### Refine

#### Year of publication

#### Document Type

- Preprint (159) (remove)

#### Keywords

#### Faculty / Organisational entity

- Fachbereich Physik (159) (remove)

Abstract: The behavior of the divergent part of the bulk AdS/CFT effective action is considered with respect to the special finite diffeomorphism transformations acting on the boundary as a Weyl transformation of the boundary metric. The resulting 1-cocycle of the Weyl group is in full agreement with the 1-cocycle of the Weyl group obtained from the cohomological consideration of the effective action of the corresponding CFT.

Abstract: Operator product expansions are applied to dilaton-axion four-point functions. In the expansions of the bilocal fields "doubble Phi", CC and "Phi"C, the conformal fields which are symmetric traceless tensors of rank l and have dimensions "delta" = 2+l or 8+l+ "eta"(l) and "eta"(l) = O(N ^ -2) are identified. The unidentified field have dimension "delta" = "lambda"+l+eta(l) with "lambda" >= 10. The anomalous dimensions eta(l) are calculated at order O(N ^ -2) for both 2 ^ -1/2(-"doubble Phi" + CC) and 2 ^ -1/2(-"Phi"C + C"Phi") and are found to be the same, proving U(1)_Y symmetry. The relevant coupling constants are given at order O(1).

Abstract: In the context of AdS/CFT correspondence the two Wilson loop correlator is examined at both zero and finite temperatures. On the basis of an entirely analytical approach we have found for Nambu-Goto strings the functional relation dSc(Reg) /dL = 2*pi*k between Euclidean action Sc and loop separation L with integration constant k, which corresponds to the analogous formula for point-particles. The physical implications of this relation are explored in particular for the Gross-Ooguri phase transition at finite temperature.

Wannier-Stark states for semiconductor superlattices in strong static fields, where the interband Landau-Zener tunneling cannot be neglected, are rigorously calculated. The lifetime of these metastable states was found to show multiscale oscillations as a function of the static field, which is explained by an interaction with above-barrier resonances. An equation, expressing the absorption spectrum of semiconductor superlattices in terms of the resonance Wannier-Stark states is obtained and used to calculate the absorption spectrum in the region of high static fields.

Abstract: We describe quantum-field-theoretical (QFT) techniques for mapping quantum problems onto c-number stochastic problems. This approach yields results which are identical to phase-space techniques [C.W. Gardiner, Quantum Noise (1991)] when the latter result in a Fokker-Planck equation for a corresponding pseudo-probability distribution. If phase-space techniques do not result in a Fokker-Planck equation and hence fail to produce a stochastic representation, the QFT techniques nevertheless yield stochastic di erence equations in discretised time.

In this work, we discuss the resonance states of a quantum particle in a periodic potential plus static force. Originally this problem was formulated for a crystalline electron subject to the static electric field and is known nowadays as the Wannier-Stark problem. We describe a novel approach to the Wannier-Stark problem developed in recent years. This approach allows to compute the complex energy spectrum of a Wannier-Stark system as the poles of a rigorously constructed scattering matrix and, in this sense, solves the Wannier-Stark problem without any approximation. The suggested method is very efficient from the numerical point of view and has proven to be a powerful analytic tool for Wannier-Stark resonances appearing in different physical systems like optical or semiconductor superlattices.

We present a complete derivation of the semiclassical limit of the coherent state propagator in one dimension, starting from path integrals in phase space. We show that the arbitrariness in the path integral representation, which follows from the overcompleteness of the coherent states, results in many different semiclassical limits. We explicitly derive two possible semiclassical formulae for the propagator, we suggest a third one, and we discuss their relationships. We also derive an initial value representation for the semiclassical propagator, based on an initial gaussian wavepacket. It turns out to be related to, but different from, Heller's thawed gaussian approximation. It is very different from the Herman - Kluk formula, which is not a correct semiclassical limit. We point out errors in two derivations of the latter. Finally we show how the semiclassical coherent state propagators lead to WKB-type quantization rules and to approximations for the Husimi distributions of stationary states.

Phase velocities of surface acoustic waves in several boron nitride films were investigated by Brillouin light scattering. In the case of films with predominantly hexagonal crystal structure, grown under conditions close to the nucleation threshold of cubic BN, four independent elastic constants have been determined from the dispersion of the Rayleigh and the first Sezawa mode. The large elastic anisotropy of up to c11/c33 = 0.1 is attributed to a pronounced texture with the c-axes of the crystallites parallel to the film plane. In the case of cubic BN films the dispersion of the Rayleigh wave provides evidence for the existence of a more compliant layer at the substrate-film interface. The observed broadening of the Rayleigh mode is identified to be caused by the film morphology.

FeNi/FeMn exchange bias samples with a large exchange bias field at room temperature have been prepared on a Cu buffer layer. Upon irradiation with He ions, both the exchange bias field and the coercive field are modified. For low ion doses the exchange bias field is enhanced by nearly a factor of 2. Above a threshold dose of 0.3olsi 10 15 ions/cm 2 , the exchange bias field decreases continuously as the ion dose increases. The ob-served modifications are explained in terms of defect creation acting as pinning sites for domain walls and atomic intermixing.

For the next generation of high data rate magnetic recording above 1 Gbit/s, a better understanding of the switching processes for both recording heads and media will be required. In order to maximize the switch-ing speed for such devices, the magnetization precession after the magnetic field pulse termination needs to be suppressed to a maximum degree. It is demonstrated experimentally for ferrite films that the appropriate adjustment of the field pulse parameters and/or the static applied field may lead to a full suppression of the magnetization precession immediately upon termination of the field pulse. The suppression is explained by taking into account the actual direction of the magnetization with respect to the static field direction at the pulse termination.

Introduction: Recent developments in quantum communication and computing [1-3] stimulated an intensive search for physical systems that can be used for coherent processing of quantum information. It is generally believed that quantum entanglement of distinguishable quantum bits (qubits) is at the heart of quantum information processing. Significant efforts have been directed towards the design of elementary logic gates, which perform certain unitary processes on pairs of qubits. These gates must be capable of generating specific, in general entangled, superpositions of the two qubits and thus require a strong qubit-qubit interaction. Using a sequence of single and two-bit operations, an arbitrary quantum computation can be performed [2]. Over the past few years many systems have been identified for potential implementations of logic gates and several interesting experiments have been performed. Proposals for strong qubit-qubit interaction involve e.g. the vibrational coupling of cooled trapped ions [4], near dipole-dipole or spin-spin interactions such as in nuclear magnetic resonance [5], collisional interactions of confined cooled atoms [6] or radiative interactions between atoms in cavity QED [7]. The possibility of simple preparation and measurement of qubit states as well as their relative insensitivity to a thermal environment makes the latter schemes particularly interesting for quantum information processing. Most theoretical proposals on cavity-QED systems focus on fundamental systems involving a small number of atoms and few photons. These systems are sufficiently simple to allow for a first-principle description. Their experimental implementation is however quite challenging. For example, extremely high-Q micro-cavities are needed to preserve coherence during all atom-photon interactions. Furthermore, single atoms have to be confined inside the cavities for a sufficiently long time. This requires developments of novel cooling and trapping techniques, which is in itself a fascinating direction of current research. Despite these technical obstacles, a remarkable progress has been made in this area: quantum processors consisting of several coupled qubits now appear to be feasible.

We present a detailed analysis of a scalar conformal four-point function obtained from AdS/CFT correspondence. We study the scalar exchange graphs in AdS and discuss their analytic properties. Using methods of conformal partial wave analysis, we present a general procedure to study conformal four-point functions in terms of exchanges of scalar and tensor fields. The logarithmic terms in the four-point functions are connected to the anomalous dimensions of the exchanged fields. Comparison of the results from AdS graphs with the conformal partial wave analysis, suggests a possible general form for the operator product expansion of scalar fields in the boundary CFT.

We discuss the analytic properties of AdS scalar exchange graphs in the crossed channel. We show that the possible non-analytic terms drop out by virtue of non-trivial properties of generalized hypergeometric functions. The absence of non-analytic terms is a necessary condition for the existence of an operator product expansion for CFT amplitudes obtained from AdS/CFT correspondence.

Dynamics of Excited Electrons in Copper and Ferromagnetic Transition Metals: Theory and Experiment
(2000)

Both theoretical and experimental results for the dynamics of photoexcited electrons at surfaces of Cu and the ferromagnetic transition metals Fe, Co, and Ni are presented. A model for the dynamics of excited electrons is developed, which is based on the Boltzmann equation and includes effects of photoexcitation, electron-electron scattering, secondary electrons (cascade and Auger electrons), and transport of excited carriers out of the detection region. From this we determine the time-resolved two-photon photoemission (TR-2PPE). Thus a direct comparison of calculated relaxation times with experimental results by means of TR-2PPE becomes possible. The comparison indicates that the magnitudes of the spin-averaged relaxation time t and of the ratio t_up/t_down of majority and minority relaxation times for the different ferromagnetic transition metals result not only from density-of-states effects, but also from different Coulomb matrix elements M. Taking M_Fe > M_Cu > M_Ni = M_Co we get reasonable agreement with experiments.

An extremely simple and convenient method is presented for computing eigenvalues in quantum mechanics by representing position and momentum operators in a simple matrix form. The simplicity and success of the method is illustrated by numerical results concerning eigenvalues of bound systems and resonances for hermitian and non-hermitian Hamiltonians as well as driven quantum systems.

Abstract: The calculation of absorption cross sections for minimal scalars in supergravity backgrounds is an important aspect of the investigation of AdS/CFT correspondence and requires a matching of appropriate wave functions. The low energy case has attracted particular attention. In the following the dependence of the cross section on the matching point is investigated. It is shown that the low energy limit is independent of the matching point and hence exhibits universality. In the high energy limit the independence is not maintained, but the result is believed to possess the correct energy dependence.

Abstract: Let H_1 , H_2 be complex Hilbert spaces, H be their Hilbert tensor product and let tr_2 be the operator of taking the partial trace of trace class operators in H with respect to the space H_2 . The operation tr_2 maps states in H (i.e. positive trace class operators in H with trace equal to one) into states in H_1 . In this paper we give the full description of mappings that are linear right inverse to tr_2 . More precisely, we prove that any affine mapping F(W) of the convex set of states in H_1 into the states in H that is right inverse to tr_2 is given by W -> W x D for some state D in H_2 . In addition we investigate a representation of the quantum mechanical state space by probability measures on the set of pure states and a representation - used in the theory of stochastic Schrödinger equations - by probability measures on the Hilbert space. We prove that there are no affine mappings from the state space of quantum mechanics into these spaces of probability measures.

Abstract: We analyse 4-dimensional massive "phi" ^ 4 theory at finite temperature T in the imaginary-time formalism. We present a rigorous proof that this quantum field theory is renormalizable, to all orders of the loop expansion. Our main point is to show that the counterterms can be chosen temperature independent, so that the temperature flow of the relevant parameters as a function of T can be followed. Our result confirms the experience from explicit calculations to the leading orders. The proof is based on flow equations, i.e. on the (perturbative) Wilson renormalization group. In fact we will show that the difference between the theories at T > 0 and at T = 0 contains no relevant terms. Contrary to BPHZ type formalisms our approach permits to lay hand on renormalization conditions and counterterms at the same time, since both appear as boundary terms of the renormalization group flow. This is crucial for the proof.

Abstract: The duality symmetries of various chiral boson actions are investigated using D = 2 and D = 6 space-time dimensions as examples. These actions involve the Siegel, Floreanini-Jackiw, Srivastava and Pasti-Sorokin-Tonin formulations. We discover that the Siegel, Floreanini-Jackiw and Pasti-Sorokin-Tonin actions have self-duality with respect to a common anti-dualization of chiral boson fields in D = 2 and D = 6 dimensions, respectively, while the Srivastava action is self-dual with respect to a generalized dualization of chiral boson fields. Moreover, the action of the Floreanini-Jackiw chiral bosons interacting with gauge fields in D = 2 dimensions also has self-duality but with respect to a generalized anti-dualization of chiral boson fields.

Abstract: A Born-Infeld theory describing a D2-brane coupled to a 4-form RR field strength is considered, and the general solutions of the static and Euclidean time equations are derived and discussed. The period of the bounce solutions is shown to allow a consideration of tunneling and quantum-classical transitions in the sphaleron region. The order of such transitions, depending on the strength of the RR field strength, is determined. A criterion is then derived to confirm these findings.

Abstract: The functional relation between interquark potential and interquark distance is explicitly derived by considering the Nambu-Goto action in the AdS5 X S 5 background. It is also shown that a similar relation holds in a general background. The implications of this relation for confinement are briefly discussed.

A new method is used to investigate the tunneling between two weakly-linked Bose-Einstein con- densates confined in double-well potential traps. The nonlinear interaction between the atoms in each well contributes to a finite chemical potential, which, with consideration of periodic instantons, leads to a remarkably high tunneling frequency. This result can be used to interpret the newly found Macroscopic Quantum Self Trapping (MQST) effect. Also a new kind of first-order crossover between different regions is predicted.

Abstract: The transition from the instanton-dominated quantum regime to the sphaleron-dominated classical regime is studied in the d = 2 abelian-Higgs model when the spatial coordinate is compactified to S1. Contrary to the noncompactified case, this model allows both sharp first-order and smooth second-order transitions depending on the size of the circle. This finding may make the model a useful toy model for the analysis of baryon number violating processes.

Abstract: Standard methods of nonlinear dynamics are used to investigate the stability of particles, branes and D-branes of abelian Born-Infeld theory. In particular the equation of small fluctuations about the D-brane is derived and converted into a modified Mathieu equation and - complementing earlier low-energy investigations in the case of the dilaton-axion system - studied in the high-energy domain. Explicit expressions are derived for the S-matrix and absorption and reflection amplitudes of the scalar fluctuation in the presence of the D-brane. The results confirm physical expectations and numerical studies of others. With the derivation and use of the (hitherto practically unknown) high energy expansion of the Floquet exponent our considerations also close a gap in earlier treatments of the Mathieu equation.

Abstact. The tunnel splitting in biaxial antiferromagnetic particles is studied with a magnetic field applied along the hard anisotropy axis. We observe the oscillation of tunnel splitting as a function of the magnetic field due to the quantum phase interference of two tunneling paths of opposite windings. The oscillation is similar to the recent experimental result with Fe8 molecular clusters.

Abstract: The point-particle-like Hamiltonian of a biaxial spin particle with external magnetic field along the hard axis is obtained in terms of the potential field description of spin systems with exact spin-coordinate correspondence. The Zeeman energy term turns out to be an effective gauge potential which leads to a nonintegrable phase of the Euclidean Feynman propagator. The phase interference between clockwise and anticlockwise under barrier propagations is recognized explicitly as the Aharonov-Bohm effect. An additional phase which is significant for quantum phase interference is discovered with the quantum theory of spin systems besides the known phase obtained with the semiclassical treatment of spin. We also show the energy dependence of the effect and obtain the tunneling splitting at excited states with the help of periodic instantons.

Abstract: Following our earlier investigations we examine the quantum-classical winding number transition in the Abelian-Higgs system. It is demonstrated that the winding number transition in this system is of the smooth second order type in the full range of parameter space. Comparison of the action of classical vortices with that of the sphaleron supports our finding.

Abstract: Winding number transitions from quantum to classical behavior are studied in the case of the 1+1 dimensional Mottola-Wipf model with the space coordinate on a circle for exploring the possibility of obtaining transitions of second order. The model is also studied as a prototype theory which demonstrates the procedure of such investigations. In the model at hand we find that even on a circle the transitions remain those of first order.

Abstract: We develop a method of singularity analysis for conformal graphs which, in particular, is applicable to the holographic image of AdS supergravity theory. It can be used to determine the critical exponents for any such graph in a given channel. These exponents determine the towers of conformal blocks that are exchanged in this channel. We analyze the scalar AdS box graph and show that it has the same critical exponents as the corresponding CFT box graph. Thus pairs of external fields couple to the same exchanged conformal blocks in both theories. This is looked upon as a general structural argument supporting the Maldacena hypothesis.

Chaotic Billiards
(2000)

The frictionless motion of a particle on a plane billiard table The frictionless motion of a particle on a plane billiard table bounded by a closed curve provides a very simple example of a conservative classical system with non-trivial, chaotic dynamics. The limiting cases of strictly regular ("integrable") and strictly irregular ("ergodic") systems can be illustrated, as well as the typical case which shows an intricate mixture of regular and irregular behavior. Irregular orbits are characterized by an extremely sensitivity with respect to the initial conditions. Such billiard systems are exemplarily suited for educational purposes as models for simple systems with complicated dynamics as well as for far-reaching fundamental investigations.

A pure Yang-Mills theory extended by addition of a quartic term is considered in order to study the transition from the quantum tunneling regime to that of classical, i.e. thermal, behaviour. The periodic field confiurations are found, which interpolate between the vacuum and sphaleron field configurations. It is shown by explicit calculation that only smooth second order transitions occur for all permissible values of the parameter A introduced with the quartic term. The theory is one of the rare cases which canbe handled analytically.

Abstract: The transition from the quantum to the classical regime of the nucleation of the closed Robertson-Walker Universe with spacially homogeneous matter fields is investigated with a perturbation expansion around the sphaleron configuration. A criterion is derived for the occurrence of a first-order type transition, and the related phase diagram for scalar and vector fields is obtained. For scalar fields both the first and second order transitions can occur depending on the shape of the potential barrier. For a vector field, here that of an O (3) nonlinear o-model, the transition is seen to be only of the first order. PACS numbers: 11.15.Kc, 03.65Sq, 05.70.Fh, 98.80.Cq

Abstract: The self-duality of chiral p-forms was originally investigated by Pasti, Sorokin and Tonin in a manifestly Lorentz covariant action with non-polynomial auxiliary fields. The investigation was then extended to other chiral p-form actions. In this paper we point out that the self-duality appears in a wider context of theoretical models that relate to chiral p-forms. We demonstrate this by considering the interacting model of Floreanini- Jackiw chiral bosons and gauge fields, the generalized chiral Schwinger model (GCSM) and the latter's gauge invariant formulation, and discover that the self-duality of the GCSM corresponds to the vector and axial vector current duality.

Abstract: It has recently been shown that the equation of motion of a massless scalar field in the background of some specific p branes can be reduced to a modified Mathieu equation. In the following the absorption rate of the scalar by a D3 brane in ten dimensions is calculated in terms of modified Mathieu functions of the first kind, using standard Mathieu coefficients. The relation of the latter to Dougall coefficients (used by others) is investigated. The S-matrix obtained in terms of modified Mathieu functions of the first kind is easily evaluated if known rapidly convergent low energy expansions of these in terms of products of Bessel functions are used. Leading order terms, including the interesting logarithmic contributions, can be obtained analytically.

Abstract: We describe a technique for manipulating quantum information stored in collective states of mesoscopic ensembles. Quantum processing is accomplished by optical excitation into states with strong dipole-dipole interactions. The resulting "dipole blockade" can be used to inhibit transitions into all but singly excited collective states. This can be employed for a controlled generation of collective atomic spin states as well as non-classical photonic states and for scalable quantum logic gates. An example involving a cold Rydberg gas is analyzed.

Abstract: The recently proposed idea to generate entanglement between photon states via exchange interactions in an ensemble of atoms (J. D. Franson and T. B. Pitman, Phys. Rev. A 60 , 917 (1999) and J. D. Franson et al., (quant- ph/9912121)) is discussed using an S -matix approach. It is shown that if the nonlinear response of the atoms is negligible and no additional atom-atom interactions are present, exchange interactions cannot produce entanglement between photons states in a process that returns the atoms to their initial state. Entanglement generation requires the presence of a nonlinear atomic response or atom-atom interactions.

Abstract: Local field effects on the rate of spontaneous emission and Lamb shift in a dense gas of atoms are discussed taking into account correlations of atomic center-of-mass coordinates. For this the exact retarded propagator in the medium is calculated in independent scattering approximation and employing a virtual-cavity model. The resulting changes of the atomic polarizability lead to modi cations of the medium response which can be of the same order of magnitude but of opposite sign than those due to local field corrections of the dielectric function derived by Morice, Castin, and Dalibard [Phys.Rev.A 51, 3896 (1995)].

Abstract: We identify form-stable coupled excitations of light and matter ("dark-state polaritons") associated with the propagation of quantum fields in Electromagnetically Induced Transparency. The properties of the dark-state polaritons such as the group velocity are determined by the mixing angle between light and matter components and can be controlled by an external coherent field as the pulse propagates. In particular, light pulses can be decelerated and "trapped" in which case their shape and quantum state are mapped onto metastable collective states of matter. Possible applications of this reversible coherent-control technique are discussed.

Abstract: We analyze systematic (classical) and fundamental (quantum) limitations of the sensitivity of optical magnetometers resulting from ac-Stark shifts. We show that incontrast to absorption-based techniques, the signal reduction associated with classical broadening can be compensated in magnetometers based on phase measurements using electromagnetically induced transparency (EIT). However due to ac-Stark associated quantum noise the signal-to-noise ratio of EIT-based magnetometers attains a maximum value at a certain laser intensity. This value is independent on the quantum statistics of the light and defines a standard quantum limit of sensitivity. We demonstrate that an EIT-based optical magnetometer in Faraday configuration is the best candidate to achieve the highest sensitivity of magnetic field detection and give a detailed analysis of such a device.

Abstract: We analyze the above-threshold behavior of a mirrorless parametric oscillator based on resonantly enhanced four wave mixing in a coherently driven dense atomic vapor. It is shown that, in the ideal limit, an arbitrary small flux of pump photons is sufficient to reach the oscillator threshold. We demonstrate that due to the large group velocity delays associated with coherent media, an extremely narrow oscillator linewidth is possible, making a narrow-band source of non-classical radiation feasible.

Abstract: This paper presents a solution to a problem from superanalysis about the existence of Hilbert-Banach superalgebras. Two main results are derived: 1) There exist Hilbert norms on some graded algebras (infinite-dimensional superalgebras included) with respect to which the multiplication is continuous. 2) Such norms cannot be chosen to be submultiplicative and equal to one on the unit of the algebra.

Magnetic anisotropies of MBE-grown fcc Co(110)-films on Cu(110) single crystal substrates have been determined by using Brillouin light scattering(BLS) and have been correlated with the structural properties determined by low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). Three regimes of film growth and associated anisotropy behavior are identified: coherent growth in the Co film thickness regime of up to 13 Å, in-plane anisotropic strain relaxation between 13 Å and about 50 Å and inplane isotropic strain relaxation above 50 Å. The structural origin of the transition between anisotropic and isotropic strain relaxation was studied using STM. In the regime of anisotropic strain relaxation long Co stripes with a preferential [ 110 ]-orientation are observed, which in the isotropic strain relaxation regime are interrupted in the perpendicular in-plane direction to form isotropic islands. In the Co film thickness regime below 50 Å an unexpected suppression of the magnetocrystalline anisotropy contribution is observed. A model calculation based on a crystal field formalism and discussed within the context of band theory, which explicitly takes tetragonal misfit strains into account, reproduces the experimentally observed anomalies despite the fact that the thick Co films are quite rough.

Absract: We report on measurements of the two-dimensional intensity distribtion of linear and non-linear spin wave excitations in a LuBiFeO film. The spin wave intensity was detected with a high-resolution Brillouinlight scatteringspectroscopy setup. The observed snake-like structure of the spin wave intensity distribution is understood as a mode beating between modes with different lateral spin wave intensity distributions. The theoretical treatment of the linear regime is performed analytically, whereas the propagation of non-linear spin waves is simulated by a numerical solution of a non-linear Schrödinger equation with suitable boundary conditions.

In this paper we present a renormalizability proof for spontaneously broken SU (2) gauge theory. It is based on Flow Equations, i.e. on the Wilson renormalization group adapted to perturbation theory. The power counting part of the proof, which is conceptually and technically simple, follows the same lines as that for any other renormalizable theory. The main difficulty stems from the fact that the regularization violates gauge invariance. We prove that there exists a class of renormalization conditions such that the renormalized Green functions satisfy the Slavnov-Taylor identities of SU (2) Yang-Mills theory on which the gauge invariance of the renormalized theory is based.

Hexagonal BN films have been deposited by rf-magnetron sputtering with simultaneous ion plating. The elastic properties of the films grown on silicon substrates under identical coating conditions have been de-termined by Brillouin light scattering from thermally excited surface phonons. Four of the five independent elastic constants of the deposited material are found to be c11 = 65 GPa, c13 = 7 GPa, c33 = 92 GPa and c44 = 53 GPa exhibiting an elastic anisotropy c11/c33 of 0.7. The Young's modulus determined with load indenta-tion is distinctly larger than the corresponding value taken from Brillouin light scattering. This discrepancy is attributed to the specific morphology of the material with nanocrystallites embedded in an amorphous matrix.

We report on the observation of spin wave quantization in square arrays of micron size circular magnetic Ni80Fe20 dots by means of Brillouin light scattering spectroscopy. For a large wavevector interval several discrete, dispersionless modes with a frequency splitting of up to 2.5 GHz were observed. The modes are identified as magnetostatic surface spin waves laterally quantized due to in- plane confinement in each single dot. The frequencies of the lowest observed modes decrease with increasing distance between the dots, thus indicating an essential dynamic magnetic dipole interaction between the dots with small interdot distances.

It is shown, that recently constructed PST Lagrangians for chiral supergravities follow directly from earlier Kavalov-Mkrtchyan Lagrangians by an Ansatz for the ' tensor by expressing this in terms of the PST scalar. The susy algebra which included earlier ff-symmetry in the commutator of supersymmetry transformations, is now shown to include both PST symmetries, which arise from the single ff-symmetry term. The Lagrangian for the 5-brane is not described by this correspondence, and probably can be obtained from more general Lagrangians, posessing ff-symmetry.

We report results of the switching properties of Stoner-like magnetic particles subject to short magnetic field pulses, obtained by numerical investigations. We discuss the switching properties as a function of the external field pulse strength and direction, the pulse length and the pulse shape. For field pulses long compared to the ferromagnetic resonance precession time the switching behavior is governed by the magnetic damping term, whereas in the limit of short field pulses the switching properties are dominated by the details of the precession of the magnetic moment. In the latter case, by choosing the right field pulse parameters, the magnetic damping term is of minor importance and ultrafast switching can be achieved. Switching can be obtained in an enlarged angular range of the direction of the applied field compared to the case of long pulses.

An experimental study of spin wave quantization in arrays of micron size magnetic Ni80Fe20 islands (dots and wires) by means of Brillouin light scattering spectroscopy is reported. Dipolar-dominated spin wave modes laterally quantized in a single island with quantized wavevector values determined by the size of the island are studied. In the case of wires the frequencies of the modes and the transferred wavevector interval, where each mode is observed, are calculated. The results of the calculations are in a good agreement with the experimental data. In the case of circular dots the frequencies of the lowest observed modes decrease with increasing distance between the dots, thus indicating an essential dynamic magnetic dipole interaction between the dots with small interdot distances.

An overview of the current status of the study of spin wave excitations in arrays of magnetic dots and wires is given. We describe both the status of theory and recent inelastic light scattering experiments addressing the three most important issues: the modification of magnetic properties by patterning due to shape aniso-tropies, anisotropic coupling between magnetic islands, and the quantization of spin waves due to the in-plane confinement of spin waves in islands.

An experimental study of spin wave quantization in arrays of micron size magnetic Ni80Fe20 wires by means of Brillouin light scattering spectroscopy is reported. Dipolar-dominated Damon-Eshbach spin wave modes laterally quantized in a single wire with quantized wavevector values determined by the width of the wire are studied. The frequency splitting between quantized modes, which decreases with increasing mode number, depends on the wire sizes and is up to 1.5 GHz. The transferred wavevector interval, where each mode is observed, is calculated using a light scattering theory for confined geometries. The frequen-cies of the modes are calculated, taking into account finite size effects. The results of the calculations are in a good agreement with the experimental data.

Collisions of Spin Wave Envelope Solitons and Self-Focused Spin Wave Packets in Magnetic Films
(1999)

Head-on collisions between two-dimensional self-focused spin wave packets and between quasi-one-dimensional spin wave envelope solitons have been directly observed for the first time in yttrium-iron garnet (YIG) films by means of a space- and time-resolved Brillouin light scattering technique. We show that quasi-one-dimensional envelope solitons formed in narrow film strips ("waveguides") retain their shapes after collision, while the two-dimensional self-focused spin wave packets formed in wide YIG films are destroyed in collision.

High frequency switching of single domain, uniaxial magnetic particles is discussed in terms of transition rates controlled by a small transverse bias field. It is shown that fast switching times can be achieved using bias fields an order of magnitude smaller than the effective anisotropy field. Analytical expressions for the switching time are derived in special cases and general configurations of practical interest are examined using numerical simulations.

We present detailed studies of the enhanced coercivity of exchange-bias bilayer Fe/MnPd, both experimentally and theoretically. We have demonstrated that the existence of large higher-order anisotropies due to exchange coupling between different Fe and MnPd layers can account for the large increase of coercivity in Fe/MnPd system. The linear dependence of coercivity on inverse Fe thickness are well explained by a phenomenological model by introducing higher-order anisotropy terms into the total free energy of the system.

The Hamiltonian of the \(N\)-particle Calogero model can be expressed in terms of generators of a Lie algebra for a definite class of representations. Maintaining this Lie algebra, its representations, and the flatness of the Riemannian metric belonging to the second order differential operator, the set of all possible quadratic Lie algebra forms is investigated. For \(N = 3\) and \(N = 4\) such forms are constructed explicitly and shown to correspond to exactly solvable Sutherland models. The results can be carried over easily to all \(N\).

Abstract: We aim to establish a link between path-integral formulations of quantum and classical field theories via diagram expansions. This link should result in an independent constructive characterisation of the measure in Feynman path integrals in terms of a stochastic differential equation (SDE) and also in the possibility of applying methods of quantum field theory to classical stochastic problems. As a first step we derive in the present paper a formal solution to an arbitrary c-number SDE in a form which coincides with that of Wick's theorem for interacting bosonic quantum fields. We show that the choice of stochastic calculus in the SDE may be regarded as a result of regularisation, which in turn removes ultraviolet divergences from the corresponding diagram series.

We show that the solution to an arbitrary c-number stochastic differential equation (SDE) can be represented as a diagram series. Both the diagram rules and the properties of the graphical elements reflect causality properties of the SDE and this series is therefore called a causal diagram series. We also discuss the converse problem, i.e. how to construct an SDE of which a formal solution is a given causal diagram series. This then allows for a nonperturbative summation of the diagram series by solving this SDE, numerically or analytically.

Abstract: We propose a simple method for measuring the populations and the relative phase in a coherent superposition of two atomic states. The method is based on coupling the two states to a third common (excited) state by means of two laser pulses, and measuring the total fluorescence from the third state for several choices of the excitation pulses.

Abstract: We present experimental and theoretical results of a detailed study of laser-induced continuum structures (LICS) in the photoionization continuum of helium out of the metastable state 2s^1 S_0. The continuum dressing with a 1064 nm laser, couples the same region of the continuum to the 4s^1 S_0 state. The experimental data, presented for a range of intensities, show pronounced ionization suppression (by asmuch as 70% with respect to the far-from-resonance value) as well as enhancement, in a Beutler-Fano resonance profile. This ionization suppression is a clear indication of population trapping mediated by coupling to a contiuum. We present experimental results demonstrating the effect of pulse delay upon the LICS, and for the behavior of LICS for both weak and strong probe pulses. Simulations based upon numerical solution of the Schrödinger equation model the experimental results. The atomic parameters (Rabi frequencies and Stark shifts) are calculated using a simple model-potential method for the computation of the needed wavefunctions. The simulations of the LICS profiles are in excellent agreement with experiment. We also present an analytic formulation of pulsed LICS. We show that in the case of a probe pulse shorter than the dressing one the LICS profile is the convolution of the power spectra of the probe pulse with the usual Fano profile of stationary LICS. We discuss some consequences of deviation from steady-state theory.

A new advanced space- and time-resolved Brillouin light scattering (BLS) technique is used to study diffraction of two-dimensional beams and pulses of dipolar spin waves excited by strip-line antennas in tangentially magnetized garnet films. The new technique is an effective tool for investigations of two-dimensional spin wave propagation with high spatial and temporal resolution. Linear effects, such as the unidirectional exci-tation of magnetostatic surface waves and the propagation of backward volume magnetostatic waves (BVMSW) in two preferential directions due to the non-collinearity of their phase and group velocities are investigated in detail. In the nonlinear regime stationary and non-stationary self-focusing effects are studied. It is shown, that non-linear diffraction of a stationary BVMSW beam, having a finite transverse aperture, leads to self-focusing of the beam at one spatial point. Diffraction of a finite-duration (non-stationary) BVMSW pulse leads to space-time self-focusing and formation of a strongly localized two-dimensional wave packet (spin wave bullet). Numerical modeling of the diffraction process by using a variational approach and direct numerical integration of the two-dimensional non-linear Schrödinger equation provides a good qualitative description of the observed phenomena.

A new advanced space- and time-resolved Brillouin light scattering technique is used to study diffraction of two-dimensional beams and pulses of dipolar spin waves excited by strip-line antennas in tangentially magnetized garnet films. The technique is an effective tool for investigations of two-dimensional spin wave propagation with high spatial and temporal resolution. Nonlinear effects such as stationary and nonstationary self-focusing are investigated in detail. It is shown, that nonlinear diffraction of a stationary backward volume magnetostatic wave (BVMSW) beam, having a finite transverse aperture, leads to selffocusing of the beam at one spatial point. Diffraction of a finite-duration (non-stationary) BVMSW pulse leads to space-time self-focusing and formation of a strongly localized two-dimensional wave packet (spin wave bullet).

We report on the observation of spin wave quantization in tangentially magnetized Ni80Fe20 discs by means of Brillouin light scattering spectroscopy. For a large wave vector interval several discrete, dispersionless modes with a frequency splitting up to 2.5 GHz were observed. The modes are identified as being magne-tostatic surface spin wave modes quantized by their lateral confinement in the disc. For the lowest modes dynamic magnetic dipolar coupling between the discs is found for a disc spacing of 0.1microm.

We report on investigations of the crystallographic structure and the magnetic anisotropies of epitaxial iron films deposited onto periodically stepped Ag(001) surfaces using low energy electron diffraction, x-ray diffraction, second harmonic generation (SHG), as well as the Brillouin light scattering (BLS) technique. The focus of the present study lies on the interrelation between the surface morphology of the buffer layers and the magnetic properties of the Fe films, epitaxially grown onto them. Especially the symmetry breaking at the atomic steps is found to create an uniaxial magnetic anisotropy measured by BLS and a very strong anisotropic signal in magnetic SHG.

Trigonometric invariants are defined for each Weyl group orbit on the root lattice. They are real and periodic on the coroot lattice. Their polynomial algebra is spanned by a basis which is calculated by means of an algorithm. The invariants of the basis can be used as coordinates in any cell of the coroot space and lead to an exactly solvable model of Sutherland type. We apply this construction to the \(F_4\) case.

Continuous and discrete superselection rules induced by the interaction with the environment are investigated for a class of exactly soluble Hamiltonian models. The environment is given by a Boson field. Stable superselection sectors can only emerge if the low frequences dominate and the ground state of the Boson field disappears due to infrared divergence. The models allow uniform estimates of all transition matrix elements between different superselection sectors.

We present results from a study of the coherence properties of a system involving three discrete states coupled to each other by two-photon processes via a common continuum. This tripod linkage is an extension of the standard laser-induced continuum structure (LICS) which involves two discrete states and two lasers. We show that in the tripod scheme, there exist two population trapping conditions; in some cases these conditions are easier to satisfy than the single trapping condition in two-state LICS. Depending on the pulse timing, various effects can be observed. We derive some basic properties of the tripod scheme, such as the solution for coincident pulses, the behaviour of the system in the adiabatic limit for delayed pulses, the conditions for no ionization and for maximal ionization, and the optimal conditions for population transfer between the discrete states via the continuum. In the case when one of the discrete states is strongly coupled to the continuum, the population dynamics reduces to a standard two-state LICS problem (involving the other two states) with modified parameters; this provides the opportunity to customize the parameters of a given two-state LICS system.

Abstract: In this paper we present a renormalizability proof for spontaneously broken SU (2) gauge theory. It is based on Flow Equations, i.e. on the Wilson renormalization group adapted to perturbation theory. The power counting part of the proof, which is conceptually and technically simple, follows the same lines as that for any other renormalizable theory. The main difficulty stems from the fact that the regularization violates gauge invariance. We prove that there exists a class of renormalization conditions such that the renormalized Green functions satisfy the Slavnov-Taylor identities of SU (2) Yang-Mills theory on which the gauge invariance of the renormalized theory is based.

We consider a (2 + 1)-dimensional mechanical system with the Lagrangian linear in the torsion of a light-like curve. We give Hamiltonian formulation of this system and show that its mass and spin spectra are defined by one-dimensional nonrelativistic mechanics with a cubic potential. Consequently, this system possesses the properties typical of resonance-like particles.

Starting from the Hamiltonian operator of the noncompensated two-sublattice model of a small antiferromagnetic particle, we derive the e effective Lagrangian of a biaxial antiferromagnetic particle in an external magnetic field with the help of spin-coherent-state path integrals. Two unequal level-shifts induced by tunneling through two types of barriers are obtained using the instanton method. The energy spectrum is found from Bloch theory regarding the periodic potential as a superlattice. The external magnetic field indeed removes Kramers' degeneracy, however a new quenching of the energy splitting depending on the applied magnetic field is observed for both integer and half-integer spins due to the quantum interference between transitions through two types of barriers.

Abstract: The periodic bounce configurations responsible for quantum tunneling are obtained explicitly and are extended to the finite energy case for minisuperspace models of the Universe. As a common feature of the tunneling models at finite energy considered here we observe that the period of the bounce increases with energy monotonically. The periodic bounces do not have bifurcations and make no contribution to the nucleation rate except the one with zero energy. The sharp first order phase transition from quantum tunneling to thermal activation is verified with the general criterions.

Abstract: We describe a general technique that allows for an ideal transfer of quantum correlations between light fields and metastable states of matter. The technique is based on trapping quantum states of photons in coherently driven atomic media, in which the group velocity is adiabatically reduced to zero. We discuss possible applications such as quantum state memories, generation of squeezed atomic states, preparation of entangled atomic ensembles and quantum information processing.

Abstract: We show that it is possible to "store" quantum states of single-photon fields by mapping them onto collective meta-stable states of an optically dense, coherently driven medium inside an optical resonator. An adiabatic technique is suggested which allows to transfer non-classical correlations from traveling-wave single-photon wave-packets into atomic states and vise versa with nearly 100% efficiency. In contrast to previous approaches involving single atoms, the present technique does not require the strong coupling regime corresponding to high-Q micro-cavities. Instead, intracavity Electromagnetically Induced Transparency is used to achieve a strong coupling between the cavity mode and the atoms.

Mirrorless oscillation based on resonantly enhanced 4-wave mixing: All-order analytic solutions
(1999)

Abstract: The phase transition to mirrorless oscillation in resonantly enhanced four-wave mixing in double-A systems are studied analytically for the ideal case of infinite lifetimes of ground-state coherences. The stationary susceptibilities are obtained in all orders of the generated fields and analytic solutions of the coupled nonlinear differential equations for the field amplitudes are derived and discussed.

Abstract: We utilize the generation of large atomic coherence to enhance the resonant nonlinear magneto-optic effect by several orders of magnitude, thereby eliminating power broadening and improving the fundamental signal-to-noise ratio. A proof-of-principle experiment is carried out in a dense vapor of Rb atoms. Detailed numerical calculations are in good agreement with the experimental results. Applications such as optical magnetometry or the search for violations of parity and time reversal symmetry are feasible.

Abstract: Spontaneous emission and Lamb shift of atoms in absorbing dielectrics are discussed. A Green's-function approach is used based on the multipolar interaction Hamiltonian of a collection of atomic dipoles with the quantised radiation field. The rate of decay and level shifts are determined by the retarded Green's-function of the interacting electric displacement field, which is calculated from a Dyson equation describing multiple scattering. The positions of the atomic dipoles forming the dielectrics are assumed to be uncorrelated and a continuum approximation is used. The associated unphysical interactions between different atoms at the same location is eliminated by removing the point-interaction term from the free-space Green's-function (local field correction). For the case of an atom in a purely dispersive medium the spontaneous emission rate is altered by the well-known Lorentz local-field factor. In the presence of absorption a result different from previously suggested expressions is found and nearest-neighbour interactions are shown to be important.

Abstract: Random matrix theory (RMT) is a powerful statistical tool to model spectral fluctuations. In addition, RMT provides efficient means to separate different scales in spectra. Recently RMT has found application in quantum chromodynamics (QCD). In mesoscopic physics, the Thouless energy sets the universal scale for which RMT applies. We try to identify the equivalent of a Thouless energy in complete spectra of the QCD Dirac operator with staggered fermions and SU_(2) lattice gauge fields. Comparing lattice data with RMT predictions we find deviations which allow us to give an estimate for this scale.

Beyond the Thouless energy
(1999)

Abstract: The distribution and the correlations of the small eigenvalues of the Dirac operator are described by random matrix theory (RMT) up to the Thouless energy E_= 1 / sqrt (V), where V is the physical volume. For somewhat larger energies, the same quantities can be described by chiral perturbation theory (chPT). For most quantities there is an intermediate energy regime, roughly 1/V < E < 1/sqrt (V), where the results of RMT and chPT agree with each other. We test these predictions by constructing the connected and disconnected scalar susceptibilities from Dirac spectra obtained in quenched SU(2) and SU(3) simulations with staggered fermions for a variety of lattice sizes and coupling constants. In deriving the predictions of chPT, it is important totake into account only those symmetries which are exactly realized on the lattice.

Abstract: Recently, the chiral logarithms predicted by quenched chiral perturbation theory have been extracted from lattice calculations of hadron masses. We argue that the deviations of lattice results from random matrix theory starting around the so-called Thouless energy can be understood in terms of chiral perturbation theory as well. Comparison of lattice data with chiral perturbation theory formulae allows us to compute the pion decay constant. We present results from a calculation for quenched SU(2) with Kogut-Susskind fermions at ß = 2.0 and 2.2.

Abstract: Recently, the contributions of chiral logarithms predicted by quenched chiral perturbation theory have been extracted from lattice calculations of hadron masses. We argue that a detailed comparison of random matrix theory and lattice calculations allows for a precise determination of such corrections. We estimate the relative size of the m log(m), m, and m^2 corrections to the chiral condensate for quenched SU(2).

The paper discusses the metastable states of a quantum particle in a periodic potential under a constant force (the model of a crystal electron in a homogeneous electric ,eld), which are known as the Wannier-Stark ladder of resonances. An ecient procedure to ,nd the positions and widths of resonances is suggested and illustrated by numerical calculation for a cosine potential.

We have computed ensembles of complete spectra of the staggered Dirac operator using four-dimensional SU(2) gauge fields, both in the quenched approximation and with dynamical fermions. To identify universal features in the Dirac spectrum, we compare the lattice data with predictions from chiral random matrix theory for the distribution of the low-lying eigenvalues. Good agreement is found up to some limiting energy, the so-called Thouless energy, above which random matrix theory no longer applies. We determine the dependence of the Thouless energy on the simulation parameters using the scalar susceptibility and the number variance.

The tunneling splitting of the energy levels of a ferromagnetic particle in the presence of an applied magnetic field - previously derived only for the ground state with the path integral method - is obtained in a simple way from Schr"odinger theory. The origin of the factors entering the result is clearly understood, in particular the effect of the asymmetry of the barriers of the potential. The method should appeal particularly to experimentalists searching for evidence of macroscopic spin tunneling.

Transitions from classical to quantum behaviour in a spin system with two degenerate ground states separated by twin energy barriers which are asymmetric due to an applied magnetic field are investigated. It is shown that these transitions can be interpreted as first- or second-order phase transitions depending on the anisotropy and magnetic parameters defining the system in an effective Lagrangian description.