is not practical. As an alternative, an end-to-end aspect-based sentiment summarizer pipeline for evaluation of consumer sensing devices is presented. The pipeline uses product reviews to extract the sentiment at the aspect level and includes several components namely, product name extractor, aspects extractor and a lexicon-based sentiment extractor which handles multiple sentiment analysis challenges such as sentiment shifters, negations, and comparative sentences among others. The proposed summarizer's components generally outperform the state-of-the-art approaches. As a use case, features of the market leading fitness trackers are evaluated and a dynamic visual summarizer is presented to display the evaluation results and to provide personalized product recommendations for potential customers.
The increased usage of sensing devices in the consumer market is accompanied with increased deployment of sensors in various other fields such as industry, agriculture, and energy production systems. This necessitates using efficient and scalable methods for storing and processing of sensor data. Coupling big data technologies with semantic techniques not only helps to achieve the desired storage and processing goals, but also facilitates data integration, data analysis, and the utilization of data in unforeseen future applications through preserving the data generation context. This thesis proposes an efficient and scalable solution for semantification, storage and processing of raw sensor data through ontological modelling of sensor data and a novel encoding scheme that harnesses the split between the statements of the conceptual model of an ontology (TBox) and the individual facts (ABox) along with in-memory processing capabilities of modern big data systems. A sample use case is further introduced where a smartphone is deployed in a transportation bus to collect various sensor data which is then utilized in detecting street anomalies.
In addition to the aforementioned contributions, and to highlight the potential use cases of sensor data publicly available, a recommender system is developed using running route data, used for proximity-based retrieval, to provide personalized suggestions for new routes considering the runner's performance, visual and nature of route preferences.
This thesis aims at enhancing the integration of sensing devices in daily life applications through facilitating the public acquisition of consumer sensing devices. It also aims at achieving better integration and processing of sensor data in order to enable new potential usage scenarios of the raw generated data.
Most modern multiprocessors offer weak memory behavior to improve their performance in terms of throughput. They allow the order of memory operations to be observed differently by each processor. This is opposite to the concept of sequential consistency (SC) which enforces a unique sequential view on all operations for all processors. Because most software has been and still is developed with SC in mind, we face a gap between the expected behavior and the actual behavior on modern architectures. The issues described only affect multithreaded software and therefore most programmers might never face them. However, multi-threaded bare metal software like operating systems, embedded software, and real-time software have to consider memory consistency and ensure that the order of memory operations does not yield unexpected results. This software is more critical as general consumer software in terms of consequences, and therefore new methods are needed to ensure their correct behavior.
In general, a memory system is considered weak if it allows behavior that is not possible in a sequential system. For example, in the SPARC processor with total store ordering (TSO) consistency, all writes might be delayed by store buffers before they eventually are processed by the main memory. This allows the issuing process to work with its own written values before other processes observed them (i.e., reading its own value before it leaves the store buffer). Because this behavior is not possible with sequential consistency, TSO is considered to be weaker than SC. Programming in the context of weak memory architectures requires a proper comprehension of how the model deviates from expected sequential behavior. For verification of these programs formal representations are required that cover the weak behavior in order to utilize formal verification tools.
This thesis explores different verification approaches and respectively fitting representations of a multitude of memory models. In a joint effort, we started with the concept of testing memory operation traces in regard of their consistency with different memory consistency models. A memory operation trace is directly derived from a program trace and consists of a sequence of read and write operations for each process. Analyzing the testing problem, we are able to prove that the problem is NP-complete for most memory models. In that process, a satisfiability (SAT) encoding for given problem instances was developed, that can be used in reachability and robustness analysis.
In order to cover all program executions instead of just a single program trace, additional representations are introduced and explored throughout this thesis. One of the representations introduced is a novel approach to specify a weak memory system using temporal logics. A set of linear temporal logic (LTL) formulas is developed that describes all properties required to restrict possible traces to those consistent to the given memory model. The resulting LTL specifications can directly be used in model checking, e.g., to check safety conditions. Unfortunately, the derived LTL specifications suffer from the state explosion problem: Even small examples, like the Peterson mutual exclusion algorithm, tend to generate huge formulas and require vast amounts of memory for verification. For this reason, it is concluded that using the proposed verification approach these specifications are not well suited for verification of real world software. Nonetheless, they provide comprehensive and formally correct descriptions that might be used elsewhere, e.g., programming or teaching.
Another approach to represent these models are operational semantics. In this thesis, operational semantics of weak memory models are provided in the form of reference machines that are both correct and complete regarding the memory model specification. Operational semantics allow to simulate systems with weak memory models step by step. This provides an elegant way to study the effects that lead to weak consistent behavior, while still providing a basis for formal verification. The operational models are then incorporated in verification tools for multithreaded software. These state space exploration tools proved suitable for verification of multithreaded software in a weak consistent memory environment. However, because not only the memory system but also the processor are expressed as operational semantics, some verification approach will not be feasible due to the large size of the state space.
Finally, to tackle the beforementioned issue, a state transition system for parallel programs is proposed. The transition system is defined by a set of structural operational semantics (SOS) rules and a suitable memory structure that can cover multiple memory models. This allows to influence the state space by use of smart representations and approximation approaches in future work.
Large-scale distributed systems consist of a number of components, take a number of parameter values as input, and behave differently based on a number of non-deterministic events. All these features—components, parameter values, and events—interact in complicated ways, and unanticipated interactions may lead to bugs. Empirically, many bugs in these systems are caused by interactions of only a small number of features. In certain cases, it may be possible to test all interactions of \(k\) features for a small constant \(k\) by executing a family of tests that is exponentially or even doubly-exponentially smaller than the family of all tests. Thus, in such cases we can effectively uncover all bugs that require up to \(k\)-wise interactions of features.
In this thesis we study two occurrences of this phenomenon. First, many bugs in distributed systems are caused by network partition faults. In most cases these bugs occur due to two or three key nodes, such as leaders or replicas, not being able to communicate, or because the leading node finds itself in a block of the partition without quorum. Second, bugs may occur due to unexpected schedules (interleavings) of concurrent events—concurrent exchange of messages and concurrent access to shared resources. Again, many bugs depend only on the relative ordering of a small number of events. We call the smallest number of events whose ordering causes a bug the depth of the bug. We show that in both testing scenarios we can effectively uncover bugs involving small number of nodes or bugs of small depth by executing small families of tests.
We phrase both testing scenarios in terms of an abstract framework of tests, testing goals, and goal coverage. Sets of tests that cover all testing goals are called covering families. We give a general construction that shows that whenever a random test covers a fixed goal with sufficiently high probability, a small randomly chosen set of tests is a covering family with high probability. We then introduce concrete coverage notions relating to network partition faults and bugs of small depth. In case of network partition faults, we show that for the introduced coverage notions we can find a lower bound on the probability that a random test covers a given goal. Our general construction then yields a randomized testing procedure that achieves full coverage—and hence, find bugs—quickly.
In case of coverage notions related to bugs of small depth, if the events in the program form a non-trivial partial order, our general construction may give a suboptimal bound. Thus, we study other ways of constructing covering families. We show that if the events in a concurrent program are partially ordered as a tree, we can explicitly construct a covering family of small size: for balanced trees, our construction is polylogarithmic in the number of events. For the case when the partial order of events does not have a "nice" structure, and the events and their relation to previous events are revealed while the program is running, we give an online construction of covering families. Based on the construction, we develop a randomized scheduler called PCTCP that uniformly samples schedules from a covering family and has a rigorous guarantee of finding bugs of small depth. We experiment with an implementation of PCTCP on two real-world distributed systems—Zookeeper and Cassandra—and show that it can effectively find bugs.
Ranking lists are an essential methodology to succinctly summarize outstanding items, computed over database tables or crowdsourced in dedicated websites. In this thesis, we propose the usage of automatically generated, entity-centric rankings to discover insights in data. We present PALEO, a framework for data exploration through reverse engineering top-k database queries, that is, given a database and a sample top-k input list, our approach, aims at determining an SQL query that returns results similar to the provided input when executed over the database. The core problem consist of finding selection predicates that return the given items, determining the correct ranking criteria, and evaluating the most promising candidate queries first. PALEO operates on subset of the base data, uses data samples, histograms, descriptive statistics, and further proposes models that assess the suitability of candidate queries which facilitate limitation of false positives. Furthermore, this thesis presents COMPETE, a novel approach that models and computes dominance over user-provided input entities, given a database of top-k rankings. The resulting entities are found superior or inferior with tunable degree of dominance over the input set---a very intuitive, yet insightful way to explore pros and cons of entities of interest. Several notions of dominance are defined which differ in computational complexity and strictness of the dominance concept---yet, interdependent through containment relations. COMPETE is able to pick the most promising approach to satisfy a user request at minimal runtime latency, using a probabilistic model that is estimating the result sizes. The individual flavors of dominance are cast into a stack of algorithms over inverted indices and auxiliary structures, enabling pruning techniques to avoid significant data access over large datasets of rankings.
Wearable activity recognition aims to identify and assess human activities with the help
of computer systems by evaluating signals of sensors which can be attached to the human
body. This provides us with valuable information in several areas: in health care, e.g. fluid
and food intake monitoring; in sports, e.g. training support and monitoring; in entertainment,
e.g. human-computer interface using body movements; in industrial scenarios, e.g.
computer support for detected work tasks. Several challenges exist for wearable activity
recognition: a large number of nonrelevant activities (null class), the evaluation of large
numbers of sensor signals (curse of dimensionality), ambiguity of sensor signals compared
to the activities and finally the high variability of human activity in general.
This thesis develops a new activity recognition strategy, called invariants classification,
which addresses these challenges, especially the variability in human activities. The
core idea is that often even highly variable actions include short, more or less invariant
sub-actions which are due to hard physical constraints. If someone opens a door, the
movement of the hand to the door handle is not fixed. However the door handle has to
be pushed to open the door. The invariants classification algorithm is structured in four
phases: segmentation, invariant identification, classification, and spotting. The segmentation
divides the continuous sensor data stream into meaningful parts, which are related
to sub-activities. Our segmentation strategy uses the zero crossings of the central difference
quotient of the sensor signals, as segment borders. The invariant identification finds
the invariant sub-activities by means of clustering and a selection strategy dependent on
certain features. The classification identifies the segments of a specific activity class, using
models generated from the invariant sub-activities. The models include the invariant
sub-activity signal and features calculated on sensor signals related to the sub-activity. In
the spotting, the classified segments are used to find the entire activity class instances in
the continuous sensor data stream. For this purpose, we use the position of the invariant
sub-activity in the related activity class instance for the estimation of the borders of the
activity instances.
In this thesis, we show that our new activity recognition strategy, built on invariant
sub-activities, is beneficial. We tested it on three human activity datasets with wearable
inertial measurement units (IMU). Compared to previous publications on the same
datasets we got improvement in the activity recognition in several classes, some with a
large margin. Our segmentation achieves a sensible method to separate the sensor data in
relation to the underlying activities. Relying on sub-activities makes us independent from
imprecise labels on the training data. After the identification of invariant sub-activities,
we calculate a value called cluster precision for each sensor signal and each class activity.
This tells us which classes can be easily classified and which sensor channels support
the classification best. Finally, in the training for each activity class, our algorithm selects
suitable signal channels with invariant sub-activities on different points in time and
with different length. This makes our strategy a multi-dimensional asynchronous motif
detection with variable motif length.
Graphs and flow networks are important mathematical concepts that enable the modeling and analysis of a large variety of real world problems in different domains such as engineering, medicine or computer science. The number, sizes and complexities of those problems permanently increased during the last decades. This led to an increased demand of techniques that help domain experts in understanding their data and its underlying structure to enable an efficient analysis and decision making process.
To tackle this challenge, this work presents several new techniques that utilize concepts of visual analysis to provide domain scientists with new visualization methodologies and tools. Therefore, this work provides novel concepts and approaches for diverse aspects of the visual analysis such as data transformation, visual mapping, parameter refinement and analysis, model building and visualization as well as user interaction.
The presented techniques form a framework that enriches domain scientists with new visual analysis tools and help them analyze their data and gain insight from the underlying structures. To show the applicability and effectiveness of the presented approaches, this work tackles different applications such as networking, product flow management and vascular systems, while preserving the generality to be applicable to further domains.
The simulation of physical phenomena involving the dynamic behavior of fluids and gases
has numerous applications in various fields of science and engineering. Of particular interest
is the material transport behavior, the tendency of a flow field to displace parts of the
medium. Therefore, many visualization techniques rely on particle trajectories.
Lagrangian Flow Field Representation. In typical Eulerian settings, trajectories are
computed from the simulation output using numerical integration schemes. Accuracy concerns
arise because, due to limitations of storage space and bandwidth, often only a fraction
of the computed simulation time steps are available. Prior work has shown empirically that
a Lagrangian, trajectory-based representation can improve accuracy [Agr+14]. Determining
the parameters of such a representation in advance is difficult; a relationship between the
temporal and spatial resolution and the accuracy of resulting trajectories needs to be established.
We provide an error measure for upper bounds of the error of individual trajectories.
We show how areas at risk for high errors can be identified, thereby making it possible to
prioritize areas in time and space to allocate scarce storage resources.
Comparative Visual Analysis of Flow Field Ensembles. Independent of the representation,
errors of the simulation itself are often caused by inaccurate initial conditions,
limitations of the chosen simulation model, and numerical errors. To gain a better understanding
of the possible outcomes, multiple simulation runs can be calculated, resulting in
sets of simulation output referred to as ensembles. Of particular interest when studying the
material transport behavior of ensembles is the identification of areas where the simulation
runs agree or disagree. We introduce and evaluate an interactive method that enables application
scientists to reliably identify and examine regions of agreement and disagreement,
while taking into account the local transport behavior within individual simulation runs.
Particle-Based Representation and Visualization of Uncertain Flow Data Sets. Unlike
simulation ensembles, where uncertainty of the solution appears in the form of different
simulation runs, moment-based Eulerian multi-phase fluid simulations are probabilistic in
nature. These simulations, used in process engineering to simulate the behavior of bubbles in
liquid media, are aimed toward reducing the need for real-world experiments. The locations
of individual bubbles are not modeled explicitly, but stochastically through the properties of
locally defined bubble populations. Comparisons between simulation results and physical
experiments are difficult. We describe and analyze an approach that generates representative
sets of bubbles for moment-based simulation data. Using our approach, application scientists
can directly, visually compare simulation results and physical experiments.
Education is the Achilles heel of successful resuscitation in cardiac arrest. Therefore, we aim to contribute to the educational efficiency by providing a novel augmented-reality (AR) guided interactive cardiopulmonary resuscitation (CPR) "trainer". For this trainer, a mixed reality smart glass, Microsoft HoloLens, and a CPR manikin covered with pressure sensors were used. To introduce the CPR procedure to a learner, an application with an intractable virtual teacher model was designed. The teaching scenario consists of the two main parts, theory and practice. In the theoretical part, the virtual teacher provides all information about the CPR procedure. Afterward, the user will be asked to perform the CPR cycles in three different stages. In the first two stages, it is aimed to gain the muscle memory with audio and optical feedback system. In the end, the performance of the participant is evaluated by the virtual teacher.
We present a study comparing the effect of real-time wearable feedback with traditional training methods for cardiopulmonary resuscitation (CPR). The aim is to ensure that the students can deliver CPR with the right compression speed and depth. On the wearable side, we test two systems: one based on a combination of visual feedback and tactile information on a smart-watch and one based on visual feedback and audio information on a Google Glass. In a trial with 50 subjects (23 trainee nurses and 27 novices,) we compare those modalities to standard human teaching that is used in nurse training. While a single traditional teaching session tends to improve only the percentage of correct depth, it has less effect on the percentage of effective CPR (depth and speed correct at the same time). By contrast, in a training session with the wearable feedback device, the average percentage of time when CPR is effective improves by up to almost 25%.
The focus of this work is to provide and evaluate a novel method for multifield topology-based analysis and visualization. Through this concept, called Pareto sets, one is capable to identify critical regions in a multifield with arbitrary many individual fields. It uses ideas found in graph optimization to find common behavior and areas of divergence between multiple optimization objectives. The connections between the latter areas can be reduced into a graph structure allowing for an abstract visualization of the multifield to support data exploration and understanding.
The research question that is answered in this dissertation is about the general capability and expandability of the Pareto set concept in context of visualization and application. Furthermore, the study of its relations, drawbacks and advantages towards other topological-based approaches. This questions is answered in several steps, including consideration and comparison with related work, a thorough introduction of the Pareto set itself as well as a framework for efficient implementation and an attached discussion regarding limitations of the concept and their implications for run time, suitable data, and possible improvements.
Furthermore, this work considers possible simplification approaches like integrated single-field simplification methods but also using common structures identified through the Pareto set concept to smooth all individual fields at once. These considerations are especially important for real-world scenarios to visualize highly complex data by removing small local structures without destroying information about larger, global trends.
To further emphasize possible improvements and expandability of the Pareto set concept, the thesis studies a variety of different real world applications. For each scenario, this work shows how the definition and visualization of the Pareto set is used and improved for data exploration and analysis based on the scenarios.
In summary, this dissertation provides a complete and sound summary of the Pareto set concept as ground work for future application of multifield data analysis. The possible scenarios include those presented in the application section, but are found in a wide range of research and industrial areas relying on uncertainty analysis, time-varying data, and ensembles of data sets in general.
Novel image processing techniques have been in development for decades, but most
of these techniques are barely used in real world applications. This results in a gap
between image processing research and real-world applications; this thesis aims to
close this gap. In an initial study, the quantification, propagation, and communication
of uncertainty were determined to be key features in gaining acceptance for
new image processing techniques in applications.
This thesis presents a holistic approach based on a novel image processing pipeline,
capable of quantifying, propagating, and communicating image uncertainty. This
work provides an improved image data transformation paradigm, extending image
data using a flexible, high-dimensional uncertainty model. Based on this, a completely
redesigned image processing pipeline is presented. In this pipeline, each
step respects and preserves the underlying image uncertainty, allowing image uncertainty
quantification, image pre-processing, image segmentation, and geometry
extraction. This is communicated by utilizing meaningful visualization methodologies
throughout each computational step.
The presented methods are examined qualitatively by comparing to the Stateof-
the-Art, in addition to user evaluation in different domains. To show the applicability
of the presented approach to real world scenarios, this thesis demonstrates
domain-specific problems and the successful implementation of the presented techniques
in these domains.
The Symbol Grounding Problem (SGP) is one of the first attempts to proposed a hypothesis about mapping abstract concepts and the real world. For example, the concept "ball" can be represented by an object with a round shape (visual modality) and phonemes /b/ /a/ /l/ (audio modality).
This thesis is inspired by the association learning presented in infant development.
Newborns can associate visual and audio modalities of the same concept that are presented at the same time for vocabulary acquisition task.
The goal of this thesis is to develop a novel framework that combines the constraints of the Symbol Grounding Problem and Neural Networks in a simplified scenario of association learning in infants. The first motivation is that the network output can be considered as numerical symbolic features because the attributes of input samples are already embedded. The second motivation is the association between two samples is predefined before training via the same vectorial representation. This thesis proposes to associate two samples and the vectorial representation during training. Two scenarios are considered: sample pair association and sequence pair association.
Three main contributions are presented in this work.
The first contribution is a novel Symbolic Association Model based on two parallel MLPs.
The association task is defined by learning that two instances that represent one concept.
Moreover, a novel training algorithm is defined by matching the output vectors of the MLPs with a statistical distribution for obtaining the relationship between concepts and vectorial representations.
The second contribution is a novel Symbolic Association Model based on two parallel LSTM networks that are trained on weakly labeled sequences.
The definition of association task is extended to learn that two sequences represent the same series of concepts.
This model uses a training algorithm that is similar to MLP-based approach.
The last contribution is a Classless Association.
The association task is defined by learning based on the relationship of two samples that represents the same unknown concept.
In summary, the contributions of this thesis are to extend Artificial Intelligence and Cognitive Computation research with a new constraint that is cognitive motivated. Moreover, two training algorithms with a new constraint are proposed for two cases: single and sequence associations. Besides, a new training rule with no-labels with promising results is proposed.
In recent years, enormous progress has been made in the field of Artificial Intelligence (AI). Especially the introduction of Deep Learning and end-to-end learning, the availability of large datasets and the necessary computational power in form of specialised hardware allowed researchers to build systems with previously unseen performance in areas such as computer vision, machine translation and machine gaming. In parallel, the Semantic Web and its Linked Data movement have published many interlinked RDF datasets, forming the world’s largest, decentralised and publicly available knowledge base.
Despite these scientific successes, all current systems are still narrow AI systems. Each of them is specialised to a specific task and cannot easily be adapted to all other human intelligence tasks, as would be necessary for Artificial General Intelligence (AGI). Furthermore, most of the currently developed systems are not able to learn by making use of freely available knowledge such as provided by the Semantic Web. Autonomous incorporation of new knowledge is however one of the pre-conditions for human-like problem solving.
This work provides a small step towards teaching machines such human-like reasoning on freely available knowledge from the Semantic Web. We investigate how human associations, one of the building blocks of our thinking, can be simulated with Linked Data. The two main results of these investigations are a ground truth dataset of semantic associations and a machine learning algorithm that is able to identify patterns for them in huge knowledge bases.
The ground truth dataset of semantic associations consists of DBpedia entities that are known to be strongly associated by humans. The dataset is published as RDF and can be used for future research.
The developed machine learning algorithm is an evolutionary algorithm that can learn SPARQL queries from a given SPARQL endpoint based on a given list of exemplary source-target entity pairs. The algorithm operates in an end-to-end learning fashion, extracting features in form of graph patterns without the need for human intervention. The learned patterns form a feature space adapted to the given list of examples and can be used to predict target candidates from the SPARQL endpoint for new source nodes. On our semantic association ground truth dataset, our evolutionary graph pattern learner reaches a Recall@10 of > 63 % and an MRR (& MAP) > 43 %, outperforming all baselines. With an achieved Recall@1 of > 34% it even reaches average human top response prediction performance. We also demonstrate how the graph pattern learner can be applied to other interesting areas without modification.
Tables or ranked lists summarize facts about a group of entities in a concise and structured fashion. They are found in all kind of domains and easily comprehensible by humans. Some globally prominent examples of such rankings are the tallest buildings in the World, the richest people in Germany, or most powerful cars. The availability of vast amounts of tables or rankings from open domain allows different ways to explore data. Computing similarity between ranked lists, in order to find those lists where entities are presented in a similar order, carries important analytical insights. This thesis presents a novel query-driven Locality Sensitive Hashing (LSH) method, in order to efficiently find similar top-k rankings for a given input ranking. Experiments show that the proposed method provides a far better performance than inverted-index--based approaches, in particular, it is able to outperform the popular prefix-filtering method. Additionally, an LSH-based probabilistic pruning approach is proposed that optimizes the space utilization of inverted indices, while still maintaining a user-provided recall requirement for the results of the similarity search. Further, this thesis addresses the problem of automatically identifying interesting categorical attributes, in order to explore the entity-centric data by organizing them into meaningful categories. Our approach proposes novel statistical measures, beyond known concepts, like information entropy, in order to capture the distribution of data to train a classifier that can predict which categorical attribute will be perceived suitable by humans for data categorization. We further discuss how the information of useful categories can be applied in PANTHEON and PALEO, two data exploration frameworks developed in our group.
Computational problems that involve dynamic data, such as physics simulations and program development environments, have been an important
subject of study in programming languages. Recent advances in self-adjusting
computation made progress towards achieving efficient incremental computation by providing algorithmic language abstractions to express computations that respond automatically to dynamic changes in their inputs. Selfadjusting programs have been shown to be efficient for a broad range of problems via an explicit programming style, where the programmer uses specific
primitives to identify, create and operate on data that can change over time.
This dissertation presents implicit self-adjusting computation, a type directed technique for translating purely functional programs into self-adjusting
programs. In this implicit approach, the programmer annotates the (toplevel) input types of the programs to be translated. Type inference finds
all other types, and a type-directed translation rewrites the source program
into an explicitly self-adjusting target program. The type system is related to
information-flow type systems and enjoys decidable type inference via constraint solving. We prove that the translation outputs well-typed self-adjusting
programs and preserves the source program’s input-output behavior, guaranteeing that translated programs respond correctly to all changes to their
data. Using a cost semantics, we also prove that the translation preserves the
asymptotic complexity of the source program.
As a second contribution, we present two techniques to facilitate the processing of large and dynamic data in self-adjusting computation. First, we
present a type system for precise dependency tracking that minimizes the
time and space for storing dependency metadata. The type system improves
the scalability of self-adjusting computation by eliminating an important assumption of prior work that can lead to recording spurious dependencies.
We present a type-directed translation algorithm that generates correct selfadjusting programs without relying on this assumption. Second, we show a
probabilistic-chunking technique to further decrease space usage by controlling the fundamental space-time tradeoff in self-adjusting computation.
We implement implicit self-adjusting computation as an extension to Standard ML with compiler and runtime support. Using the compiler, we are able
to incrementalize an interesting set of applications, including standard list
and matrix benchmarks, ray tracer, PageRank, sparse graph connectivity, and
social circle counts. Our experiments show that our compiler incrementalizes existing code with only trivial amounts of annotation, and the resulting
programs bring asymptotic improvements to large datasets from real-world
applications, leading to orders of magnitude speedups in practice.
Mobility has become an integral feature of many wireless networks. Along with this mobility comes the need for location awareness. A prime example for this development are today’s and future transportation systems. They increasingly rely on wireless communications to exchange location and velocity information for a multitude of functions and applications. At the same time, the technological progress facilitates the widespread availability of sophisticated radio technology such as software-defined radios. The result is a variety of new attack vectors threatening the integrity of location information in mobile networks.
Although such attacks can have severe consequences in safety-critical environments such as transportation, the combination of mobility and integrity of spatial information has not received much attention in security research in the past. In this thesis we aim to fill this gap by providing adequate methods to protect the integrity of location and velocity information in the presence of mobility. Based on physical effects of mobility on wireless communications, we develop new methods to securely verify locations, sequences of locations, and velocity information provided by untrusted nodes. The results of our analyses show that mobility can in fact be exploited to provide robust security at low cost.
To further investigate the applicability of our schemes to real-world transportation systems, we have built the OpenSky Network, a sensor network which collects air traffic control communication data for scientific applications. The network uses crowdsourcing and has already achieved coverage in most parts of the world with more than 1000 sensors.
Based on the data provided by the network and measurements with commercial off-the-shelf hardware, we demonstrate the technical feasibility and security of our schemes in the air traffic scenario. Moreover, the experience and data provided by the OpenSky Network allows us to investigate the challenges for our schemes in the real-world air traffic communication environment. We show that our verification methods match all
requirements to help secure the next generation air traffic system.
If gradient based derivative algorithms are used to improve industrial products by reducing their target functions, the derivatives need to be exact.
The last percent of possible improvement, like the efficiency of a turbine, can only be gained if the derivatives are consistent with the solution process that is used in the simulation software.
It is problematic that the development of the simulation software is an ongoing process which leads to the use of approximated derivatives.
If a derivative computation is implemented manually, it will be inconsistent after some time if it is not updated.
This thesis presents a generalized approach which differentiates the whole simulation software with Algorithmic Differentiation (AD), and guarantees a correct and consistent derivative computation after each change to the software.
For this purpose, the variable tagging technique is developed.
The technique checks at run-time if all dependencies, which are used by the derivative algorithms, are correct.
Since it is also necessary to check the correctness of the implementation, a theorem is developed which describes how AD derivatives can be compared.
This theorem is used to develop further methods that can detect and correct errors.
All methods are designed such that they can be applied in real world applications and are used within industrial configurations.
The process described above yields consistent and correct derivatives but the efficiency can still be improved.
This is done by deriving new derivative algorithms.
A fixed-point iterator approach, with a consistent derivation, yields all state of the art algorithms and produces two new algorithms.
These two new algorithms include all implementation details and therefore they produce consistent derivative results.
For detecting hot spots in the application, the state of the art techniques are presented and extended.
The data management is changed such that the performance of the software is affected only marginally when quantities, like the number of input and output variables or the memory consumption, are computed for the detection.
The hot spots can be treated with techniques like checkpointing or preaccumulation.
How these techniques change the time and memory consumption is analyzed and it is shown how they need to be used in selected AD tools.
As a last step, the used AD tools are analyzed in more detail.
The major implementation strategies for operator overloading AD tools are presented and implementation improvements for existing AD tools are discussed.\
The discussion focuses on a minimal memory consumption and makes it possible to compare AD tools on a theoretical level.
The new AD tool CoDiPack is based on these findings and its design and concepts are presented.
The improvements and findings in this thesis make it possible, that an automatic, consistent and correct derivative is generated in an efficient way for industrial applications.
Fast Internet content delivery relies on two layers of caches on the request path. Firstly, content delivery networks (CDNs) seek to answer user requests before they traverse slow Internet paths. Secondly, aggregation caches in data centers seek to answer user requests before they traverse slow backend systems. The key challenge in managing these caches is the high variability of object sizes, request patterns, and retrieval latencies. Unfortunately, most existing literature focuses on caching with low (or no) variability in object sizes and ignores the intricacies of data center subsystems.
This thesis seeks to fill this gap with three contributions. First, we design a new caching system, called AdaptSize, that is robust under high object size variability. Second, we derive a method (called Flow-Offline Optimum or FOO) to predict the optimal cache hit ratio under variable object sizes. Third, we design a new caching system, called RobinHood, that exploits variances in retrieval latencies to deliver faster responses to user requests in data centers.
The techniques proposed in this thesis significantly improve the performance of CDN and data center caches. On two production traces from one of the world's largest CDN AdaptSize achieves 30-91% higher hit ratios than widely-used production systems, and 33-46% higher hit ratios than state-of-the-art research systems. Further, AdaptSize reduces the latency by more than 30% at the median, 90-percentile and 99-percentile.
We evaluate the accuracy of our FOO analysis technique on eight different production traces spanning four major Internet companies.
We find that FOO's error is at most 0.3%. Further, FOO reveals that the gap between online policies and OPT is much larger than previously thought: 27% on average, and up to 43% on web application traces.
We evaluate RobinHood with production traces from a major Internet company on a 50-server cluster. We find that RobinHood improves the 99-percentile latency by more than 50% over existing caching systems.
As load imbalances grow, RobinHood's latency improvement can be more than 2x. Further, we show that RobinHood is robust against server failures and adapts to automatic scaling of backend systems.
The results of this thesis demonstrate the power of guiding the design of practical caching policies using mathematical performance models and analysis. These models are general enough to find application in other areas of caching design and future challenges in Internet content delivery.
Analyzing Centrality Indices in Complex Networks: an Approach Using Fuzzy Aggregation Operators
(2018)
The identification of entities that play an important role in a system is one of the fundamental analyses being performed in network studies. This topic is mainly related to centrality indices, which quantify node centrality with respect to several properties in the represented network. The nodes identified in such an analysis are called central nodes. Although centrality indices are very useful for these analyses, there exist several challenges regarding which one fits best
for a network. In addition, if the usage of only one index for determining central
nodes leads to under- or overestimation of the importance of nodes and is
insufficient for finding important nodes, then the question is how multiple indices
can be used in conjunction in such an evaluation. Thus, in this thesis an approach is proposed that includes multiple indices of nodes, each indicating
an aspect of importance, in the respective evaluation and where all the aspects of a node’s centrality are analyzed in an explorative manner. To achieve this
aim, the proposed idea uses fuzzy operators, including a parameter for generating different types of aggregations over multiple indices. In addition, several preprocessing methods for normalization of those values are proposed and discussed. We investigate whether the choice of different decisions regarding the
aggregation of the values changes the ranking of the nodes or not. It is revealed that (1) there are nodes that remain stable among the top-ranking nodes, which
makes them the most central nodes, and there are nodes that remain stable
among the bottom-ranking nodes, which makes them the least central nodes; and (2) there are nodes that show high sensitivity to the choice of normalization
methods and/or aggregations. We explain both cases and the reasons why the nodes’ rankings are stable or sensitive to the corresponding choices in various networks, such as social networks, communication networks, and air transportation networks.
Asynchronous concurrency is a wide-spread way of writing programs that
deal with many short tasks. It is the programming model behind
event-driven concurrency, as exemplified by GUI applications, where the
tasks correspond to event handlers, web applications based around
JavaScript, the implementation of web browsers, but also of server-side
software or operating systems.
This model is widely used because it provides the performance benefits of
concurrency together with easier programming than multi-threading. While
there is ample work on how to implement asynchronous programs, and
significant work on testing and model checking, little research has been
done on handling asynchronous programs that involve heap manipulation, nor
on how to automatically optimize code for asynchronous concurrency.
This thesis addresses the question of how we can reason about asynchronous
programs while considering the heap, and how to use this this to optimize
programs. The work is organized along the main questions: (i) How can we
reason about asynchronous programs, without ignoring the heap? (ii) How
can we use such reasoning techniques to optimize programs involving
asynchronous behavior? (iii) How can we transfer these reasoning and
optimization techniques to other settings?
The unifying idea behind all the results in the thesis is the use of an
appropriate model encompassing global state and a promise-based model of
asynchronous concurrency. For the first question, We start from refinement
type systems for sequential programs and extend them to perform precise
resource-based reasoning in terms of heap contents, known outstanding
tasks and promises. This extended type system is known as Asynchronous
Liquid Separation Types, or ALST for short. We implement ALST in for OCaml
programs using the Lwt library.
For the second question, we consider a family of possible program
optimizations, described by a set of rewriting rules, the DWFM rules. The
rewriting rules are type-driven: We only guarantee soundness for programs
that are well-typed under ALST. We give a soundness proof based on a
semantic interpretation of ALST that allows us to show behavior inclusion
of pairs of programs.
For the third question, we address an optimization problem from industrial
practice: Normally, JavaScript files that are referenced in an HTML file
are be loaded synchronously, i.e., when a script tag is encountered, the
browser must suspend parsing, then load and execute the script, and only
after will it continue parsing HTML. But in practice, there are numerous
JavaScript files for which asynchronous loading would be perfectly sound.
First, we sketch a hypothetical optimization using the DWFM rules and a
static analysis.
To actually implement the analysis, we modify the approach to use a
dynamic analysis. This analysis, known as JSDefer, enables us to analyze
real-world web pages, and provide experimental evidence for the efficiency
of this transformation.
Optical Character Recognition (OCR) system plays an important role in digitization of data acquired as images from a variety of sources. Although the area is very well explored for Latin languages, some of the languages based on Arabic cursive script are not yet explored. It is due to many factors: Most importantly are the unavailability of proper data sets and complexities posed by cursive scripts. The Pashto language is one of such languages which needs considerable exploration towards OCR. In order to develop such an OCR system, this thesis provides a pioneering study that explores deep learning for the Pashto language in the field of OCR.
The Pashto language is spoken by more than $50$ million people across the world, and it is an active medium both for oral as well as written communication. It is associated with rich literary heritage and contains huge written collection. These written materials present contents of simple to complex nature, and layouts from hand-scribed to printed text. The Pashto language presents mainly two types of complexities (i) generic w.r.t. cursive script, (ii) specific w.r.t. Pashto language. Generic complexities are cursiveness, context dependency, and breaker character anomalies, as well as space anomalies. Pashto specific complexities are variations in shape for a single character and shape similarity for some of the additional Pashto characters. Existing research in the area of Arabic OCR did not lead to an end-to-end solution for the mentioned complexities and therefore could not be generalized to build a sophisticated OCR system for Pashto.
The contribution of this thesis spans in three levels, conceptual level, data level, and practical level. In the conceptual level, we have deeply explored the Pashto language and identified those characters, which are responsible for the challenges mentioned above. In the data level, a comprehensive dataset is introduced containing real images of hand-scribed contents. The dataset is manually transcribed and has the most frequent layout patterns associated with the Pashto language. The practical level contribution provides a bridge, in the form of a complete Pashto OCR system, and connects the outcomes of the conceptual and data levels contributions. The practical contribution comprises of skew detection, text-line segmentation, feature extraction, classification, and post-processing. The OCR module is more strengthened by using deep learning paradigm to recognize Pashto cursive script by the framework of Recursive Neural Networks (RNN). Proposed Pashto text recognition is based on Long Short-Term Memory Network (LSTM) and realizes a character recognition rate of $90.78\%$ on Pashto real hand-scribed images. All these contributions are integrated into an application to provide a flexible and generic End-to-End Pashto OCR system.
The impact of this thesis is not only specific to the Pashto language, but it is also beneficial to other cursive languages like Arabic, Urdu, and Persian e.t.c. The main reason is the Pashto character set, which is a superset of Arabic, Persian, and Urdu languages. Therefore, the conceptual contribution of this thesis provides insight and proposes solutions to almost all generic complexities associated with Arabic, Persian, and Urdu languages. For example, an anomaly caused by breaker characters is deeply analyzed, which is shared among 70 languages, mainly use Arabic script. This thesis presents a solution to this issue and is equally beneficial to almost all Arabic like languages.
The scope of this thesis has two important aspects. First, a social impact, i.e., how a society may benefit from it. The main advantages are to bring the historical and almost vanished document to life and to ensure the opportunities to explore, analyze, translate, share, and understand the contents of Pashto language globally. Second, the advancement and exploration of the technical aspects. Because, this thesis empirically explores the recognition and challenges which are solely related to the Pashto language, both regarding character-set and the materials which present such complexities. Furthermore, the conceptual and practical background of this thesis regarding complexities of Pashto language is very beneficial regarding OCR for other cursive languages.
Nowadays, the increasing demand for ever more customizable products has emphasized the need for more flexible and fast-changing manufacturing systems. In this environment, simulation has become a strategic tool for the design, development, and implementation of such systems. Simulation represents a relatively low-cost and risk-free alternative for testing the impact and effectiveness of changes in different aspects of manufacturing systems.
Systems that deal with this kind of data for its use in decision making processes are known as Simulation-Based Decision Support Systems (SB-DSS). Although most SB-DSS provide a powerful variety of tools for the automatic and semi-automatic analysis of simulations, visual and interactive alternatives for the manual exploration of the results are still open to further development.
The work in this dissertation is focused on enhancing decision makers’ analysis capabilities by making simulation data more accessible through the incorporation of visualization and analysis techniques. To demonstrate how this goal can be achieved, two systems were developed. The first system, viPhos – standing for visualization of Phos: Greek for light –, is a system that supports lighting design in factory layout planning. viPhos combines simulation, analysis, and visualization tools and techniques to facilitate the global and local (overall factory or single workstations, respectively) interactive exploration and comparison of lighting design alternatives.
The second system, STRAD - standing for Spatio-Temporal Radar -, is a web-based systems that considers the spatio/attribute-temporal analysis of event data. Since decision making processes in manufacturing also involve the monitoring of the systems over time, STRAD enables the multilevel exploration of event data (e.g., simulated or historical registers of the status of machines or results of quality control processes).
A set of four case studies and one proof of concept prepared for both systems demonstrate the suitability of the visualization and analysis strategies adopted for supporting decision making processes in diverse application domains. The results of these case studies indicate that both, the systems as well as the techniques included in the systems can be generalized and extended to support the analysis of different tasks and scenarios.
Collaboration aims to increase the efficiency of problem solving and decision making by bringing diverse areas of expertise together, i.e., teams of experts from various disciplines, all necessary to come up with acceptable concepts. This dissertation is concerned with the design of highly efficient computer-supported collaborative work involving active participation of user groups with diverse expertise. Three main contributions can be highlighted: (1) the definition and design of a framework facilitating collaborative decision making; (2) the deployment and evaluation of more natural and intuitive interaction and visualization techniques in order to support multiple decision makers in virtual reality environments; and (3) the integration of novel techniques into a single proof-of-concept system.
Decision making processes are time-consuming, typically involving several iterations of different options before a generally acceptable solution is obtained. Although, collaboration is an often-applied method, the execution of collaborative sessions is often inefficient, does not involve all participants, and decisions are often finalized with- out the agreement of all participants. An increasing number of computer-supported cooperative work systems (CSCW) facilitate collaborative work by providing shared viewpoints and tools to solve joint tasks. However, most of these software systems are designed from a feature-oriented perspective, rather than a human-centered perspective and without the consideration of user groups with diverse experience and joint goals instead of joint tasks. The aim of this dissertation is to bring insights to the following research question: How can computer-supported cooperative work be designed to be more efficient? This question opens up more specific questions like: How can collaborative work be designed to be more efficient? How can all participants be involved in the collaboration process? And how can interaction interfaces that support collaborative work be designed to be more efficient? As such, this dissertation makes contributions in:
1. Definition and design of a framework facilitating decision making and collaborative work. Based on examinations of collaborative work and decision making processes requirements of a collaboration framework are assorted and formulated. Following, an approach to define and rate software/frameworks is introduced. This approach is used to translate the assorted requirements into a software’s architecture design. Next, an approach to evaluate alternatives based on Multi Criteria Decision Making (MCDM) and Multi Attribute Utility Theory (MAUT) is presented. Two case studies demonstrate the usability of this approach for (1) benchmarking between systems and evaluates the value of the desired collaboration framework, and (2) ranking a set of alternatives resulting from a decision-making process incorporating the points of view of multiple stake- holders.
2. Deployment and evaluation of natural and intuitive interaction and visualization techniques in order to support multiple diverse decision makers. A user taxonomy of industrial corporations serves to create a petri network of users in order to identify dependencies and information flows between each other. An explicit characterization and design of task models was developed to define interfaces and further components of the collaboration framework. In order to involve and support user groups with diverse experiences, smart de- vices and virtual reality are used within the presented collaboration framework. Natural and intuitive interaction techniques as well as advanced visualizations of user centered views of the collaboratively processed data are developed in order to support and increase the efficiency of decision making processes. The smartwatch as one of the latest technologies of smart devices, offers new possibilities of interaction techniques. A multi-modal interaction interface is provided, realized with smartwatch and smartphone in full immersive environments, including touch-input, in-air gestures, and speech.
3. Integration of novel techniques into a single proof-of-concept system. Finally, all findings and designed components are combined into the new collaboration framework called IN2CO, for distributed or co-located participants to efficiently collaborate using diverse mobile devices. In a prototypical implementation, all described components are integrated and evaluated. Examples where next-generation network-enabled collaborative environments, connected by visual and mobile interaction devices, can have significant impact are: design and simulation of automobiles and aircrafts; urban planning and simulation of urban infrastructure; or the design of complex and large buildings, including efficiency- and cost-optimized manufacturing buildings as task in factory planning. To demonstrate the functionality and usability of the framework, case studies referring to factory planning are demonstrated. Considering that factory planning is a process that involves the interaction of multiple aspects as well as the participation of experts from different domains (i.e., mechanical engineering, electrical engineering, computer engineering, ergonomics, material science, and even more), this application is suitable to demonstrate the utilization and usability of the collaboration framework. The various software modules and the integrated system resulting from the research will all be subjected to evaluations. Thus, collaborative decision making for co-located and distributed participants is enhanced by the use of natural and intuitive multi-modal interaction interfaces and techniques.
Due to the steadily growing flood of data, the appropriate use of visualizations for efficient data analysis is as important today as it has never been before. In many application domains, the data flood is based on processes that can be represented by node-link diagrams. Within such a diagram, nodes may represent intermediate results (or products), system states (or snapshots), milestones or real (and possibly georeferenced) objects, while links (edges) can embody transition conditions, transformation processes or real physical connections. Inspired by the engineering sciences application domain and the research project “SinOptiKom: Cross-sectoral optimization of transformation processes in municipal infrastructures in rural areas”, a platform for the analysis of transformation processes has been researched and developed based on a geographic information system (GIS). Caused by the increased amount of available and interesting data, a particular challenge is the simultaneous visualization of several visible attributes within one single diagram instead of using multiple ones. Therefore, two approaches have been developed, which utilize the available space between nodes in a diagram to display additional information.
Motivated by the necessity of appropriate result communication with various stakeholders, a concept for a universal, dashboard-based analysis platform has been developed. This web-based approach is conceptually capable of displaying data from various data sources and has been supplemented by collaboration possibilities such as sharing, annotating and presenting features.
In order to demonstrate the applicability and usability of newly developed applications, visualizations or user interfaces, extensive evaluations with human users are often inevitable. To reduce the complexity and the effort for conducting an evaluation, the browser-based evaluation framework (BREF) has been designed and implemented. Through its universal and flexible character, virtually any visualization or interaction running in the browser can be evaluated with BREF without any additional application (except for a modern web browser) on the target device. BREF has already proved itself in a wide range of application areas during the development and has since grown into a comprehensive evaluation tool.
Crowd condition monitoring concerns the crowd safety and concerns business performance metrics. The research problem to be solved is a crowd condition estimation approach to enable and support the supervision of mass events by first-responders and marketing experts, but is also targeted towards supporting social scientists, journalists, historians, public relations experts, community leaders, and political researchers. Real-time insights of the crowd condition is desired for quick reactions and historic crowd conditions measurements are desired for profound post-event crowd condition analysis.
This thesis aims to provide a systematic understanding of different approaches for crowd condition estimation by relying on 2.4 GHz signals and its variation in crowds of people, proposes and categorizes possible sensing approaches, applies supervised machine learning algorithms, and demonstrates experimental evaluation results. I categorize four sensing approaches. Firstly, stationary sensors which are sensing crowd centric signals sources. Secondly, stationary sensors which are sensing other stationary signals sources (either opportunistic or special purpose signal sources). Thirdly, a few volunteers within the crowd equipped with sensors which are sensing other surrounding crowd centric device signals (either individually, in a single group or collaboratively) within a small region. Fourthly, a small subset of participants within the crowd equipped with sensors and roaming throughout a whole city to sense wireless crowd centric signals.
I present and evaluate an approach with meshed stationary sensors which were sensing crowd centric devices. This was demonstrated and empirically evaluated within an industrial project during three of the world-wide largest automotive exhibitions. With over 30 meshed stationary sensors in an optimized setup across 6400m2 I achieved a mean absolute error of the crowd density of just 0.0115
people per square meter which equals to an average of below 6% mean relative error from the ground truth. I validate the contextual crowd condition anomaly detection method during the visit of chancellor Mrs. Merkel and during a large press conference during the exhibition. I present the approach of opportunistically sensing stationary based wireless signal variations and validate this during the Hannover CeBIT exhibition with 80 opportunistic sources with a crowd condition estimation relative error of below 12% relying only on surrounding signals in influenced by humans. Pursuing this approach I present an approach with dedicated signal sources and sensors to estimate the condition of shared office environments. I demonstrate methods being viable to even detect low density static crowds, such as people sitting at their desks, and evaluate this on an eight person office scenario. I present the approach of mobile crowd density estimation by a group of sensors detecting other crowd centric devices in the proximity with a classification accuracy of the crowd density of 66 % (improvement of over 22% over a individual sensor) during the crowded Oktoberfest event. I propose a collaborative mobile sensing approach which makes the system more robust against variations that may result from the background of the people rather than the crowd condition with differential features taking information about the link structure between actively scanning devices, the ratio between values observed by different devices, ratio of discovered crowd devices over time, team-wise diversity of discovered devices, number of semi- continuous device visibility periods, and device visibility durations into account. I validate the approach on multiple experiments including the Kaiserslautern European soccer championship public viewing event and evaluated the collaborative mobile sensing approach with a crowd condition estimation accuracy of 77 % while outperforming previous methods by 21%. I present the feasibility of deploying the wireless crowd condition sensing approach to a citywide scale during an event in Zurich with 971 actively sensing participants and outperformed the reference method by 24% in average.
Embedded reactive systems underpin various safety-critical applications wherein they interact with other systems and the environment with limited or even no human supervision. Therefore, design errors that violate essential system specifications can lead to severe unacceptable damages. For this reason, formal verification of such systems in their physical environment is of high interest. Synchronous programs are typically used to represent embedded reactive systems while hybrid systems serve to model discrete reactive system in a continuous environment. As such, both synchronous programs and hybrid systems play important roles in the model-based design of embedded reactive systems. This thesis develops induction-based techniques for safety property verification of synchronous and hybrid programs. The imperative synchronous language Quartz and its hybrid systems’ extensions are used to sustain the findings.
Deductive techniques for software verification typically use Hoare calculus. In this context, Verification Condition Generation (VCG) is used to apply Hoare calculus rules to a program whose statements are annotated with pre- and postconditions so that the validity of an obtained Verification Condition (VC) implies correctness of a given proof goal. Due to the abstraction of macro steps, Hoare calculus cannot directly generate VCs of synchronous programs unless it handles additional label variables or goto statements. As a first contribution, Floyd’s induction-based approach is employed to generate VCs for synchronous and hybrid programs. Five VCG methods are introduced that use inductive assertions to decompose the overall proof goal. Given the right assertions, the procedure can automatically generate a set of VCs that can then be checked by SMT solvers or automated theorem provers. The methods are proved sound and relatively complete, provided that the underlying assertion language is expressive enough. They can be applied to any program with a state-based semantics.
Property Directed Reachability (PDR) is an efficient method for synchronous hardware circuit verification based on induction rather than fixpoint computation. Crucial steps of the PDR method consist of deciding about the reachability of Counterexamples to Induction (CTIs) and generalizing them to clauses that cover as many unreachable states as possible. The thesis demonstrates that PDR becomes more efficient for imperative synchronous programs when using the distinction between the control- and dataflow. Before calling the PDR method, it is possible to derive additional program control-flow information that can be added to the transition relation such that less CTIs will be generated. Two methods to compute additional control-flow information are presented that differ in how precisely they approximate the reachable control-flow states and, consequently, in their required runtime. After calling the PDR method, the CTI identification work is reduced to its control-flow part and to checking whether the obtained control-flow states are unreachable in the corresponding extended finite state machine of the program. If so, all states of the transition system that refer to the same program locations can be excluded, which significantly increases the performance of PDR.
Computational simulations run on large supercomputers balance their outputs with the need of the scientist and the capability of the machine. Persistent storage is typically expensive and slow, its peformance grows at a slower rate than the processing power of the machine. This forces scientists to be practical about the size and frequency of the simulation outputs that can be later analyzed to understand the simulation states. Flexibility in the trade-offs of flexibilty and accessibility of the outputs of the simulations are critical the success of scientists using the supercomputers to understand their science. In situ transformations of the simulation state to be persistently stored is the focus of this dissertation.
The extreme size and parallelism of simulations can cause challenges for visualization and data analysis. This is coupled with the need to accept pre partitioned data into the analysis algorithms, which is not always well oriented toward existing software infrastructures. The work in this dissertation is focused on improving current work flows and software to accept data as it is, and efficiently produce smaller, more information rich data, for persistent storage that is easily consumed by end-user scientists. I attack this problem from both a theoretical and practical basis, by managing completely raw data to quantities of information dense visualizations and study methods for managing both the creation and persistence of data products from large scale simulations.
The proliferation of sensors in everyday devices – especially in smartphones – has led to crowd sensing becoming an important technique in many urban applications ranging from noise pollution mapping or road condition monitoring to tracking the spreading of diseases. However, in order to establish integrated crowd sensing environments on a large scale, some open issues need to be tackled first. On a high level, this thesis concentrates on dealing with two of those key issues: (1) efficiently collecting and processing large amounts of sensor data from smartphones in a scalable manner and (2) extracting abstract data models from those collected data sets thereby enabling the development of complex smart city services based on the extracted knowledge.
Going more into detail, the first main contribution of this thesis is the development of methods and architectures to facilitate simple and efficient deployments, scalability and adaptability of crowd sensing applications in a broad range of scenarios while at the same time enabling the integration of incentivation mechanisms for the participating general public. During an evaluation within a complex, large-scale environment it is shown that real-world deployments of the proposed data recording architecture are in fact feasible. The second major contribution of this thesis is the development of a novel methodology for using the recorded data to extract abstract data models which are representing the inherent core characteristics of the source data correctly. Finally – and in order to bring together the results of the thesis – it is demonstrated how the proposed architecture and the modeling method can be used to implement a complex smart city service by employing a data driven development approach.
We study high dimensional integration in the quantum model of computation. We develop quantum algorithms for integration of functions from Sobolev classes \(W^r_p [0,1]^d\) and analyze their convergence rates. We also prove lower bounds which show that the proposed algorithms are, in many cases, optimal within the setting of quantum computing. This extends recent results of Novak on integration of functions from Hölder classes.
In this paper, the complexity of full solution of Fredholm integral equations of the second kind with data from the Sobolev class \(W^r_2\) is studied. The exact order of information complexity is derived. The lower bound is proved using a Gelfand number technique. The upper bound is shown by providing a concrete algorithm of optimal order, based on a specific hyperbolic cross approximation of the kernel function. Numerical experiments are included, comparing the optimal algorithm with the standard Galerkin method.
We survey old and new results about optimal algorithms for summation of finite sequences and for integration of functions from Hölder or Sobolev spaces. First we discuss optimal deterministic and randornized algorithms. Then we add a new aspect, which has not been covered before on conferences
about (quasi-) Monte Carlo methods: quantum computation. We give a short introduction into this setting and present recent results of the authors on optimal quantum algorithms for summation and integration. We discuss comparisons between the three settings. The most interesting case for Monte
Carlo and quantum integration is that of moderate smoothness \(k\) and large dimension \(d\) which, in fact, occurs in a number of important applied problems. In that case the deterministic exponent is negligible, so the \(n^{-1/2}\) Monte Carlo and the \(n^{-1}\) quantum speedup essentially constitute the entire convergence rate.
Free Form Volumes
(1994)
Die dreidimensionale Darstellung hybrider Datensätze hat sich in den letzten Jahren als
ein wichtiger Teilbereich der wissenschaftlichen Visualisierung etabliert. Hybride Datensätze enthalten sowohl diskrete Volumendaten als auch durch geometrische Primitive
definierte Objekte. Bei der visuellen Verarbeitung einer gegebenen Szene spielen Schatteninformationen eine wichtige Rolle, indem sie die Beziehungen von Objekten untereinander verständlich machen. Wir beschreiben ein einfaches Verfahren zur Berechnung von Schatteninformation, das in ein bestehendes System zur Visualisierung hybrider Datensätze integriert wurde. An einem Beispiel aus der klinischen Anwendung werden die Ergebnisse illustriert.
Software development organizations measure their real-world processes, products, and resources to achieve the goal of improving their practices. Accurate and useful measurement relies on explicit models of the real-world processes, products, and resources. These explicit models assist with planning measurement, interpreting data, and assisting developers with their work. However, little work has been done on the joint use of measurem(int and process technologies. We hypothesize that it is possible to integrate measurement and process technologies in a way that supports automation of measurement-based feedback. Automated support for measurementbased feedback means that software developers and maintainers are provided with on-line, detailed information about their work. This type of automated support is expected to help software professionals gain intellectual control over their software projects. The dissertation offers three major contributions. First, an integrated measurement and
process modeling framework was constructed. This framework establishes the necessary foundation for integrating measurement and process technologies in a way that will permit automation. Second, a process-centered software engineering environment was developed to support measurement-based feedback. This system provides personnel with information about the tasks expected of them based on an integrated set of measurement and process views. Third, a set of assumptions and requirements about that system were examined in a controlled experiment. The experiment compared the use of different levels of automation to evaluate the acceptance and effectiveness of measurement-based feedback.
Wireless LANs operating within unlicensed frequency bands require random access schemes such as CSMA/ CA, so that wireless networks from different administrative domains (for example wireless community networks) may co-exist without central coordination, even when they happen to operate on the same radio channel. Yet, it is evident that this Jack of coordination leads to an inevitable loss in efficiency due to contention on the MAC layer. The interesting question is, which efficiency may be gained by adding coordination to existing, unrelated wireless networks, for example by self-organization. In this paper, we present a methodology based on a mathematical programming formulation to determine the
parameters (assignment of stations to access points, signal strengths and channel assignment of both access points and stations) for a scenario of co-existing CSMA/ CA-based wireless networks, such that the contention between these networks is minimized. We demonstrate how it is possible to solve this discrete, non-linear optimization problem exactly for small
problems. For larger scenarios, we present a genetic algorithm specifically tuned for finding near-optimal solutions, and compare its results to theoretical lower bounds. Overall, we provide a benchmark on the minimum contention problem for coordination mechanisms in CSMA/CA-based wireless networks.