### Refine

#### Document Type

- Article (46) (remove)

#### Keywords

- resonances (8)
- Wannier-Stark systems (7)
- lifetimes (7)
- Quantum mechanics (6)
- quantum mechanics (5)
- lifetime statistics (4)
- entropy (3)
- localization (3)
- dynamical systems (2)
- phase-space (2)

#### Faculty / Organisational entity

- Fachbereich Physik (46) (remove)

Relating mathematical concepts to graphical representations is a challenging task for students. In this paper, we introduce two visual strategies to qualitatively interpret the divergence of graphical vector field representations. One strategy is based on the graphical interpretation of partial derivatives, while the other is based on the flux concept. We test the effectiveness of both strategies in an instruction-based eye-tracking study with N = 41 physics majors. We found that students’ performance improved when both strategies were introduced (74% correct) instead of only one strategy (64% correct), and students performed best when they were free to choose between the two strategies (88% correct). This finding supports the idea of introducing multiple representations of a physical concept to foster student understanding.Relevant eye-tracking measures demonstrate that both strategies imply different visual processing of the vector field plots, therefore reflecting conceptual differences between the strategies. Advanced analysis methods further reveal significant differences in eye movements between the best and worst performing students. For instance, the best students performed predominantly horizontal and vertical saccades, indicating correct interpretation of partial derivatives. They also focused on smaller regions when they balanced positive and negative flux. This mixed method research leads to new insights into student visual processing of vector field representations, highlights the advantages and limitations of eye-tracking methodologies in this context, and discusses implications for teaching and for future research. The introduction of saccadic direction analysis expands traditional methods, and shows the potential to discover new insights into student understanding and learning difficulties.

III/V semiconductor quantum dots (QD) are in the focus of optoelectronics research for about 25 years now. Most of the work
has been done on InAs QD on GaAs substrate. But, e.g., Ga(As)Sb (antimonide) QD on GaAs substrate/buffer have also gained
attention for the last 12 years.There is a scientific dispute on whether there is a wetting layer before antimonide QD formation, as
commonly expected for Stransky-Krastanov growth, or not. Usually ex situ photoluminescence (PL) and atomic force microscope
(AFM) measurements are performed to resolve similar issues. In this contribution, we show that reflectance anisotropy/difference
spectroscopy (RAS/RDS) can be used for the same purpose as an in situ, real-time monitoring technique. It can be employed not
only to identify QD growth via a distinct RAS spectrum, but also to get information on the existence of a wetting layer and its
thickness. The data suggest that for antimonide QD growth the wetting layer has a thickness of 1 ML (one monolayer) only.

Indentation into a metastable austenite may induce the phase transformation to the bcc phase. We study this process using
atomistic simulation. At temperatures low compared to the equilibrium transformation temperature, the indentation triggers the
transformation of the entire crystallite: after starting the transformation, it rapidly proceeds throughout the simulation crystallite.
The microstructure of the transformed sample is characterized by twinned grains. At higher temperatures, around the equilibrium
transformation temperature, the crystal transforms only locally, in the vicinity of the indent pit. In addition, the indenter
produces dislocation plasticity in the remaining austenite. At intermediate temperatures, the crystal continuously transforms
throughout the indentation process.

Influence of the Crystal Surface on the Austenitic and Martensitic Phase Transition in Pure Iron
(2018)

Using classical molecular dynamics simulations, we studied the influence that free
surfaces exert on the austenitic and martensitic phase transition in iron. For several single-indexed
surfaces—such as (100)bcc and (110)bcc as well as (100)fcc and (110)fcc surfaces—appropriate
pathways exist that allow for the transformation of the surface structure. These are the Bain,
Mao, Pitsch, and Kurdjumov–Sachs pathways, respectively. Tilted surfaces follow the pathway
of the neighboring single-indexed plane. The austenitic transformation temperature follows the
dependence of the specific surface energy of the native bcc phase; here, the new phase nucleates at
the surface. In contrast, the martensitic transformation temperature steadily decreases when tilting
the surface from the (100)fcc to the (110)fcc orientation. This dependence is caused by the strong
out-of-plane deformation that (110)fcc facets experience under the transformation; here, the new
phase also nucleates in the bulk rather than at the surface.

Based on the Lindblad master equation approach we obtain a detailed microscopic model of photons in a dye-filled cavity, which features condensation of light. To this end we generalise a recent non-equilibrium approach of Kirton and Keeling such that the dye-mediated contribution to the photon-photon interaction in the light condensate is accessible due to an interplay of coherent and dissipative dynamics. We describe the steady-state properties of the system by analysing the resulting equations of motion of both photonic and matter degrees of freedom. In particular, we discuss the existence of two limiting cases for steady states: photon Bose-Einstein condensate and laser-like. In the former case, we determine the corresponding dimensionless photon-photon interaction strength by relying on realistic experimental data and find a good agreement with previous theoretical estimates. Furthermore, we investigate how the dimensionless interaction strength depends on the respective system parameters.

A harmonic oscillator subject to a parametric pulse is examined. The aim of the paper is to present a new theory for analysing transitions due to parametric pulses. The new theoretical notions which are introduced relate the pulse parameters in a direct way with the transition matrix elements. The harmonic oscillator transitions are expressed in terms of asymptotic properties of a companion oscillator, the Milne (amplitude) oscillator. A traditional phase-amplitude decomposition of the harmonic-oscillator solutions results in the so-called Milne's equation for the amplitude, and the phase is determined by an exact relation to the amplitude. This approach is extended in the present analysis with new relevant concepts and parameters for pulse dynamics of classical and quantal systems. The amplitude oscillator has a particularly nice numerical behavior. In the case of strong pulses it does not possess any of the fast oscillations induced by the pulse on the original harmonic oscillator. Furthermore, the new dynamical parameters introduced in this approach relate closely to relevant characteristics of the pulse. The relevance to quantum mechanical problems such as reflection and transmission from a localized well and mechanical problems of controlling vibrations is illustrated.

A simple method of calculating the Wannier-Stark resonances in 2D lattices is suggested. Using this method we calculate the complex Wannier-Stark spectrum for a non-separable 2D potential realized in optical lattices and analyze its general structure. The dependence of the lifetime of Wannier-Stark states on the direction of the static field (relative to the crystallographic axis of the lattice) is briefly discussed.

The paper studies the dynamics of transitions between the levels of a Wannier-Stark ladder induced by a resonant periodic driving. The analysis of the problem is done in terms of resonance quasienergy states, which take into account the metastable character of the Wannier-Stark states. It is shown that the periodic driving creates from a localized Wannier-Stark state an extended Bloch-like state with a spatial length varying in time as ~ t^1/2. Such a state can find applications in the field of atomic optics because it generates a coherent pulsed atomic beam.

The analyticity property of the one-dimensional complex Hamiltonian system H(x,p)=H_1(x_1,x_2,p_1,p_2)+iH_2(x_1,x_2,p_1,p_2) with p=p_1+ix_2, x=x_1+ip_2 is exploited to obtain a new class of the corresponding two-dimensional integrable Hamiltonian systems where H_1 acts as a new Hamiltonian and H_2 is a second integral of motion. Also a possible connection between H_1 and H_2 is sought in terms of an auto-B"acklund transformation.

The paper studies quantum states of a Bloch particle in presence of external ac and dc fields. Provided the period of the ac field and the Bloch period are commensurate, an effective scattering matrix is introduced, the complex poles of which are the system quasienergy spectrum. The statistics of the resonance width and the Wigner delay time shows a close relation of the problem to random matrix theory of chaotic scattering.

The paper studies metastable states of a Bloch electron in the presence of external ac and dc fields. Provided resonance condition between period of the driving frequency and the Bloch period, the complex quasienergies are numerically calculated for two qualitatively different regimes (quasiregular and chaotic) of the system dynamics. For the chaotic regime an effect of quantum stabilization, which suppresses the classical decay mechanism, is found. This effect is demonstrated to be a kind of quantum interference phenomenon sensitive to the resonance condition.

A novel method is presented which allows a fast computation of complex energy resonance states in Stark systems, i.e. systems in a homogeneous field. The technique is based on the truncation of a shift-operator in momentum space. Numerical results for space periodic and non-periodic systems illustrate the extreme simplicity of the method.

For periodically driven systems, quantum tunneling between classical resonant stability islands in phase space separated by invariant KAM curves or chaotic regions manifests itself by oscillatory motion of wave packets centered on such an island, by multiplet splittings of the quasienergy spectrum, and by phase space localisation of the quasienergy states on symmetry related ,ux tubes. Qualitatively di,erent types of classical resonant island formation | due to discrete symmetries of the system | and their quantum implications are analysed by a (uniform) semiclassical theory. The results are illustrated by a numerical study of a driven non-harmonic oscillator.

The Wannier-Bloch resonance states are metastable states of a quantum particle in a space-periodic potential plus a homogeneous field. Here we analyze the states of quantum particle in space- and time-periodic potential. In this case the dynamics of the classical counterpart of the quantum system is either quasiregular or chaotic depending on the driving frequency. It is shown that both the quasiregular and the chaotic motion can also support quantum resonances. The relevance of the obtained result to the problem a of crystal electron under simultaneous influence of d.c. and a.c. electric fields is briefly discussed. PACS: 73.20Dx, 73.40Gk, 05.45.+b

A new method for calculating Stark resonances is presented and applied for illustration to the simple case of a one-particle, one-dimensional model Hamiltonian. The method is applicable for weak and strong dc fields. The only need, also for the case of many particles in multi-dimensional space, are either the short time evolution matrix elements or the eigenvalues and Fourier components of the eigenfunctions of the field-free Hamiltonian.

We study the statistics of the Wigner delay time and resonance width for a Bloch particle in ac and dc fields in the regime of quantum chaos. It is shown that after appropriate rescaling the distributions of these quantities have universal character predicted by the random matrix theory of chaotic scattering.

We present an entropy concept measuring quantum localization in dynamical systems based on time averaged probability densities. The suggested entropy concept is a generalization of a recently introduced [PRL 75, 326 (1995)] phase-space entropy to any representation chosen according to the system and the physical question under consideration. In this paper we inspect the main characteristics of the entropy and the relation to other measures of localization. In particular the classical correspondence is discussed and the statistical properties are evaluated within the framework of random vector theory. In this way we show that the suggested entropy is a suitable method to detect quantum localization phenomena in dynamical systems.

The Filter-Diagonalization Method is applied to time periodic Hamiltonians and used to find selectively the regular and chaotic quasienergies of a driven 2D rotor. The use of N cross-correlation probability amplitudes enables a selective calculation of the quasienergies from short time propagation to the time T (N). Compared to the propagation time T (1) which is required for resolving the quasienergy spectrum with the same accuracy from auto-correlation calculations, the cross-correlation time T (N) is shorter by the factor N , that is T (1) = N T (N).

The global dynamical properties of a quantum system can be conveniently visualized in phase space by means of a quantum phase space entropy in analogy to a Poincare section in classical dynamics for two-dimensional time independent systems. Numerical results for the Pullen Edmonds systems demonstrate the properties of the method for systems with mixed chaotic and regular dynamics.

The Filter-Diagonalization Method is used to ,nd the broad and even overlapping resonances of a 1D Hamiltonian used before as a test model for new resonance theories and computational methods. It is found that the use of several complex-scaled cross-correlation probability amplitudes from short time propagation enables the calculation of broad overlapping resonances, which can not be resolved from the amplitude of a single complex-scaled autocorrelation calculation.

A formalism is developed for calculating the quasienergy states and spectrum for time-periodic quantum systems when a time-periodic dynamical invariant operator with a nondegenerate spectrum is known. The method, which circumvents the integration of the Schr-odinger equation, is applied to an integrable class of systems, where the global invariant operator is constructed. Furthermore, a local integrable approximation for more general non-integrable systems is developed. Numerical results are presented for the doubleresonance model.

We consider N coupled linear oscillators with time-dependent coecients. An exact complex amplitude - real phase decomposition of the oscillatory motion is constructed. This decomposition is further used to derive N exact constants of motion which generalise the so-called Ermakov-Lewis invariant of a single oscillator. In the Floquet problem of periodic oscillator coecients we discuss the existence of periodic complex amplitude functions in terms of existing Floquet solutions.

Quantum Chaos
(1999)

The study of dynamical quantum systems, which are classically chaotic, and the search for quantum manifestations of classical chaos, require large scale numerical computations. Special numerical techniques developed and applied in such studies are discussed: The numerical solution of the time-dependent Schr-odinger equation, the construction of quantum phase space densities, quantum dynamics in phase space, the use of phase space entropies for characterizing localization phenomena, etc. As an illustration, the dynamics of a driven one-dimensional anharmonic oscillator is studied, both classically and quantum mechanically. In addition, spectral properties and chaotic tunneling are addressed.

Mn-Si-C alloy films are prepared by e-beam coevaporation onto a Si substrate held at 600 °C. Ferromagnetism is observed below T = (360 +/- 5) K with SQUID magnetometry and magneto-optical Kerr effect. This is the highest Curie temperature T yet observed for a Mn-based alloy. Although the composition determined by Auger depth profiling varies appreciably for different films, their T is the same indicating that ferromagnetism is caused by an alloy of well-defined composition independent of precipitations.

An unusual interlayer coupling, recently discovered in layered magnetic systems, is analysed from the experimental and theoretical points of view. This coupling favours the 90° orientation of the magnetization of the adjacent magnetic films. It can be phenomenologically described by a term in the energy expression, which is biquadratic with respect to the magnetizations of the two films. The main experimental findings, as well as the theoretical models, explaining the phenomenon are discussed.

The static and spin wave properties of regular square lattices of magnetic dots of 0.5-2 microm dot diameter and 1-4 microm periodicity patterned in permalloy films have been investigated by Brillouin light scattering. The samples have been structured using x-ray lithography and ion beam etching. The Brillouin light scattering spectra reveal both surface and bulk spin wave modes. The spin wave frequencies can be well described taking into account the demagnetization factor of each single dot. For the samples with smallest dot separation of 0.1 microm a fourfold in-plane magnetic anisotropy with the easy axis directed along the pattern diagonal is observed, indicating anisotropic coupling between the dots.

A computer control for a Sandercock-type multipath tandem Fabry-Perot interferometer is described, which offers many advantages over conventionally used analog control: The range of stability is increased due to active control of the laser light intensity and the mirror dither amplitude. The alignment is fully automated enabling start of a measurement within a minute after start of align, including optionally finding the optimum focus on the sample. The software control enables a programmable series of measurements with control of, e.g., the position and rotation of the sample, the angle of light incidence, the sample temperature, or the strength and direction of an applied magnetic field. Built-in fitting routines allow for a precise determination of frequency positions of excitation peaks combined with increased frequency accuracy due to a correction of a residual nonlinearity of the mirror stage drive.

Wall energy and wall thickness of exchange-coupled rare-earth transition-metal triple layer stacks
(1999)

The room-temperature wall energy sw 54.0310 23 J/m 2 of an exchange-coupled Tb 19.6 Fe 74.7 Co 5.7 /Dy 28.5 Fe 43.2 Co 28.3 double layer stack can be reduced by introducing a soft magnetic intermediate layer in between both layers exhibiting a significantly smaller anisotropy compared to Tb+- FeCo and Dy+- FeCo. sw will decrease linearly with increasing intermediate layer thickness, d IL , until the wall is completely located within the intermediate layer for d IL d w , where d w denotes the wall thickness. Thus, d w can be obtained from the plot sw versus d IL .We determined sw and d w on Gd+- FeCo intermediate layers with different anisotropy behavior ~perpendicular and in-plane easy axis! and compared the results with data obtained from Brillouin light-scattering measurements, where exchange stiffness, A, and uniaxial anisotropy, K u , could be determined. With the knowledge of A and K u , wall energy and thickness were calculated and showed an excellent agreement with the magnetic measurements. A ten times smaller perpendicular anisotropy of Gd 28.1 Fe 71.9 in comparison to Tb+- FeCo and Dy+- FeCo resulted in a much smaller sw 51.1310 23 J/m 2 and d w 524 nm at 300 K. A Gd 34.1 Fe 61.4 Co 4.5 with in-plane anisotropy at room temperature showed a further reduced sw 50.3310 23 J/m 2 and d w 517 nm. The smaller wall energy was a result of a different wall structure compared to perpendicular layers.

The paper studies the effect of a weak periodic driving on metastable Wannier-Stark states. The decay rate of the ground Wannier-Stark states as a continuous function of the driving frequency is calculated numerically. The theoretical results are compared with experimental data of Wilkinson et at. [Phys.Rev.Lett.76, 4512 (1996)] obtained for cold sodium atoms in an accelerated optical lattice.

The statistics of the resonance widths and the behavior of the survival probability is studied in a particular model of quantum chaotic scattering (a particle in a periodic potential subject to static and time-periodic forces) introduced earlier in Ref. [5,6]. The coarse-grained distribution of the resonance widths is shown to be in good agreement with the prediction of Random Matrix Theory (RMT). The behavior of the survival probability shows, however, some deviation from RMT.

We study the transitions between the ground and excited Wannier states induced by a weak ac field. Because the upper Wannier states are several order of magnitude less stable than the ground states, these transitions decrease the global stability of the system characterized by the rate of probability leakage or decay rate. Using nonhermitian resonant perturbation theory we obtain an analytical expression for this induced decay rate. The analytical results are compared with exact numerical calculations of the system decay rate.

The quasienergy spectrum of a Bloch electron affected by dc-ac fields is known to have a fractal structure as function of the so-called electric matching ratio, which is the ratio of the ac field frequency and the Bloch frequency. This paper studies a manifestation of the fractal nature of the spectrum in the system "atom in a standing laser wave", which is a quantum optical realization of a Bloch electron. It is shown that for an appropriate choice of the system parameters the atomic survival probability (a quantity measured in laboratory experiments) also develops a fractal structure as a function of the electric matching ratio. Numerical simulations under classically chaotic scattering conditions show good agreement with theoretical predictions based on random matrix theory.

Static and dynamic properties of patterned magnetic permalloy films are investigated. In square lattices of circular shaped permalloy dots an anisotropic coupling mechanism has been found, which is identified as being due to intrinsically unsaturated parts of the dots caused by spatial variations of demagnetizing field. In arrays of magnetic wires a quantization of the surface spin wave mode in several dispersionless modes is observed and quantitatively described. For large wavevectors the frequency separation between the modes becomes smaller and the frequencies converge to the dispersion of the dipole-exchange surface mode of a continuous film.

Epitaxial growth of metastable Pd(001) at high deposition temperatures up to a critical thickness of 6 monolayers on bcc-Fe(001) is reported, the critical thickness being depending dramatically on the deposition temperature. For larger thicknesses the Pd film undergoes a roughening transition with strain relaxation by forming a top polycrystalline layer. These results allow to make a correlation between previ-ously reported unusual magnetic properties of Fe/Pd double layers and the crystallographic structure of the Pd overlayer.

We investigate the temperature dependence of the magnetization reversal process and of spinwaves in epi-taxially grown (001)-oriented [Fem/Aun]30 multilayers (m = 1, 2; n = 1- 6). Both polar magneto-optic Kerrr effect and Brillouin light scattering measurements reveal that all investigated multilayers, apart from the [Fe2/Au1]30-sample, are magnetized perpendicular to the film plane. The out-of-plane anisotropy constants are obtained. At high temperature, the magnetization curves are well described by an alternating stripe domain structure with free mobile domain walls, and at low temperature by a thermal activation model for the domain wall motion.

The quasienergy spectrum of a periodically driven quantum system is constructed from classical dynamics by means of the semiclassical initial value representation using coherent states. For the first time, this method is applied to explicitly time dependent systems. For an anharmonic oscillator system with mixed chaotic and regular classical dynamics, the entire quantum spectrum (both regular and chaotic states) is reproduced semiclassically with surprising accuracy. In particular, the method is capable to account for the very small tunneling splittings.

The dispersions of dipolar (Damon-Eshbach modes) and exchange dominated spin waves are calculated for in-plane magnetized thin and ultrathin cubic films with (111) crystal orientation and the results are compared with those obtained for the other principal planes. The properties of these magnetic excitations are examined from the point of view of Brillouin light scattering experiments. Attention is paid to study the spin-wave frequency variation as a function of the magnetization direction in the film plane for different film thicknesses. Interface anisotropies and the bulk magnetocrystalline anisotropy are considered in the calculation. A quantitative comparison between an analytical expression obtained in the limit of small film thickness and wave vector and the full numerical calculation is given.

Brillouin light scattering investigations of exchange biased (110)-oriented NiFe/FeMn bilayers
(1997)

All contributing magnetic anisotropies in (110)-oriented exchange biased Ni 80 Fe 20 /Fe 50 Mn 50 double layers prepared by molecular beam epitaxy on Cu(110) single crystals have been determined by means of Brillouin light scattering. Upon covering the Ni 80 Fe 20 films by Fe 50 Mn 50 , a unidirectional anisotropy contribution appears, which is consistent with the measured exchange bias field. The uniaxial and fourfold in-plane anisotropy contributions are largely modified by an amount, which scales with the Ni 80 Fe 20 thickness, indicating an interface effect. The strong uniaxial anisotropy contribution shows an in-plane switching of the easy axis from [110] to [001] with increasing Ni 80 Fe 20 -layer thickness. The large mode width of the spin wave excitations, which exceeds the linewidth of uncovered Ni 80 Fe 20 films by a factor of more than six, indicates large spatial variations of the exchange coupling constant. (C) 1998 American Institute of Physics.

The first observation of self-focusing of dipolar spin waves in garnet film media is reported. In particular, we show that the quasi-stationary diffraction of a finite-aperture spin wave beam in a focusing medium leads to the concentration of the wave power in one focal point rather than along a certain line (channel). The obtained results demonstrate the wide applicability of non-linear spin wave media to study non-linear wave phenomena using an advanced combined microwave-Brillouin light scattering technique for a two-dimensional mapping of the spin wave amplitudes.

Static magnetic and spin wave properties of square lattices of permalloy micron dots with thicknesses of 500 Å and 1000 Å and with varying dot separations have been investigated. A magnetic fourfold anisotropy was found for the lattice with dot diameters of 1 micrometer and a dot separation of 0.1 micrometer. The anisotropy is attributed to an anisotropic dipole-dipole interaction between magnetically unsaturated parts of the dots. The anisotropy strength (order of 100000 erg/cm^3 ) decreases with increasing in-plane applied magnetic field.

Static magnetic and spin wave properties of square lattices of permalloy micron dots with thicknesses of 500 Å and 1000 Å and with varying dot separations have been investigated. The spin wave frequencies can be well described taking into account the demagnetization factor of each single dot. A magnetic four-fold anisotropy was found for the lattice with dot diameters of 1 micrometer and a dot separation of 0.1 micrometer. The anisotropy is attributed to an anisotropic dipole-dipole interaction between magnetically unsaturated parts of the dots. The anisotropy strength (order of 100000 erg/cm^3 ) decreases with increasing in-plane applied magnetic field.

We report on Brillouin light scattering investigations of the elastic properties in Co/Ni superlattices which exhibit localized electronic eigenstates near the Fermi level causing an oscillation of the resistivity as a function of the superlattice periodicity A. No oscillations of the Rayleigh and Sezawa mode as a function of A could be observed within an error margin of +- 2% indicating that the localized electronic states do not contribute to the elastic constants.