### Refine

#### Year of publication

- 1998 (147) (remove)

#### Document Type

- Preprint (109)
- Article (21)
- Doctoral Thesis (7)
- Lecture (3)
- Report (3)
- Diploma Thesis (1)
- Master's Thesis (1)
- Periodical Part (1)
- Working Paper (1)

#### Keywords

- AG-RESY (13)
- PARO (12)
- SKALP (9)
- Case Based Reasoning (4)
- industrial robots (4)
- motion planning (3)
- parallel processing (3)
- CIM-OSA (2)
- HANDFLEX (2)
- Kalman filtering (2)

#### Faculty / Organisational entity

- Fachbereich Informatik (38)
- Fachbereich Mathematik (35)
- Fachbereich Physik (35)
- Fraunhofer (ITWM) (12)
- Fachbereich Wirtschaftswissenschaften (9)
- Fachbereich Elektrotechnik und Informationstechnik (6)
- Fachbereich Maschinenbau und Verfahrenstechnik (6)
- Fachbereich Biologie (3)
- Fachbereich Chemie (2)
- Universitätsbibliothek (1)

Abstract: Random Matrix Theory (RMT) is a powerful statistical tool to model spectral fluctuations. This approach has also found fruitful application in Quantum Chromodynamics (QCD). Importantly, RMT provides very efficient means to separate different scales in the spectral fluctuations. We try to identify the equivalent of a Thouless energy in complete spectra of the QCD Dirac operator for staggered fermions from SU(2) lattice gauge theory for different lattice size and gauge couplings. We focus on the bulk of the spectrum. In disordered systems, the Thouless energy sets the universal scale for which RMT applies. This relates to recent theoretical studies which suggest a strong analogy between QCD and disordered systems. The wealth of data allows us to analyze several statistical measures in the bulk of the spectrum with high quality. We find deviations which allows us to give an estimate for this universal scale. Other deviations than these are seen whose possible origin is discussed. Moreover, we work out higher order correlators as well, in particular three-point correlation functions.

The dispersions of dipolar (Damon-Eshbach modes) and exchange dominated spin waves are calculated for in-plane magnetized thin and ultrathin cubic films with (111) crystal orientation and the results are compared with those obtained for the other principal planes. The properties of these magnetic excitations are examined from the point of view of Brillouin light scattering experiments. Attention is paid to study the spin-wave frequency variation as a function of the magnetization direction in the film plane for different film thicknesses. Interface anisotropies and the bulk magnetocrystalline anisotropy are considered in the calculation. A quantitative comparison between an analytical expression obtained in the limit of small film thickness and wave vector and the full numerical calculation is given.

We prove that there exists a positive \(\alpha\) such thatfor any integer \(\mbox{$d\ge 3$}\) and any topological types \(\mbox{$S_1,\dots,S_n$}\) of plane curve singularities, satisfying \(\mbox{$\mu(S_1)+\dots+\mu(S_n)\le\alpha d^2$}\), there exists a reduced irreducible plane curve of degree \(d\) with exactly \(n\) singular points of types \(\mbox{$S_1,\dots,S_n$}\), respectively. This estimate is optimal with respect to theexponent of \(d\). In particular, we prove that for any topological type \(S\) there exists an irreducible polynomial of degree \(\mbox{$d\le 14\sqrt{\mu(S)}$}\) having a singular point of type \(S\).

The paper discusses the metastable states of a quantum particle in a periodic potential under a constant force (the model of a crystal electron in a homogeneous electric ,eld), which are known as the Wannier-Stark ladder of resonances. An ecient procedure to ,nd the positions and widths of resonances is suggested and illustrated by numerical calculation for a cosine potential.

The Wannier-Bloch resonance states are metastable states of a quantum particle in a space-periodic potential plus a homogeneous field. Here we analyze the states of quantum particle in space- and time-periodic potential. In this case the dynamics of the classical counterpart of the quantum system is either quasiregular or chaotic depending on the driving frequency. It is shown that both the quasiregular and the chaotic motion can also support quantum resonances. The relevance of the obtained result to the problem a of crystal electron under simultaneous influence of d.c. and a.c. electric fields is briefly discussed. PACS: 73.20Dx, 73.40Gk, 05.45.+b

We study the statistics of the Wigner delay time and resonance width for a Bloch particle in ac and dc fields in the regime of quantum chaos. It is shown that after appropriate rescaling the distributions of these quantities have universal character predicted by the random matrix theory of chaotic scattering.

Contrary to symbolic learning approaches, that represent a learned concept explicitly, case-based approaches describe concepts implicitly by a pair (CB; sim), i.e. by a measure of similarity sim and a set CB of cases. This poses the question if there are any differences concerning the learning power of the two approaches. In this article we will study the relationship between the case base, the measure of similarity, and the target concept of the learning process. To do so, we transform a simple symbolic learning algorithm (the version space algorithm) into an equivalent case-based variant. The achieved results strengthen the hypothesis of the equivalence of the learning power of symbolic and casebased methods and show the interdependency between the measure used by a case-based algorithm and the target concept.

Wavelets on closed surfaces in Euclidean space R3 are introduced starting from a scale discrete wavelet transform for potentials harmonic down to a spherical boundary. Essential tools for approximation are integration formulas relating an integral over the sphere to suitable linear combinations of functional values (resp. normal derivatives) on the closed surface under consideration. A scale discrete version of multiresolution is described for potential functions harmonic outside the closed surface and regular at infinity. Furthermore, an exact fully discrete wavelet approximation is developed in case of band-limited wavelets. Finally, the role of wavelets is discussed in three problems, namely (i) the representation of a function on a closed surface from discretely given data, (ii) the (discrete) solution of the exterior Dirichlet problem, and (iii) the (discrete) solution of the exterior Neumann problem.

For the determination of the earth" s gravity field many types of observations are available nowadays, e.g., terrestrial gravimetry, airborne gravimetry, satellite-to-satellite tracking, satellite gradiometry etc. The mathematical connection between these observables on the one hand and gravity field and shape of the earth on the other hand, is called the integrated concept of physical geodesy. In this paper harmonic wavelets are introduced by which the gravitational part of the gravity field can be approximated progressively better and better, reflecting an increasing flow of observations. An integrated concept of physical geodesy in terms of harmonic wavelets is presented. Essential tools for approximation are integration formulas relating an integral over an internal sphere to suitable linear combinations of observation functionals, i.e., linear functionals representing the geodetic observables. A scale discrete version of multiresolution is described for approximating the gravitational potential outside and on the earth" s surface. Furthermore, an exact fully discrete wavelet approximation is developed for the case of band-limited wavelets. A method for combined global outer harmonic and local harmonic wavelet modelling is proposed corresponding to realistic earth" s models. As examples, the role of wavelets is discussed for the classical Stokes problem, the oblique derivative problem, satellite-to-satellite tracking, satellite gravity gradiometry, and combined satellite-to-satellite tracking and gradiometry.

Knowledge about the distribution of a statistical estimator is important for various purposes like, for example, the construction of confidence intervals for model parameters or the determiation of critical values of tests. A widely used method to estimate this distribution is the so-called bootstrap which is based on an imitation of the probabilistic structure of the data generating process on the basis of the information provided by a given set of random observations. In this paper we investigate this classical method in the context of artificial neural networks used for estimating a mapping from input to output space. We establish consistency results for bootstrap estimates of the distribution of parameter estimates.

In this paper we derive nonparametric stochastic volatility models in discrete time. These models generalize parametric autoregressive random variance models, which have been applied quite successfully to nancial time series. For the proposed models we investigate nonparametric kernel smoothers. It is seen that so-called nonparametric deconvolution estimators could be applied in this situation and that consistency results known for nonparametric errors- in-variables models carry over to the situation considered herein.

Abstract: Generalized single-atom Maxwell-Bloch equations for optically dense media are derived taking into account non-cooperative radiative atom-atom interactions. Applying a Gaussian approximation and formally eliminating the degrees of freedom of the quantized radiation field and of all but a probe atom leads to an effective time-evolution operator for the probe atom. The mean coherent amplitude of the local field seen by the atom is shown to be given by the classical Lorentz-Lorenz relation. The second-order correlations of the field lead to terms that describe relaxation or pump processes and level shifts due to multiple scattering or reabsorption of spontaneously emitted photons. In the Markov limit a non-linear and nonlocal single-atom density matrix equation is derived. To illustrate the effects of the quantum corrections we discuss amplified spontaneous emission and radiation trapping in a dense ensemble of initially inverted two-level atoms and the effects of radiative interactions on intrinsic optical bistability in coherently driven systems.

Abstract: We analyze the long-time quantum dynamics of degenerate parametric down-conversion from an initial sub-harmonic vacuum (spontaenous down-conversion). Standard linearization of the Heisenberg equations of motions fails in this case, since it is based on an expansion around an unstable classical solution and neglects pump depletion. Introducing a mean-field approximation we find a periodic exchange of energy between the pump and subharmonic mode goverened by an anharmonic pendulum equation. From this equation the optimum interaction time or crystal length for maximum conversion can be determined. A numerical integration of the 2-mode Schrödinger equation using a dynamically optimized basis of displaced and squeezed number states verifies the characteristic times predicted by the mean-field approximation. In contrast to semiclassical and mean-field predictions it is found that quantum uctuations of the pump mode lead to a substantial limitation of the efficiency of parametric down-conversion.

Abstract: Resonant optical pumping in dense atomic media is discussed, where the absorption length is less than the smallest characteristic dimension of the sample. It is shown that reabsorption and multiple scattering of spontaneous photons (radiation trapping) can substantially slow down the rate of optical pumping. A very slow relaxation out of the target state of the pump process is then sufficient to make optical pumping impossible. As model systems an inhomogeneously and a radiatively broadened 3-level system resonantly driven with a strong broad-band pump field are considered.

Abstract: We show that the physical mechanism of population transfer in a 3-level system with a closed loop of coherent couplings (loop-STIRAP) is not equivalent to an adiabatic rotation of the dark-state of the Hamiltonian but coresponds to a rotation of a higher-order trapping state in a generalized adiabatic basis. The concept of generalized adiabatic basis sets is used as a constructive toolto design pulse sequences for stimulated Raman adiabatic passage (STIRAP) which give maximum population transfer also under conditions when the usual condition of adiabaticty is only poorly fulfilled. Under certain conditions for the pulses (generalized matched pulses) there exists a higher-order trapping state, which is an exact constant of motion and analytic solutions for the atomic dynamics can be derived.

In this paper, a combined approach to damage diagnosis of rotors is proposed. The intention is to employ signal-based as well as model-based procedures for an improved detection of size and location of the damage. In a first step, Hilbert transform signal processing techniques allow for a computation of the signal envelope and the instantaneous frequency, so that various types of non-linearities due to a damage may be identified and classified based on measured response data. In a second step, a multi-hypothesis bank of Kalman Filters is employed for the detection of the size and location of the damage based on the information of the type of damage provided by the results of the Hilbert transform.

In order to improve the distribution system for the Nordic countries the BASF AG considered 13 alternative scenarios to the existing system. These involved the construction of warehouses at various locations. For every scenario the transportation, storage, and handling cost incurred was to be as low as possible, where restrictions on the delivery time were given. The scenarios were evaluated according to (minimal) total cost and weighted average delivery time. The results led to a restriction to only three cases, involving only one new warehouse each. For these a more accurate model for the cost was developped and evaluated, yielding results similar to a simple linear model. Since there were no clear preferences between cost and delivery time, the final decision was chosen to represent a compromise between the two criteria.

On a family F of probability measures on a measure space we consider the Hellinger and Kullback-Leibler distances. We show that under suitable regulari ty conditions Jeffreys' prior is proportional to the k-dimensional Hausdorff measure w.r.t. Hellinger dis tance respectively to the k2 -dimensional Hausdorff measure w.r.t. Kullback-Leibler distance. The proof i s based on an area-formula for the Hausdorff measure w.r.t. to generalized distances.

The World Wide Web is a medium through which a manufacturer may allow Internet visitors to customize or compose his products. Due to missing or rapidly changing standards these applications are often restricted to relatively simple CGI or JAVA based scripts. Usually, results like images or movies are stored in a database and are transferred on demand to the web-user. Viper (Visualisierung parametrisch editierbarer Raumkomponenten) is a Toolkit [VIP96] written in C++ and JAVA which provides 3D-modeling and visualization methodsfor developing complex web-based applications. The Toolkit has been designed to built a prototype, which can be used to construct and visualize prefabricated homes on the Internet. Alternative applications are outlined in this paper. Within Viper, all objects are stored in a scene graph (VSSG ), which is the basic data structure of the Toolkit. To show the concept and structure of the Toolkit, functionality, and implementation of the prototype are described.

A new approach is proposed to model and simulate numerically heterogeneous catalysis in rarefied gas flows. It is developed to satisfy all together the following points: i) describe the gas phase at the microscopic scale, as required in rarefied flows, ii) describe the wall at the macroscopic scale, to avoid prohibitive computational costs and consider not only crystalline but also amorphous surfaces, iii) reproduce on average macroscopic laws correlated with experimental results and iv) derive ana- lytic models in a systematic and exact way. The problem is stated in the general framework of a non static flow in the vicinity of a catalytic and non porous surface (without ageing). It is shown that the exact and systematic resolution method based on the Laplace transform, introduced previously by the author to model collisions in the gas phase, can be extended to the present problem. The proposed approach is applied to the modelling of the Eley-Rideal and Langmuir-Hinshelwood recombinations, assuming that the coverage is locally at equilibrium. The models are developed considering one atomic species and extended to the gen eral case of several atomic species. Numerical calculations show that the models derived in this way reproduce with accuracy behaviours observed experimentally.

In the present paper we investigate the Rayleigh-Benard convection in rarefied gases and demonstrate by numerical experiments the transition from purely thermal conduction to a natural convective flow for a large range of Knudsen numbers from 0.02 downto 0.001. We address to the problem how the critical value for the Rayleigh number defined for incompressible vsicous flows may be translated to rarefied gas flows. Moreover, the simulations obtained for a Knudsen number Kn=0.001 and Froude number Fr=1 show a further transition from regular Rayleigh-Benard cells to a pure unsteady behavious with moving vortices.

Enhancing the quality of surgical interventions is one of the main goals of surgical robotics. Thus we have devised a surgical robotic system for maxillofacial surgery which can be used as an intelligent intraoperative surgical tool. Up to now a surgeon preoperatively plans an intervention by studying twodimensional X-rays, thus neglecting the third dimension. In course of the special research programme "Computer and Sensor Aided Surgery" a planning system has been developed at our institute, which allows the surgeon to plan an operation on a threedimensional computer model of the patient . Transposing the preoperatively planned bone cuts, bore holes, cavities, and milled surfaces during surgery still proves to be a problem, as no adequate means are at hand: the actual performance of the surgical intervention and the surgical outcome solely depend on the experience and the skill of the operating surgeon. In this paper we present our approach of a surgical robotic system to be used in maxillofacial surgery. Special stress is being laid upon the modelling of the environment in the operating theatre and the motion planning of our surgical robot .

Stand des strategischen Controlling-Berichtwesens und Übertragungsmöglichkeiten auf die Universität
(1998)

This paper motivates the necessity for support for negotiation during Sales Support on the Internet within Case-Based Reasoning solutions. Different negotiation approaches are discussed and a general model of the sales process is presented. Further, the tradition al CBR-cycle is modified in such a way that iterative retrieval during a CBR consulting session is covered by the new model. Several gen eral characteristics of negotiation are described and a case study is shown where preliminary approaches are used to negotiate with a cu stomer about his demands and available products in a 'CBR-based' Electronic Commerce solution.

Although several systematic analyses of existing approaches to adaptation have been published recently, a general formal adaptation framework is still missing. This paper presents a step into the direction of developing such a formal model of transformational adaptation. The model is based on the notion of the quality of a solution to a problem, while quality is meant in a more general sense and can also denote some kind of appropriateness, utility, or degree of correctness. Adaptation knowledge is then defined in terms of functions transforming one case into a successor case. The notion of quality provides us with a semantics for adaptation knowledge and allows us to define terms like soundness, correctness and completeness. In this view, adaptation (and even the whole CBR process) appears to be a special instance of an optimization problem.

Object-oriented case representations require approaches for similarity assessment that allow to compare two differently structured objects, in particular, objects belonging to different object classes. Currently, such similarity measures are developed more or less in an ad-hoc fashion. It is mostly unclear, how the structure of an object-oriented case model, e.g., the class hierarchy, influences similarity assessment. Intuitively, it is obvious that the class hierarchy contains knowledge about the similarity of the objects. However, how this knowledge relates to the knowledge that could be represented in similarity measures is not obvious at all. This paper analyzes several situations in which class hierarchies are used in different ways for case modeling and proposes a systematic way of specifying similarity measures for comparing arbitrary objects from the hierarchy. The proposed similarity measures have a clear semantics and are computationally inexpensive to compute at run-time.

As the previous chapters of this book have shown, case-based reasoning is a technology that has been successfully applied to a large range of different tasks. Through all the different CBR projects, both basic research projects as well as industrial development projects, lots of knowledge and experience about how to build a CBR application has been collected. Today, there is already an increasing number of successful companies developing industrial CBR applications. In former days, these companies could develop their early pioneering CBR applications in an ad-hoc manner. The highly-skilled CBR expert of the company was able to manage these projects and to provide the developers with the required expertise.

This paper presents a brief overview of the INRECA-II methodology for building and maintaining CBR applications. It is based on the experience factory and the software process modeling approach from software engineering. CBR development and maintenance experience is documented using software process models and stored in a three-layered experience packet.

For defining attribute types to be used in the case representation, taxonomies occur quite often. The symbolic values at any node of the taxonomy tree are used as attribute values in a case or a query. A taxonomy type represents a relationship between the symbols through their position within the taxonomy-tree which expresses knowledge about the similarity between the symbols. This paper analyzes several situations in which taxonomies are used in different ways and proposes a systematic way of specifying local similarity measures for taxonomy types. The proposed similarity measures have a clear semantics and are easy to compute at runtime.

We have computed ensembles of complete spectra of the staggered Dirac operator using four-dimensional SU(2) gauge fields, both in the quenched approximation and with dynamical fermions. To identify universal features in the Dirac spectrum, we compare the lattice data with predictions from chiral random matrix theory for the distribution of the low-lying eigenvalues. Good agreement is found up to some limiting energy, the so-called Thouless energy, above which random matrix theory no longer applies. We determine the dependence of the Thouless energy on the simulation parameters using the scalar susceptibility and the number variance.

Robust Reliability of Diagnostic Multi-Hypothesis Algorithms: Application to Rotating Machinery
(1998)

Damage diagnosis based on a bank of Kalman filters, each one conditioned on a specific hypothesized system condition, is a well recognized and powerful diagnostic tool. This multi-hypothesis approach can be applied to a wide range of damage conditions. In this paper, we will focus on the diagnosis of cracks in rotating machinery. The question we address is: how to optimize the multi-hypothesis algorithm with respect to the uncertainty of the spatial form and location of cracks and their resulting dynamic effects. First, we formulate a measure of the reliability of the diagnostic algorithm, and then we discuss modifications of the diagnostic algorithm for the maximization of the reliability. The reliability of a diagnostic algorithm is measured by the amount of uncertainty consistent with no-failure of the diagnosis. Uncertainty is quantitatively represented with convex models.

Wavelet transform originated in 1980's for the analysis of seismic signals has seen an explosion of applications in geophysics. However, almost all of the material is based on wavelets over Euclidean spaces. This paper deals with the generalization of the theory and algorithmic aspects of wavelets to a spherical earth's model and geophysically relevant vector fields such as the gravitational, magnetic, elastic field of the earth.A scale discrete wavelet approach is considered on the sphere thereby avoiding any type of tensor-valued 'basis (kernel) function'. The generators of the vector wavelets used for the fast evaluation are assumed to have compact supports. Thus the scale and detail spaces are finite-dimensional. As an important consequence, detail information of the vector field under consideration can be obtained only by a finite number of wavelet coefficients for each scale. Using integration formulas that are exact up to a prescribed polynomial degree, wavelet decomposition and reconstruction are investigated for bandlimited vector fields. A pyramid scheme for the recursive computation of the wavelet coefficients from level to level is described in detail. Finally, data compression is discussed for the EGM96 model of the earth's gravitational field.

The first observation of spatiotemporal self-focusing of spin waves is reported. The experimental results are obtained for dipolar spin waves in yttrium-iron-garnet films by means of a newly developed space- and time-resolved Brillouin light scattering technique. They demonstrate self-focusing of a moving wave pulse in two spatial dimensions, and formation of localized two-dimensional wave packets, the collapse of which is stopped by dissipation. The experimental results are in good qualitative agreement with numerical simulations.

The critical points of the continuous series are characterized by two complex numbers l_1,l_2 (Re(l_1,l_2)< 0), and a natural number n (n>=3) which enters the string susceptibility constant through gamma = -2/(n-1). The critical potentials are analytic functions with a convergence radius depending on l_1 or l_2. We use the orthogonal polynomial method and solve the Schwinger-Dyson equations with a technique borrowed from conformal field theory.

Monomial representations and operations for Gröbner bases computations are investigated from an implementation point of view. The technique ofvectorized monomial operations is introduced and it is shown how it expedites computations of Gröbner bases. Furthermore, a rank-based monomialrepresentation and comparison technique is examined and it is concluded that this technique does not yield an additional speedup over vectorizedcomparisons. Extensive benchmark tests with the Computer Algebra System SINGULAR are used to evaluate these concepts.

Simultaneous quantifier elimination in sequent calculus is an improvement over the well-known skolemization. It allows a lazy handling of instantiations as well as of the order of certain reductions. We prove the soundness of a sequent calculus which incorporates a rule for simultaneous quantifier elimination. The proof is performed by semantical arguments and provides some insights into the dependencies between various formulas in a sequent.

Interoperability between different CAx systems involved in the development process of cars is presently one of the most critical issues in the automotive industry. None of the existing CAx systems meets all requirements of the very complex process network of the lifecycle of a car. With this background, industrial engineers have to use various CAx systems to get an optimal support for their daily work. Today, the communication between different CAx systems is done via data files using special direct converters or neutral system independent standards like IGES, VDAFS, and recently STEP, the international standard for product data description. To reduce the dependency on individual CAx s ystem vendors, the German automotive industry developed an open CAx system architecture based on STEP as guiding principle for CAx system development. The central component of this architecture is a common, system-independent access interface to CAx functions and data of all involved CAx systems, which is under development in the project ANICA. Within this project, a CAx object bus has been developed based on a STEP data description using CORBA as an integration platform. This new approach allows a transparent access to data and functions of the integrated CAx systems without file-based data exchange. The product development process with various CAx systems concerns objects from different CAx systems. Thus, mechanisms are needed to handle the persistent storage of the CAx objects distributed over the CAx object bus to give the developing engineers a consistent view of the data model of their product. The following paper discusses several possibilities to guarantee consistent data management and storage of distributed CAx models. One of the most promising approaches is the enhancement of the CAx object bus by a STEP-based object-oriented data server to realise a central data management.

Das Problem der Integration heterogener Softwaresysteme stellt sich auch auf dem Gebiet der CAx-Systeme, wie sie in vielfältigen Ausprägungen etwa in der Automobilbranche für die Fahrzeugentwicklung eingesetzt werden. Zunächst werden die heute in diesem Bereich
praktizierten Lösungen und die dabei auftretenden Probleme kurz dargestellt. Danach werden der neue Standard für Produktdaten, STEP, und der Standard für die Interoperabilität heterogener Softwaresysteme, CORBA, sowie einige CORBA-Entwurfsmuster erläutert. Als nächstes wird eine auf diesen beiden Standards basierende CAx-Integrationsarchitektur, die im Projekt ANICA entwickelt wurde, vorgestellt und die prinzipielle Vorgehensweise bei
ihrer Realisierung beschrieben. Daran anschließend wird über eine erste Umsetzung dieser Architektur in die Praxis berichtet. Zum Abschluß wird kurz auf die gewonnenen Erfahrungen eingegangen und ein Ausblick auf zukünftige Entwicklungen gegeben.

Die virtuelle Produktentwicklung in verteilter Umgebung erfordert eine intensive Kommunika-tion zwischen den beteiligten CAx-Systemen. Diese findet bisher in Form des dateibasierten Datenaustausches mit Hilfe von Direktkonvertern oder neutralen Schnittstellen statt. Der Datenaustausch wird hierbei meist in mehreren Iterationsschleifen durchgeführt und ist oft mit Datenverlusten sowie Unterbrechungen der Entwicklungsaktivitäten verbunden. Demgegenüber steht als neuer Ansatz für die Interoperabilität zwischen CAx-Systemen das Konzept eines CAx-Objektbusses auf Basis von CORBA und STEP. Dieser Ansatz ermög-licht eine plattformübergreifende Online-Kopplung heterogener CAx-Systeme. Im Gegensatz zum dateibasierten Datenaustausch ist hierbei ein transparenter Zugriff sowohl auf Daten als auch auf Funktionen der angebundenen Systeme möglich. Dadurch kann die Durchgängigkeit der Produktdaten in der Prozeßkette deutlich erhöht werden. Zur Beurteilung der Praxistauglichkeit wird dieser neue Ansatz dem dateibasierten Daten-austausch am Beispiel virtueller Einbauuntersuchungen gegenübergestellt. Dabei werden für unterschiedliche praxisrelevante Modellgrößen die für die Übertragung von Geometrie und Topologie erforderlichen Zeiten analysiert und verglichen. Weiterhin werden die generellen Vor- und Nachteile der beiden Lösungen dargestellt. Abschließend wird auf die Potentiale des neuen Ansatzes für den Einsatz in anderen Bereichen eingegangen.

In this paper we study the space-time asymptotic behavior of the solutions and derivatives to th incompressible Navier-Stokes equations. Using moment estimates we obtain that strong solutions to the Navier-Stokes equations which decay in \(L^2\) at the rate of \(||u(t)||_2 \leq C(t+1)^{-\mu}\) will have the following pointwise space-time decay \[|D^{\alpha}u(x,t)| \leq C_{k,m} \frac{1}{(t+1)^{ \rho_o}(1+|x|^2)^{k/2}} \]
where \( \rho_o = (1-2k/n)( m/2 + \mu) + 3/4(1-2k/n)\), and \(|a |= m\). The dimension n is \(2 \leq n \leq 5\) and \(0\leq k\leq n\) and \(\mu \geq n/4\)