Refine
Keywords
- Katalytische Hydrierung (2) (remove)
The present PhD thesis is mainly focused on synthesis, characterization and catalytic application of functionalized triphenylphosphine (TPP) ligands and their complexes. We developed a simple and effective strategy to immobilize TPP: A methylester group attached to one of the phenyl rings of TPP allowes the derivatization of the ligand with 3-trimethoxysilylpropylamine, a typical silane coupling agent used for the covalent immobilization of organic compounds on silica surfaces. The resulting functionalized TPP was further coordinated to Pd, Rh and Ru precursors to achieve homogeneous complexes which can be tethered on silica by the post synthetic grafting method and co-condensation method. The obtained heterogeneous catalysts exhibited excellent activity, selectivity and reusability in Suzuki, hydrogenation and transfer hydrogenation reactions. In order to investigate the stability of the catalysts, different types of characterizations such as TEM, solid state NMR of the used catalysts as well as AAS of filtrate and leaching tests were carried out. The results prove the practicability and efficiency of our method. This strategy was further modified to generate an anionic side chain linked to the TPP core by simply replacing the trimethoxysilylpropylamine group by sodium(3-amino- 1-propanesulfonate), which allowes the immobilization on imidazolium modified SBA-15 through electrostatic interaction. The obtained material was further reacted with PdCl2(CNPh)2 and the resulting hybrid material was used for the hydrogenation of olefins allowing mild reaction conditions. The catalyst shows excellent activity, selectivity and stability and it can furthermore be reused for at least ten times without any loss of activity. TEM images of the used catalyst clearly show the absence of palladium nanoparticles, proving the high stability of the palladium compound. By AAS no palladium could be detected in the products and further leaching tests very- fied the reaction to be truly heterogeneous. This concept of non-covalent immobili- zation guarantees a tight bonding of the catalytically active species to the surface in combination with a high mobility, which should be favorable for other catalyses.
Phosphane nehmen eine herausragende Stellung als Liganden in der homogen Katalyse ein. In der Arbeitsgruppe Thiel wurde kürzlich ein neuartiges Verfahren zur Synthese von Triarylphosphanen entwickelt. Im ersten Teil der Arbeit stand daher die Weiterentwicklung dieser fluoridkatalysierten Phosphor-Aryl-Kupplung im Mittelpunkt. Ein wichtiges Ziel hierbei war die Übertragung der Reaktionen in einen größeren Maßstab. In einem Ansatz konnte 1 kg an (4-[3-(N,N-Dimethylamino)prop-2-en-1-onyl]phen-yl)diphenylphosphan in einer Pilotanlage synthetisiert werden. Diese Verbindung diente als „Plattformchemikalie“ und ermöglichte die Synthese weiterer Pyrazol- und Pyrimidinderviate. Insbesondere gelang davon ausgehend die Synthese von Verbindungen, die mit einem Sulfonsäure- oder Hydroxamsäurelinker modifiziert sind.
Im zweiten Teil der Arbeit wurde das Prinzip der fluoridkatalysierten Phosphor-Aryl-Kupplung auf Amine übertragen. Die Motivation dafür ergab sich aus dem Vorkommen des N-Arylheterocyclen-Strukturmotivs in vielen Pharmazeutika. Eine entsprechende Erweiterung der Anwendungsbreite dieses Verfahrens sollte sich daher positiv auf die Vermarktungschancen auswirken. Ausgehend von Versuchen mit Trimethylsilylimidazol und Trimethylsilylpyrrolidin wurde eine milde und allgemein anwendbare Methode für die Synthese von N-Arylaminen entwickelt. Hierbei liegt der Vorteil insbesondere darin, dass auf den stöchiometrischen Einsatz von Basen verzichtet werden kann.
Der Hauptteil der Arbeit beschäftigte sich mit der Immobilisierung von phosphonsäurefunktionalisierten Triphenylphosphankomplexen auf Metalloxiden. Die Immobilisierung von homogenen Katalysatoren auf festen Trägermaterialien bietet großes Potential, um das Problem der Katalysatorabtrennung zu lösen. Der für die Immobilisierung benötigte Ligand 3-[4-(Diphenylphosphanyl)benzoylamino]propyl-1-phosphonsäurediethylester konnte über eine konvergente Synthese mit sieben Schritten synthetisiert werden. Ausgehend von diesem Liganden und dem entsprechenden Phosphonsäurederivat wurden Palladium- und Rhodiumkomplexe synthetisiert. Diese Komplexe wurden auf Titandioxid, Zirconiumdioxid und superparamagnetischen Eisenoxidnanopartikeln immobilisiert. Durch IR-Spektroskopie, thermogravimetrische Analyse und Festkörper-Kernspinresonanzspektroskopie konnte die Anbindung des jeweiligen Komplexes auf dem Trägermaterial belegt werden. Die erhaltenen Hybridmaterialien wurden erfolgreich für die Suzuki-Miyaura-Kupplung und die Hydrierung von Alkenen eingesetzt. Dabei konnten die Katalysatoren mehrfach wiederverwendet werden und zeigten eine gute Aktivität und Anwendungsbreite.