### Refine

#### Year of publication

#### Document Type

- Article (240) (remove)

#### Keywords

- AG-RESY (42)
- PARO (30)
- SKALP (15)
- Stadtplanung (9)
- Denkmäler (8)
- HANDFLEX (8)
- Monitoring (8)
- Raumplanung (8)
- resonances (8)
- Wannier-Stark systems (7)

#### Faculty / Organisational entity

- Fachbereich Informatik (109)
- Fachbereich Physik (46)
- Fachbereich Mathematik (31)
- Fachbereich Raum- und Umweltplanung (22)
- Fachbereich Elektrotechnik und Informationstechnik (9)
- Fachbereich Wirtschaftswissenschaften (9)
- Fachbereich Sozialwissenschaften (7)
- Fachbereich Biologie (6)
- Fachbereich Maschinenbau und Verfahrenstechnik (1)

In this article we formally describe a declarative approach for encoding plan operatorsin proof planning, the so-called methods. The notion of method evolves from the much studiedconcept tactic and was first used by Bundy. While significant deductive power has been achievedwith the planning approach towards automated deduction, the procedural character of the tacticpart of methods, however, hinders mechanical modification. Although the strength of a proofplanning system largely depends on powerful general procedures which solve a large class ofproblems, mechanical or even automated modification of methods is nevertheless necessary forat least two reasons. Firstly methods designed for a specific type of problem will never begeneral enough. For instance, it is very difficult to encode a general method which solves allproblems a human mathematician might intuitively consider as a case of homomorphy. Secondlythe cognitive ability of adapting existing methods to suit novel situations is a fundamentalpart of human mathematical competence. We believe it is extremely valuable to accountcomputationally for this kind of reasoning.The main part of this article is devoted to a declarative language for encoding methods,composed of a tactic and a specification. The major feature of our approach is that the tacticpart of a method is split into a declarative and a procedural part in order to enable a tractableadaption of methods. The applicability of a method in a planning situation is formulatedin the specification, essentially consisting of an object level formula schema and a meta-levelformula of a declarative constraint language. After setting up our general framework, wemainly concentrate on this constraint language. Furthermore we illustrate how our methodscan be used in a Strips-like planning framework. Finally we briefly illustrate the mechanicalmodification of declaratively encoded methods by so-called meta-methods.

The hallmark of traditional Artificial Intelligence (AI) research is the symbolic representation and processing of knowledge. This is in sharp contrast to many forms of human reasoning, which to an extraordinary extent, rely on cases and (typical) examples. Although these examples could themselves be encoded into logic, this raises the problem of restricting the corresponding model classes to include only the intended models.There are, however, more compelling reasons to argue for a hybrid representa-tion based on assertions as well as examples. The problems of adequacy, availability of information, compactness of representation, processing complexity, and last but not least, results from the psychology of human reasoning, all point to the same conclusion: Common sense reasoning requires different knowledge sources and hybrid reasoning principles that combine symbolic as well as semantic-based inference. In this paper we address the problem of integrating semantic representations of examples into automateddeduction systems. The main contribution is a formal framework for combining sentential with direct representations. The framework consists of a hybrid knowledge base, made up of logical formulae on the one hand and direct representations of examples on the other, and of a hybrid reasoning method based on the resolution calculus. The resulting hybrid resolution calculus is shown to be sound and complete.

Unification in an Extensional Lambda Calculus with Ordered Function Sorts and Constant Overloading
(1999)

We develop an order-sorted higher-order calculus suitable forautomatic theorem proving applications by extending the extensional simplytyped lambda calculus with a higher-order ordered sort concept and constantoverloading. Huet's well-known techniques for unifying simply typed lambdaterms are generalized to arrive at a complete transformation-based unificationalgorithm for this sorted calculus. Consideration of an order-sorted logicwith functional base sorts and arbitrary term declarations was originallyproposed by the second author in a 1991 paper; we give here a correctedcalculus which supports constant rather than arbitrary term declarations, aswell as a corrected unification algorithm, and prove in this setting resultscorresponding to those claimed there.

An important research problem is the incorporation of "declarative" knowledge into an automated theorem prover that can be utilized in the search for a proof. An interesting pro-posal in this direction is Alan Bundy's approach of using explicit proof plans that encapsulatethe general form of a proof and is instantiated into a particular proof for the case at hand. Wegive some examples that show how a "declarative" highlevel description of a proof can be usedto find proofs of apparently "similiar" theorems by analogy. This "analogical" information isused to select the appropriate axioms from the database so that the theorem can be proved.This information is also used to adjust some options of a resolution theorem prover. In orderto get a powerful tool it is necessary to develop an epistemologically appropriate language todescribe proofs, for which a large set of examples should be used as a testbed. We presentsome ideas in this direction.

Die Realisierung zunehmend komplexer Softwareprojekte erfordert das direkte und indirekteZusammenwirken einer immer größer werdenden Zahl von Personen. Die dafür benötigte Infrastrukturist mit der zunehmenden globalen Rechner-Vernetzung bereits vorhanden, doch wird ihr Potential vonherkömmlichen Werkzeugen in der Regel bei weitem nicht ausgeschöpft. Das in diesem Artikelvorgestellte Rahmenmodell für Softwareentwicklung wurde explizit im Hinblick auf die globaleKooperation von Entwicklern entworfen. WebMake, eine auf diesem Modell basierende Software-entwicklungsumgebung, adressiert das Ziel seiner Einsetzbarkeit im globalen Maßstab durch dieVerwendung des World-Wide Web als Datenspeicherungs- und Kommunikationsinfrastruktur.

We describe a platform for the portable and secure execution of mobile agents writtenin various interpreted languages on top of a common run-time core. Agents may migrate at anypoint in their execution, fully preserving their state, and may exchange messages with otheragents. One system may contain many virtual places, each establishing a domain of logicallyrelated services under a common security policy governing all agents at this place. Agents areequipped with allowances limiting their resource accesses, both globally per agent lifetime andlocally per place. We discuss aspects of this architecture and report about ongoing work.

Beim Greifen deformierbarer oder zerbrechlicher Werkstücke kommen der Greifgeschwindigkeit sowie der Greifkraft besondere Bedeutung zu. In dieser Arbeit wird eine universelle Steuerung für pneumatische Greifer beschrieben, die eine einfache Einstellung dieser Größen über zwei spannungsgesteuerte Proportionalventile gestattet. Diese Anordnung wird für eine Einflußanalyse von Greifkraft und Greifgeschwindigkeit beim Greifen von Kabeln und Kabelbäumen genutzt, welche sich als robust und unproblematisch erwiesen haben.

This paper deals with the robust manipulation of deformable linear objects such as hoses or wires. We propose manipulation based on thequalitative contact state between the deformable workpiece and a rigid environment. First, we give an enumeration of possible contact states and discuss the main characteristics of each state. Second, we investigate the transitions which are possible between the contact states and derive criteria and conditions for each of them. Finally, we apply the concept of contact states and state transitions to the description of a typical assembly task.

This paper deals with the problem of picking-up deformable linear workpieces such as cables or ropes with an industrial robot. First, we give a motivation and problem definition. Based on a brief conceptual discussion of possible approaches we derive an algorithm for picking-up hanging deformable linear objects using two light barriers as sensor system. For this hardware, a skill-based approach is described and the parameters and major influence factors are discussed. In an experi- mental study, the feasibility and reliability under diverse conditions are investigated. The algorithm is found to be very reliable, if certain boundary conditions are met.

In this paper, we investigate the efficient simulation of deformable linear objects. Based on the state of the art, we extend the principle of minimizing the potential energy by considering plastic deformation and describe a novel approach for treating workpiece dynamics. The major influence factors on precision and computation time are identified and investigated experimentally. Finally, we discuss the usage of parallel processing in order to reduce the computation time.

Enhancing the quality of surgical interventions is one of the main goals of surgical robotics. Thus we have devised a surgical robotic system for maxillofacial surgery which can be used as an intelligent intraoperative surgical tool. Up to now a surgeon preoperatively plans an intervention by studying twodimensional X-rays, thus neglecting the third dimension. In course of the special research programme "Computer and Sensor Aided Surgery" a planning system has been developed at our institute, which allows the surgeon to plan an operation on a threedimensional computer model of the patient . Transposing the preoperatively planned bone cuts, bore holes, cavities, and milled surfaces during surgery still proves to be a problem, as no adequate means are at hand: the actual performance of the surgical intervention and the surgical outcome solely depend on the experience and the skill of the operating surgeon. In this paper we present our approach of a surgical robotic system to be used in maxillofacial surgery. Special stress is being laid upon the modelling of the environment in the operating theatre and the motion planning of our surgical robot .

This paper presents fill algorithms for boundary-defined regions in raster graphics. The algorithms require only a constant size working memory. The methods presented are based on the so-called "seed fill" algorithms using the internal connectivity of the region with a given inner point. Basic methods as well as additional heuristics for speeding up the algorithm are described and verified. For different classes of regions, the time complexity of the algorithms is compared using empirical results.

Four different initialization methods for parallel Branch-and-bound algorithms are described and compared with reference to several criteria. A formal analysis of their idle times and efficiency follows. It indicates that the efficiency of three methods depends on the branching factor of the search tree. Furthermore, the fourth method offers the best efficiency of the overall algorithm when a centralized OPEN set is used. Experimental results by a PRAM simulation support these statements.

One of the many features needed to support the activities of autonomous systems is the ability of motion planning. It enables robots to move in their environment securely and to accomplish given tasks. Unfortunately, the control loop comprising sensing, planning, and acting has not yet been closed for robots in dynamic environments. One reason involves the long execution times of the motion planning component. A solution for this problem is offered by the use of highly computational parallelism. Thus, an important task is the parallelization of existing motion planning algorithms for robots so that they are suitable for highly computational parallelism. In several cases, completely new algorithms have to be designed, so that a parallelization is feasible. In this survey, we review recent approaches to motion planning using parallel computation.

For the online collision detection with a multi-arm robot a fast method for computing the so-called collision vector is presented. Manipulators and obstacles are modelled by sets of convex polytopes. Known distance algorithms serve as a foundation. To speed up the collision detection dynamic obstacles are approximated by geometric primitives and organized in hierarchies. On-line, the here introduced Dynamic Hierarchies are adjusted to the current arm configuration. A comparison with previous methods shows an increased acceleration of the computations.

A new problem for the automated off-line programming of industrial robot application is investigated. The Multi-Goal Path Planning is to find the collision-free path connecting a set of goal poses and minimizing e.g. the total path length. Our solution is based on an earlier reported path planner for industrial robot arms with 6 degrees-of-freedom in an on-line given 3D environment. To control the path planner, four different goal selection methods are introduced and compared. While the Random and the Nearest Pair Selection methods can be used with any path planner, the Nearest Goal and the Adaptive Pair Selection method are favorable for our planner. With the latter two goal selection methods, the Multi-Goal Path Planning task can be significantly accelerated, because they are able to automatically solve the simplest path planning problems first. Summarizing, compared to Random or Nearest Pair Selection, this new Multi-Goal Path Planning approach results in a further cost reduction of the programming phase.

One of the many features needed to support the activities of autonomous systems is the ability of motion planning. It enables robots to move in their environment securely and to accomplish given tasks. Unfortunately, the control loop comprising sensing, planning, and acting has not yet been closed for robots in dynamic environments. One reason involves the long execution times of the motion planning component. A solution for this problem is offered by the use of highly computational parallelism. Thus, an important task is the parallelization of existing motion planning algorithms for robots so that they are suitable for highly computational parallelism. In several cases, completely new algorithms have to be designed, so that a parallelization is feasible. In this survey, we review recent approaches to motion planning using parallel computation. As a classification scheme, we use the structure given by the different approaches to the robot's motion planning. For each approach, the available parallel processing methods are discussed. Each approach is uniquely assigned a class. Finally, for each referenced research work, a list of keywords is given.

For transferring existing knowledge into new projects, reuse has become an important factor in today's software industry. However, to set reuse into practice, reusable artifacts have to be stored somewhere, and must be offered to (re-)users on demand. For this purpose, advanced reuse repository systems like, for instance, instantiations of the Experience Base concept, are quite frequently used. Many people, from different projects, have to access such a repository at various phases of software development processes to retrieve or store reusable data. In order to fulfill the given tasks, each of these user has specific needs. Taking this into account, a reuse repository has to offer tailored user interfaces and functions for different user groups. Furthermore, since the contents of such a repository usually represent the state of the art of an organization's (core) competencies, not everyone should be allowed to freely access each and every repository entry. This isespecially true for persons that are not part of the organization. This report discusses role concepts that can be applied to reuse repository systems to overcome some of the stated access problems. Commonly used roles for software development and reuse repository management are listed. Based on these roles, a basic set of roles, as implemented in the SFB 501 Experience Base, is introduced.

We have presented a novel approach to parallel motion planning for robot manipulators in 3D workspaces. The approach is based on arandomized parallel search algorithm and focuses on solving the path planning problem for industrial robot arms working in a reasonably cluttered workspace. The path planning system works in the discretized con guration space, which needs not to be represented explicitly. The parallel search is conducted by a number of rule-based sequential search processes, which work to find a path connecting the initial con guration to the goal via a number of randomly generated subgoal con gurations. Since the planning performs only on-line collision tests with proper proximity information without using pre-computed information, the approach is suitable for planning problems with multirobot or dynamic environments. The implementation has been carried outontheparallel virtual machine (PVM) of a cluster of SUN4 workstations and SGI machines. The experimental results have shown that the approach works well for a 6-dof robot arm in a reasonably cluttered environment, and that parallel computation increases the e ciency of motion planning signi cantly.

The paper studies the effect of a weak periodic driving on metastable Wannier-Stark states. The decay rate of the ground Wannier-Stark states as a continuous function of the driving frequency is calculated numerically. The theoretical results are compared with experimental data of Wilkinson et at. [Phys.Rev.Lett.76, 4512 (1996)] obtained for cold sodium atoms in an accelerated optical lattice.

The statistics of the resonance widths and the behavior of the survival probability is studied in a particular model of quantum chaotic scattering (a particle in a periodic potential subject to static and time-periodic forces) introduced earlier in Ref. [5,6]. The coarse-grained distribution of the resonance widths is shown to be in good agreement with the prediction of Random Matrix Theory (RMT). The behavior of the survival probability shows, however, some deviation from RMT.

We study the transitions between the ground and excited Wannier states induced by a weak ac field. Because the upper Wannier states are several order of magnitude less stable than the ground states, these transitions decrease the global stability of the system characterized by the rate of probability leakage or decay rate. Using nonhermitian resonant perturbation theory we obtain an analytical expression for this induced decay rate. The analytical results are compared with exact numerical calculations of the system decay rate.

The quasienergy spectrum of a Bloch electron affected by dc-ac fields is known to have a fractal structure as function of the so-called electric matching ratio, which is the ratio of the ac field frequency and the Bloch frequency. This paper studies a manifestation of the fractal nature of the spectrum in the system "atom in a standing laser wave", which is a quantum optical realization of a Bloch electron. It is shown that for an appropriate choice of the system parameters the atomic survival probability (a quantity measured in laboratory experiments) also develops a fractal structure as a function of the electric matching ratio. Numerical simulations under classically chaotic scattering conditions show good agreement with theoretical predictions based on random matrix theory.

Ein Teilaspekt der formalen Logik besteht in der Untersuchung wie die logischen Konsequenzen (insbesondere die Tautologien) einer vorgegebenen Formelmenge unter Verwendung gewisser Reglements schrittweise hergeleitet werden können. Hierbei ist die Logik bestimmt durch eine konsequente Trennung von Syntax und Semantik. Diese Abhandlung stellt exemplarisch das Tableau-Kalkül und das Kalkül des natürlichen Schließens vor.

Several activities around the world aim at integrating object-oriented data models with relational ones in order to improve database management systems. As a first result of these activities, object-relational database management systems (ORDBMS) are already commercially available and, simultaneously, are subject to several research projects. This (position) paper reports on our activities in exploiting object-relational database technology for establishing repository manager functionality supporting software engineering (SE) processes. We argue that some of the key features of ORDBMS can directly be exploited to fulfill many of the needs of SE processes. Thus, ORDBMS, as we think, are much better suited to support SE applications than any others. Nevertheless, additional functionality, e. g., providing adequate version management, is required in order to gain a completely satisfying SE repository. In order to remain flexible, we have developed a generative approach for providing this additional functionality. It remains to be seen whether this approach, in turn, can effectively exploit ORDBMS features. This paper, therefore, wants to show that ORDBMS can substantially contribute to both establishing and running SE repositories.

Liegruppen
(1997)

Static and dynamic properties of patterned magnetic permalloy films are investigated. In square lattices of circular shaped permalloy dots an anisotropic coupling mechanism has been found, which is identified as being due to intrinsically unsaturated parts of the dots caused by spatial variations of demagnetizing field. In arrays of magnetic wires a quantization of the surface spin wave mode in several dispersionless modes is observed and quantitatively described. For large wavevectors the frequency separation between the modes becomes smaller and the frequencies converge to the dispersion of the dipole-exchange surface mode of a continuous film.

A method for efficiently handling associativity and commutativity (AC) in implementations of (equational) theorem provers without incorporating AC as an underlying theory will be presented. The key of substantial efficiency gains resides in a more suitable representation of permutation-equations (such as f(x,f(y,z))=f(y,f(z,x)) for instance). By representing these permutation-equations through permutations in the mathematical sense (i.e. bijective func- tions :{1,..,n} {1,..,n}), and by applying adapted and specialized inference rules, we can cope more appropriately with the fact that permutation-equations are playing a particular role. Moreover, a number of restrictions concerning application and generation of permuta- tion-equations can be found that would not be possible in this extent when treating permu- tation-equations just like any other equation. Thus, further improvements in efficiency can be achieved.

Epitaxial growth of metastable Pd(001) at high deposition temperatures up to a critical thickness of 6 monolayers on bcc-Fe(001) is reported, the critical thickness being depending dramatically on the deposition temperature. For larger thicknesses the Pd film undergoes a roughening transition with strain relaxation by forming a top polycrystalline layer. These results allow to make a correlation between previ-ously reported unusual magnetic properties of Fe/Pd double layers and the crystallographic structure of the Pd overlayer.

We investigate the temperature dependence of the magnetization reversal process and of spinwaves in epi-taxially grown (001)-oriented [Fem/Aun]30 multilayers (m = 1, 2; n = 1- 6). Both polar magneto-optic Kerrr effect and Brillouin light scattering measurements reveal that all investigated multilayers, apart from the [Fe2/Au1]30-sample, are magnetized perpendicular to the film plane. The out-of-plane anisotropy constants are obtained. At high temperature, the magnetization curves are well described by an alternating stripe domain structure with free mobile domain walls, and at low temperature by a thermal activation model for the domain wall motion.

The quasienergy spectrum of a periodically driven quantum system is constructed from classical dynamics by means of the semiclassical initial value representation using coherent states. For the first time, this method is applied to explicitly time dependent systems. For an anharmonic oscillator system with mixed chaotic and regular classical dynamics, the entire quantum spectrum (both regular and chaotic states) is reproduced semiclassically with surprising accuracy. In particular, the method is capable to account for the very small tunneling splittings.

The dispersions of dipolar (Damon-Eshbach modes) and exchange dominated spin waves are calculated for in-plane magnetized thin and ultrathin cubic films with (111) crystal orientation and the results are compared with those obtained for the other principal planes. The properties of these magnetic excitations are examined from the point of view of Brillouin light scattering experiments. Attention is paid to study the spin-wave frequency variation as a function of the magnetization direction in the film plane for different film thicknesses. Interface anisotropies and the bulk magnetocrystalline anisotropy are considered in the calculation. A quantitative comparison between an analytical expression obtained in the limit of small film thickness and wave vector and the full numerical calculation is given.

Brillouin light scattering investigations of exchange biased (110)-oriented NiFe/FeMn bilayers
(1997)

All contributing magnetic anisotropies in (110)-oriented exchange biased Ni 80 Fe 20 /Fe 50 Mn 50 double layers prepared by molecular beam epitaxy on Cu(110) single crystals have been determined by means of Brillouin light scattering. Upon covering the Ni 80 Fe 20 films by Fe 50 Mn 50 , a unidirectional anisotropy contribution appears, which is consistent with the measured exchange bias field. The uniaxial and fourfold in-plane anisotropy contributions are largely modified by an amount, which scales with the Ni 80 Fe 20 thickness, indicating an interface effect. The strong uniaxial anisotropy contribution shows an in-plane switching of the easy axis from [110] to [001] with increasing Ni 80 Fe 20 -layer thickness. The large mode width of the spin wave excitations, which exceeds the linewidth of uncovered Ni 80 Fe 20 films by a factor of more than six, indicates large spatial variations of the exchange coupling constant. (C) 1998 American Institute of Physics.

The first observation of self-focusing of dipolar spin waves in garnet film media is reported. In particular, we show that the quasi-stationary diffraction of a finite-aperture spin wave beam in a focusing medium leads to the concentration of the wave power in one focal point rather than along a certain line (channel). The obtained results demonstrate the wide applicability of non-linear spin wave media to study non-linear wave phenomena using an advanced combined microwave-Brillouin light scattering technique for a two-dimensional mapping of the spin wave amplitudes.

Static magnetic and spin wave properties of square lattices of permalloy micron dots with thicknesses of 500 Å and 1000 Å and with varying dot separations have been investigated. A magnetic fourfold anisotropy was found for the lattice with dot diameters of 1 micrometer and a dot separation of 0.1 micrometer. The anisotropy is attributed to an anisotropic dipole-dipole interaction between magnetically unsaturated parts of the dots. The anisotropy strength (order of 100000 erg/cm^3 ) decreases with increasing in-plane applied magnetic field.

Static magnetic and spin wave properties of square lattices of permalloy micron dots with thicknesses of 500 Å and 1000 Å and with varying dot separations have been investigated. The spin wave frequencies can be well described taking into account the demagnetization factor of each single dot. A magnetic four-fold anisotropy was found for the lattice with dot diameters of 1 micrometer and a dot separation of 0.1 micrometer. The anisotropy is attributed to an anisotropic dipole-dipole interaction between magnetically unsaturated parts of the dots. The anisotropy strength (order of 100000 erg/cm^3 ) decreases with increasing in-plane applied magnetic field.

We report on Brillouin light scattering investigations of the elastic properties in Co/Ni superlattices which exhibit localized electronic eigenstates near the Fermi level causing an oscillation of the resistivity as a function of the superlattice periodicity A. No oscillations of the Rayleigh and Sezawa mode as a function of A could be observed within an error margin of +- 2% indicating that the localized electronic states do not contribute to the elastic constants.