### Refine

#### Year of publication

- 1999 (351) (remove)

#### Document Type

- Preprint (351) (remove)

#### Language

- English (351) (remove)

#### Keywords

- Case-Based Reasoning (5)
- Location Theory (5)
- case-based problem solving (5)
- Abstraction (4)
- Knowledge Acquisition (4)
- Fallbasiertes Schließen (3)
- Internet (3)
- Knowledge acquisition (3)
- Multicriteria Optimization (3)
- case-based reasoning (3)

#### Faculty / Organisational entity

A growing share of all software development project work is being done by geographically distributed teams. To satisfy shorter product design cycles, expert team members for a development project may need to be r ecruited globally. Yet to avoid extensive travelling or r eplacement costs, distributed project work is preferred. Current-generation software engineering tools and ass ociated systems, processes, and methods were for the most part developed to be used within a single enterprise. Major innovations have lately been introduced to enable groupware applications on the Internet to support global collaboration. However, their deployment for distributed software projects requires further research. In partic ular, groupware methods must seamlessly be integrated with project and product management systems to make them attractive for industry. In this position paper we outline the major challenges concerning distributed (virtual) software projects. Based on our experiences with software process modeling and enactment environments, we then propose approaches to solve those challenges.

MOLTKE is a research project dealing with a complex technical application. After describing the domain of CNCmachining centers and the applied KA methods, we summarize the concrete KA problems which we have to handle. Then we describe a KA mechanism which supports an engineer in developing a diagnosis system. In chapter 6 weintroduce learning techniques operating on diagnostic cases and domain knowledge for improving the diagnostic procedure of MOLTKE. In the last section of this chapter we outline some essential aspects of organizationalknowledge which is heavily applied by engineers for analysing such technical systems (Qualitative Engineering). Finally we give a short overview of the actual state of realization and our future plans.

In this paper we will present a design model (in the sense of KADS) for the domain of technical diagnosis. Based on this we will describe the fully implemented expert system shell MOLTKE 3.0, which integrates common knowledge acquisition methods with techniques developed in the fields of Model-Based Diagnosis and Machine Learning, especially Case-Based Reasoning.

Case-based knowledge acquisition, learning and problem solving for diagnostic real world tasks
(1999)

Within this paper we focus on both the solution of real, complex problems using expert system technology and the acquisition of the necessary knowledge from a case-based reasoning point of view. The development of systems which can be applied to real world problems has to meet certain requirements. E.g., all available information sources have to be identified and utilized. Normally, this involves different types of knowledge for which several knowledge representation schemes are needed, because no scheme is equally natural for all sources. Facing empirical knowledge it is important to complement the use of manually compiled, statistic and otherwise induced knowledge by the exploitation of the intuitive understandability of case-based mechanisms. Thus, an integration of case-based and alternative knowledge acquisition and problem solving mechanisms is necessary. For this, the basis is to define the "role" which case-based inference can "play" within a knowledge acquisition workbench. We will discuss a concrete casebased architecture, which has been applied to technical diagnosis problems, and its integration into a knowledge acquisition workbench which includes compiled knowledge and explicit deep models, additionally.

Today, the worlds and terminologies of mechanical engineering and software engineering coexist, but they do not always work together seamlessly. Both worlds have developed their own separate formal vocabulary for expressing their concepts as well as for capturing and communicating their respective domain knowledge. But, these two vocabularies are not unified, interwoven, or at least interconnected in a reasonable manner. Thus, the subject of this paper is a comparison of the vocabularies of the two fields, namely feature technology from the area of mechanical engineering and software design patterns from the software engineering domain. Therefore, a certain amount of definitions, history, examples, etc. is presented for features as well as for design patterns. After this, an analysis is carried out to identify analogies and differences. The main intention of this paper is to inform both worlds - mechanical and software engineering - about the other side's terminology and to start a discussion about potential mutual benefits and possibilities to bridge the gap between these two worlds, e.g. to improve the manageability of CAx product development processes.

PANDA is a run-time package based on a very small operating system kernel which supports distributed applications written in C++. It provides powerful abstractions such as very efficient user-level threads, a uniform global address space, object and thread mobility, garbage collection, and persistent objects. The paper discusses the design ration- ales underlying the PANDA system. The fundamental features of PANDA are surveyed, and their implementation in the current prototype environment is outlined.

Distributed systems are an alternative to shared-memorymultiprocessors for the execution of parallel applications.PANDA is a runtime system which provides architecturalsupport for efficient parallel and distributed program-ming. PANDA supplies means for fast user-level threads,and for a transparent and coordinated sharing of objectsacross a homogeneous network. The paper motivates themajor architectural choices that guided our design. Theproblem of sharing data in a distributed environment isdiscussed, and the performance of appropriate mecha-nisms provided by the PANDA prototype implementation isassessed.

As the properties of components have gradually become clearer, attention has started to turn to the architectural issues which govern their interaction and composition. In this paper we identify some of the major architectural questions affecting component-based software develop-ment and describe the predominant architectural dimensions. Of these, the most interesting is the "architecture hierarchy" which we believe is needed to address the "interface vicissitude" problem that arises whenever interaction refinement is explicitly documented within a component-based system. We present a solution to this problem based on the concept of stratified architectures and object metamorphosis Finally, we describe how these concepts may assist in increasing the tailorability of component-based frameworks.

This paper presents a new kind of abstraction, which has been developed for the purpose of proofplanning. The basic idea of this paper is to abstract a given theorem and to find an abstractproof of it. Once an abstract proof has been found, this proof has to be refined to a real proofof the original theorem. We present a goal oriented abstraction for the purpose of equality proofplanning, which is parameterized by common parts of the left- and right-hand sides of the givenequality. Therefore, this abstraction technique provides an abstract equality problem which ismore adequate than those generated by the abstractions known so far. The presented abstractionalso supports the heuristic search process based on the difference reduction paradigm. We give aformal definition of the abstract space including the objects and their manipulation. Furthermore,we prove some properties in order to allow an efficient implementation of the presented abstraction.

In this paper we show that distributing the theorem proving task to several experts is a promising idea. We describe the team work method which allows the experts to compete for a while and then to cooperate. In the cooperation phase the best results derived in the competition phase are collected and the less important results are forgotten. We describe some useful experts and explain in detail how they work together. We establish fairness criteria and so prove the distributed system to be both, complete and correct. We have implementedour system and show by non-trivial examples that drastical time speed-ups are possible for a cooperating team of experts compared to the time needed by the best expert in the team.

We investigate one of the classical problems of the theory ofterm rewriting, namely termination. We present an ordering for compar-ing higher-order terms that can be utilized for testing termination anddecreasingness of higher-order conditional term rewriting systems. Theordering relies on a first-order interpretation of higher-order terms anda suitable extension of the RPO.

In this paper we are interested in an algebraic specification language that (1) allowsfor sufficient expessiveness, (2) admits a well-defined semantics, and (3) allows for formalproofs. To that end we study clausal specifications over built-in algebras. To keep thingssimple, we consider built-in algebras only that are given as the initial model of a Hornclause specification. On top of this Horn clause specification new operators are (partially)defined by positive/negative conditional equations. In the first part of the paper wedefine three types of semantics for such a hierarchical specification: model-theoretic,operational, and rewrite-based semantics. We show that all these semantics coincide,provided some restrictions are met. We associate a distinguished algebra A spec to ahierachical specification spec. This algebra is initial in the class of all models of spec.In the second part of the paper we study how to prove a theorem (a clause) valid in thedistinguished algebra A spec . We first present an abstract framework for inductive theoremprovers. Then we instantiate this framework for proving inductive validity. Finally wegive some examples to show how concrete proofs are carried out.This report was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D4-Projekt)

Chains of Recurrences (CRs) are a tool for expediting the evaluation of elementary expressions over regular grids. CR based evaluations of elementaryexpressions consist of 3 major stages: CR construction, simplification, and evaluation. This paper addresses CR simplifications. The goal of CRsimplifications is to manipulate a CR such that the resulting expression is more efficiently to evaluate. We develop CR simplification strategies which takethe computational context of CR evaluations into account. Realizing that it is infeasible to always optimally simplify a CR expression, we give heuristicstrategies which, in most cases, result in a optimal, or close-to-optimal expressions. The motivations behind our proposed strategies are discussed and theresults are illustrated by various examples.

The problem of providing connectivity for a collection of applications is largely one of data integration: the communicating parties must agree on thesemantics and syntax of the data being exchanged. In earlier papers [#!mp:jsc1!#,#!sg:BSG1!#], it was proposed that dictionaries of definitions foroperators, functions, and symbolic constants can effectively address the problem of semantic data integration. In this paper we extend that earlier work todiscuss the important issues in data integration at the syntactic level and propose a set of solutions that are both general, supporting a wide range of dataobjects with typing information, and efficient, supporting fast transmission and parsing.

We report results of the switching properties of Stoner-like magnetic particles subject to short magnetic field pulses, obtained by numerical investigations. We discuss the switching properties as a function of the external field pulse strength and direction, the pulse length and the pulse shape. For field pulses long compared to the ferromagnetic resonance precession time the switching behavior is governed by the magnetic damping term, whereas in the limit of short field pulses the switching properties are dominated by the details of the precession of the magnetic moment. In the latter case, by choosing the right field pulse parameters, the magnetic damping term is of minor importance and ultrafast switching can be achieved. Switching can be obtained in an enlarged angular range of the direction of the applied field compared to the case of long pulses.

A multiscale method is introduced using spherical (vector) wavelets for the computation of the earth's magnetic field within source regions of ionospheric and magnetospheric currents. The considerations are essentially based on two geomathematical keystones, namely (i) the Mie representation of solenoidal vector fields in terms of toroidal and poloidal parts and (ii) the Helmholtz decomposition of spherical (tangential) vector fields. Vector wavelets are shown to provide adequate tools for multiscale geomagnetic modelling in form of a multiresolution analysis, thereby completely circumventing the numerical obstacles caused by vector spherical harmonics. The applicability and efficiency of the multiresolution technique is tested with real satellite data.

We show how to prove ground confluence of term rewrite relations that areinduced by reductive systems of clausal rewrite rules. According to a well-knowncritical pair criterion it suffices for such systems to prove ground joinability ofa suitable set of 'critical clauses'. We outline how the latter can be done in asystematic fashion, using mathematical induction as a key concept of reasoning.

We describe a technique to make application programs fault tolerant. This techADnique is based on the concept of checkpointing from an active program to one ormore passive backup copies which serve as an abstraction of stable memory. Ifthe primary copy fails, one of the backup copies takes over and resumes processADing service requests. After each failure a new backup copy is created in order torestore the replication degree of the service. All mechanisms necessary to achieveand maintain fault tolerance can be added automatically to the code of a nonADfaulttolerant server, thus making fault tolerance completely transparent for the applicaADtion programmer.

We present a new software architecture in which all concepts necessary to achieve fault tolerance can be added to an appli- cation automatically without any source code changes. As a case study, we consider the problem of providing a reliable service despite node failures by executing a group of replicat- ed servers. Replica creation and management as well as fail- ure detection and recovery are performed automatically by a separate fault tolerance layer (ft-layer) which is inserted be- tween the server application and the operating system kernel. The layer is invisible for the application since it provides the same functional interface as the operating system kernel, thus making the fault tolerance property of the service completely transparent for the application. A major advantage of our ar- chitecture is that the layer encapsulates both fault tolerance mechanisms and policies. This allows for maximum flexibility in the choice of appropriate methods for fault tolerance with- out any changes in the application code.

This paper presents a completely systematic design procedure for asynchronous controllers.The initial step is the construction of a signal transition graph (STG, an interpreted Petri net) ofthe dialog between data path and controller: a formal representation without reference to timeor internal states. To implement concurrently operating control structures, and also to reducedesign effort and circuit cost, this STG can be decomposed into overlapping subnets. A univer-sal initial solution is then obtained by algorithmically constructing a primitive flow table fromeach component net. This step links the procedure to classical asynchronous design, in particu-lar to its proven optimization methods, without restricting the set of solutions. In contrast toother approaches, there is no need to extend the original STG intuitively.

Coordinating distributed processes, especially engineering and software design processes, has been a research topic for some time now. Several approaches have been published that aim at coordinating large projects in general, and large software development processes in specific. However, most of these approaches focus on the technical part of the design process and omit management activities like planning and scheduling the project, or monitoring it during execution. In this paper, we focus on coordinating the management activities that accompany the technical software design process. We state the requirements for a Software Engineering Environm ent (SEE) accommodating management, and we describe a possible architecture for such an SEE.

This paper describes the architecture and concept of operation of a Framework for Adaptive Process Modeling and Execution (FAME). The research addresses the absence of robust methods for supporting the software process management life cycle. FAME employs a novel, model-based approach in providing automated support for different activities in the software development life cycle including project definition, process design, process analysis, process enactment, process execution status monitoring, and execution status-triggered process redesign. FAME applications extend beyond the software development domain to areas such as agile manufacturing, project management, logistics planning, and business process reengineering.

In this paper we present an extensional higher-order resolution calculus that iscomplete relative to Henkin model semantics. The treatment of the extensionality princi-ples - necessary for the completeness result - by specialized (goal-directed) inference rulesis of practical applicability, as an implentation of the calculus in the Leo-System shows.Furthermore, we prove the long-standing conjecture, that it is sufficient to restrict the orderof primitive substitutions to the order of input formulae.

Abstract: Random matrix theory (RMT) is a powerful statistical tool to model spectral fluctuations. In addition, RMT provides efficient means to separate different scales in spectra. Recently RMT has found application in quantum chromodynamics (QCD). In mesoscopic physics, the Thouless energy sets the universal scale for which RMT applies. We try to identify the equivalent of a Thouless energy in complete spectra of the QCD Dirac operator with staggered fermions and SU_(2) lattice gauge fields. Comparing lattice data with RMT predictions we find deviations which allow us to give an estimate for this scale.

Beyond the Thouless energy
(1999)

Abstract: The distribution and the correlations of the small eigenvalues of the Dirac operator are described by random matrix theory (RMT) up to the Thouless energy E_= 1 / sqrt (V), where V is the physical volume. For somewhat larger energies, the same quantities can be described by chiral perturbation theory (chPT). For most quantities there is an intermediate energy regime, roughly 1/V < E < 1/sqrt (V), where the results of RMT and chPT agree with each other. We test these predictions by constructing the connected and disconnected scalar susceptibilities from Dirac spectra obtained in quenched SU(2) and SU(3) simulations with staggered fermions for a variety of lattice sizes and coupling constants. In deriving the predictions of chPT, it is important totake into account only those symmetries which are exactly realized on the lattice.

Abstract: Recently, the chiral logarithms predicted by quenched chiral perturbation theory have been extracted from lattice calculations of hadron masses. We argue that the deviations of lattice results from random matrix theory starting around the so-called Thouless energy can be understood in terms of chiral perturbation theory as well. Comparison of lattice data with chiral perturbation theory formulae allows us to compute the pion decay constant. We present results from a calculation for quenched SU(2) with Kogut-Susskind fermions at ß = 2.0 and 2.2.

Abstract: Recently, the contributions of chiral logarithms predicted by quenched chiral perturbation theory have been extracted from lattice calculations of hadron masses. We argue that a detailed comparison of random matrix theory and lattice calculations allows for a precise determination of such corrections. We estimate the relative size of the m log(m), m, and m^2 corrections to the chiral condensate for quenched SU(2).

We present results from a study of the coherence properties of a system involving three discrete states coupled to each other by two-photon processes via a common continuum. This tripod linkage is an extension of the standard laser-induced continuum structure (LICS) which involves two discrete states and two lasers. We show that in the tripod scheme, there exist two population trapping conditions; in some cases these conditions are easier to satisfy than the single trapping condition in two-state LICS. Depending on the pulse timing, various effects can be observed. We derive some basic properties of the tripod scheme, such as the solution for coincident pulses, the behaviour of the system in the adiabatic limit for delayed pulses, the conditions for no ionization and for maximal ionization, and the optimal conditions for population transfer between the discrete states via the continuum. In the case when one of the discrete states is strongly coupled to the continuum, the population dynamics reduces to a standard two-state LICS problem (involving the other two states) with modified parameters; this provides the opportunity to customize the parameters of a given two-state LICS system.

Abstract: We propose a simple method for measuring the populations and the relative phase in a coherent superposition of two atomic states. The method is based on coupling the two states to a third common (excited) state by means of two laser pulses, and measuring the total fluorescence from the third state for several choices of the excitation pulses.

Collecting Experience on the Systematic Development of CBR Applications using the INRECA Methodology
(1999)

This paper presents an overview of the INRECA methodology for building and maintaining CBR applications. This methodology supports the collection and reuse of experience on the systematic development of CBR applications. It is based on the experience factory and the software process modeling approach from software engineering. CBR development experience is documented using software process models and stored in different levels of generality in a three-layered experience base. Up to now, experience from 9 industrial projects enacted by all INRECA II partners has been collected.

Complex problem solving can be substantially improved by the reuse of experience from previously solved problems. This requires that case libraries of successful problem solutions are transformed into problem solving knowledge with high utility, i.e. knowledge which causes high savings in search time, high application probability and low matching costs in a respective performance component. Planning can be improved by explanation-based learning (EBL) of abstract plans from detailed, successfully solved planning problems. Abstract plans, expressed in well-established terms of the domain, serve as useful problem decompositions which can drastically reduce the planning complexity. Abstractions which are valid for a class of planning cases rather than for a single case, ensure a successful application in a larger spectrum of new situations. The hierarchical organization of the learned shared abstractions causes low matching costs. The presented S-PABS procedure is an EBL-procedure in which abstraction, learning from multiple examples and hierarchical clustering are combined to automatically construct a hierarchy of shared abstract plans by analyzing concrete planning cases. A specific planning procedure has been designed to solve new planning problems guided by the knowledge learned by S-PABS. By allowing a feedback from this planning procedure to the learning component, the integrated system shows an increase in performance through past problem solving.

Although skeletal plan refinement is used in several planning systems, a procedure for the automatic acquisition of such high-level plans has not yet been developed. The proposed explanation- based knowledge acquisition procedure constructs a skeletal plan automatically from a sophisticated concrete planning case. The classification of that case into a well-described class of problems serves as an instrument for adjusting the applicability of the acquired skeletal plans to that class. The four phases of the proposed procedure are constituted as follows: In the first phase, the execution of the source plan is simulated, and explanations for the effects of the occurred operators are constructed. In the second phase, the generalization of these explanations is performed with respect to a criterion of operationality which specifies the vocabulary for defining abstract operators for the skeletal plan. The third phase, a dependency analysis of the resulting operator effects, unveils the interactions of the concrete plan which are substantial for the specified class. In the forth phase, the concept descriptions for the abstract operators of the skeletal plan are formed by collecting and normalizing the important constraints for each operation that were indicated by the dependencies. With this procedure sophisticated planning solutions from human experts can be generalized into skeletal plans and consequently be reused by a planning system in novel situations.

Abstraction is one of the most promising approaches to improve the performance of problem solvers. Abstraction by dropping sentences of a domain description - as used in most hierarchical planners - is known to be very representation dependent. To overcome these drawbacks, we propose a more general view of abstraction involving the change of representation language. We have developed a new abstraction methodology and a related sound and complete learning algorithm that allows the complete change of representation language of planning cases from concrete to abstract.

Recently, the use of abstraction in case-based reasoning (CBR) is getting more and more popular. The basic idea is to supply a CBR system with cases at many different levels of abstraction. When a new problem must be solved, one (or several) 'appropriate' concrete or abstract case are retrieved from the case base and the solution that the case contains is reused to derive a solution for the current problem, e.g. by filling in the details that a retrieved case at some higher level of abstraction does not contain. A major problem that occurs when using this approach is, that for a given new problem, usually several cases, e.g., from different levels of abstraction could be reused to solve the new problem. Choosing a wrong abstract case can slow down the problem solving process or even prevents the problem from being solved.

Hierachical planning can be improved by explanation-based learning (EBL) of abstract plans from detailed, successfully solved planning problems. Abstract plans, expressed in well-established terms of the domain, serve as useful problem decompositions which can drastically reduce the planning complexity. The learned plan abstraction must be valid for a class of planning cases rather than for a single case, to ensure their successful application in a larger spectrum of new situations. A hierarchical organization of the newly learned knowledge must be archieved to overcome the utility problem in EBL. This paper presents a new formal model of shared plan abstraction and the closely related explanation-based procedure S-PABS. Unlike other apporaches to plan abstraction, our model allows a total different terminology to be introduced at the abstract level. Finally, an unsupervised incremental procedure for constructing a hierachy of shared abstract plans is proposed, as a kind of concept formation over explanations.

Planning means constructing a course of actions to achieve a specified set of goals when starting from an initial situation. For example, determining a sequence of actions (a plan) for transporting goods from an initial location to some destination is a typical planning problem in the transportation domain. Many planning problems are of practical interest.

In this paper, we propose the PARIS approach for improving complex problem solving by learning from previous cases. In this approach, abstract planning cases are learned from given concrete cases. For this purpose, we have developed a new abstraction methodology that allows to completely change the representation language of a planning case, when the concrete and abstract languages are given by the user. Furthermore, we present a learning algorithm which is correct and complete with respect to the introduced model. An empirical study in the domain of process planning in mechanical engineering shows significant improvements in planning efficiency through learning abstract cases while an explanation-based learning method only causes a very slight improvement.

Abstraction is one of the most promising approaches to improve the performance of problem solvers. In several domains abstraction by dropping sentences of a domain description - as used in most hierarchical planners - has proven useful. In this paper we present examples which illustrate significant drawbacks of abstraction by dropping sentences. To overcome these drawbacks, we propose a more general view of abstraction involving the change of representation language. We have developed a new abstraction methodology and a related sound and complete learning algorithm that allows the complete change of representation language of planning cases from concrete to abstract. However, to achieve a powerful change of the representation language, the abstract language itself as well as rules which describe admissible ways of abstracting states must be provided in the domain model. This new abstraction approach is the core of PARIS (Plan Abstraction and Refinement in an Integrated System), a system in which abstract planning cases are automatically learned from given concrete cases. An empirical study in the domain of process planning in mechanical engineering shows significant advantages of the proposed reasoning from abstract cases over classical hierarchical planning.^

Case-based problem solving can be significantly improved by applying domain knowledge (in opposition to problem solving knowledge), which can be acquired with reasonable effort, to derive explanations of the correctness of a case. Such explanations, constructed on several levels of abstraction, can be employed as the basis for similarity assessment as well as for adaptation by solution refinement. The general approach for explanation-based similarity can be applied to different real world problem solving tasks such as diagnosis and planning in technical areas. This paper presents the general idea as well as the two specific, completely implemented realizations for a diagnosis and a planning task.

In this paper we deal with an NP-hard combinatorial optimization problem, the k-cardinality tree problem in node weighted graphs. This problem has several applications , which justify the need for efficient methods to obtain good solutions. We review existing literature on the problem. Then we prove that under the condition that the graph contains exactly one trough, the problem can be solved in ploynomial time. For the general NP-hard problem we implemented several local search methods to obtain heuristics solutions, which are qualitatively better than solutions found by constructive heuristics and which require significantly less time than needed to obtain optimal solutions. We used the well known concepts of genetic algorithms and tabu search with useful extensions. We show that all the methods find optimal solutions for the class of graphs containing exactly one trough. The general performance of our methods as compared to other heuristics is illustrated by numerical results.

Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems
(1999)

Some inequalities for the Boltzmann collision integral are proved. These inequalities can be considered as a generalization of the well-known Povzner inequality. The inequalities are used to obtain estimates of moments of solution to the spatially homogeneous Boltzmann equation for a wide class of intermolecular forces. We obtained simple necessary and sufficient conditions (on the potential) for the uniform boundedness of all moments. For potentials with compact support the following statement is proved. .....

Complete presentations provide a natural solution to the word problem in monoids and groups. Here we give a simple way to construct complete presentations for the direct product of groups, when such presentations are available for the factors. Actually, the construction we are referring to is just the classical construction for direct products of groups, which has been known for a long time, but whose completeness-preserving properties had not been detected. Using this result and some known facts about Coxeter groups, we sketch an algorithm to obtain the complete presentation of any finite Coxeter group. A similar application to Abelian and Hamiltonian groups is mentioned.

To present the decision maker's (DM) preferences in multicriteria decision problems as a partially ordered set is an effective method to catch the DM's purpose and avoid misleading results. Since our paper is focused on minimal path problems, we regard the ordered set of edges (E,=). Minimal paths are defined in repect to power-ordered sets which provides an essential tool to solve such problems. An algorithm to detect minimal paths on a multicriteria minimal path problem is presented

The feature interaction problem in telecommunications systems increasingly obstructsthe evolution of such systems. We develop formal detection criteria which render anecessary (but less than sufficient) condition for feature interactions. It can be checkedmechanically and points out all potentially critical spots. These have to be analyzedmanually. The resulting resolution decisions are incorporated formally. Some prototypetool support is already available. A prerequisite for formal criteria is a formal definitionof the problem. Since the notions of feature and feature interaction are often used in arather fuzzy way, we attempt a formal definition first and discuss which aspects can beincluded in a formalization (and therefore in a detection method). This paper describeson-going work.

Automata-Theoretic vs. Property-Oriented Approaches for the Detection of Feature Interactions in IN
(1999)

The feature interaction problem in Intelligent Networks obstructs more and morethe rapid introduction of new features. Detecting such feature interactions turns out to be a big problem. The size of the systems and the sheer computational com-plexity prevents the system developer from checking manually any feature against any other feature. We give an overview on current (verification) approaches and categorize them into property-oriented and automata-theoretic approaches. A comparisonturns out that each approach complements the other in a certain sense. We proposeto apply both approaches together in order to solve the feature interaction problem.

AbstractOne main purpose for the use of formal description techniques (FDTs) is formal reasoningand verification. This requires a formal calculus and a suitable formal semantics of theFDT. In this paper, we discuss the basic verification requirements for Estelle, and howthey can be supported by existing calculi. This leads us to the redefinition of the stanADdard Estelle semantics using Lamport's temporal logic of actions and Dijkstra's predicatetransformers.

A new advanced space- and time-resolved Brillouin light scattering (BLS) technique is used to study diffraction of two-dimensional beams and pulses of dipolar spin waves excited by strip-line antennas in tangentially magnetized garnet films. The new technique is an effective tool for investigations of two-dimensional spin wave propagation with high spatial and temporal resolution. Linear effects, such as the unidirectional exci-tation of magnetostatic surface waves and the propagation of backward volume magnetostatic waves (BVMSW) in two preferential directions due to the non-collinearity of their phase and group velocities are investigated in detail. In the nonlinear regime stationary and non-stationary self-focusing effects are studied. It is shown, that non-linear diffraction of a stationary BVMSW beam, having a finite transverse aperture, leads to self-focusing of the beam at one spatial point. Diffraction of a finite-duration (non-stationary) BVMSW pulse leads to space-time self-focusing and formation of a strongly localized two-dimensional wave packet (spin wave bullet). Numerical modeling of the diffraction process by using a variational approach and direct numerical integration of the two-dimensional non-linear Schrödinger equation provides a good qualitative description of the observed phenomena.

A new advanced space- and time-resolved Brillouin light scattering technique is used to study diffraction of two-dimensional beams and pulses of dipolar spin waves excited by strip-line antennas in tangentially magnetized garnet films. The technique is an effective tool for investigations of two-dimensional spin wave propagation with high spatial and temporal resolution. Nonlinear effects such as stationary and nonstationary self-focusing are investigated in detail. It is shown, that nonlinear diffraction of a stationary backward volume magnetostatic wave (BVMSW) beam, having a finite transverse aperture, leads to selffocusing of the beam at one spatial point. Diffraction of a finite-duration (non-stationary) BVMSW pulse leads to space-time self-focusing and formation of a strongly localized two-dimensional wave packet (spin wave bullet).

Absract: We report on measurements of the two-dimensional intensity distribtion of linear and non-linear spin wave excitations in a LuBiFeO film. The spin wave intensity was detected with a high-resolution Brillouinlight scatteringspectroscopy setup. The observed snake-like structure of the spin wave intensity distribution is understood as a mode beating between modes with different lateral spin wave intensity distributions. The theoretical treatment of the linear regime is performed analytically, whereas the propagation of non-linear spin waves is simulated by a numerical solution of a non-linear Schrödinger equation with suitable boundary conditions.

We give a comparison of various differential cross-section models for a classical polyatomic gas for a homogeneous relaxation problem and the shock wave profiles at Mach numbers 1.71 and 12.9. Besides the standard Borgnakke-Larsen model and its generalizations to an energy dependent coefficient to control the amnount of rotationally elastic and completely inelastic collisions, we discuss some new models recently proposed by the same authors. Moreover, we present numerical algorithms to implement the models in a particle or Monte-Carlo code and compare the numerical shock wave profiles with existing experimental data.

We present an empirical study of mathematical proofs by diagonalization, the aim istheir mechanization based on proof planning techniques. We show that these proofs canbe constructed according to a strategy that (i) finds an indexing relation, (ii) constructsa diagonal element, and (iii) makes the implicit contradiction of the diagonal elementexplicit. Moreover we suggest how diagonal elements can be represented.

This report is a first attempt of formalizing the diagonalization proof technique.We give a strategy how to systematically construct diagonalization proofs: (i) findingan indexing relation, (ii) constructing a diagonal element, and (iii) making the implicitcontradiction of the diagonal element explicit. We suggest a declarative representationof the strategy and describe how it can be realized in a proof planning environment.

This report presents a methodology to guide equational reasoningin a goal directed way. Suggested by rippling methods developed inthe field of inductive theorem proving we use attributes of terms andheuristics to determine bridge lemmas, i.e. lemmas which have tobe used during the proof of the theorem. Once we have found sucha bridge lemma we use the techniques of difference unification andrippling to enable its use.

In the recent years a form of software development that was previously dismissed as too ad-hoc and chaotic for serious projects has suddenly taken the front stage. With products such as Apache, Linux, Perl, and others, open-source software has emerged as a viable alternative to traditional approaches to software development. With its globally distributed developer force and extremely rapid code evolution, open source is arguably the extreme in "virtual software projects" [1], and exemplifies many of the advantages and challenges of distributed software development.

This paper describes the design and implementation of a process support system (PROSYT), which is intended to provide guidance in performing business processes and cooperation among people over a local or geographically distributed architecture. In particular, it can be used as a Process-centered Software Engineering Environment (PSEE) to support distributed software development. Our main purpose is to describe how complex applications of this kind can be developed systematically. In particular, how the requirements of high flexibility, reconfigurability, scalability, and efficiency demanded by these applications can be met through appropriate design choices.

CORBA Lacks Venom
(1999)

Distributed objects bring to distributed computing such desirable properties of modularisation, abstraction and reuse easing the burden of development and maintenance by diminishing the gap between implementation and real-world objects. Distributed objects, however, need a consistent framework in which inter-object communication may take place. The Common Object Request Broker Architecture (CORBA) is a distributed object standard. CORBA's primary protocol is the Internet Interoperable Object Protocol limited to blocked synchronous remote procedure calls, over TCP/IP which is inappropriate for systems requiring timely guarantees.

There are two general approaches to providing for isochronous streams in the current Internet. The first approach is the resource reservation approach through protocols such as RSVP, or ATM technology. This provides bandwidth guarantees, however, it also requires significant upgrading of resources in the underlying network. The other common approach is adaptive rate control where the end-system has control of its rate according to feedback from the client population. This approach cannot guarantee timely delivery and raises some scaling questions, however a properly implemented scheme does improve quality and it requires no changes to the underlying IP network. Hence, there exists a dichotomy of requirements ; 1. To cater for reservation protocols or 'hooks' for future reservation components, and 2. To provide an architecture which provides an application controlled QoS scheme, which scales to the size of the current Internet in a best- effort architecture.

In planar location problems with barriers one considers regions which are forbidden for the siting of new facilities as well as for trespassing. These problems areimportant since they reflect various real-world situations.The resulting mathematical models have a non-convex objectivefunction and are therefore difficult to tackle using standardmethods of location theory even in the case of simple barriershapes and distance funtions.For the case of center objectives with barrier distancesobtained from the rectilinear or Manhattan metric it is shown that the problem can be solved by identifying a finitedominating set (FDS) the cardinality of which is bounded bya polynomial in the size of the problem input. The resultinggenuinely polynomial algorithm can be combined with bound computations which are derived from solving closely connectedrestricted location and network location problems.It is shown that the results can be extended to barrier center problems with respect to arbitrary block norms having fourfundamental directions.

In recent years the demand on business process modelling (BPM) became apparent in many different communities, e.g. information systems engineering, requirements engineering [KiB94], software engineering and knowledge engineering (e.g. [BrV94], [SWH+94]). This suggests to aim at a unifying view on business process modelling in all these disciplines. To achieve the business goals some problems which obstruct these goals must be solved. This can be done either by restructuring the business process, by application of standard software, or by developing individual software components such as knowledge based systems (KBSs). To be able to model business goals and to analyse problems occurring during the business processes these processes including organisational structures and activities have to be modelled. This is also true when building a KBS in an enterprise environment. Because the KBS is only a small part of the whole business organisation, it must be embedded into or at least linked to all relevant business processes, i.e. it should not be a stand-alone solution. For this purpose we extend the MIKE approach [AFS96] in the BMBF project WORKS (Work Oriented Design of Knowledge Systems) by offering business models for modelling relevant aspects of an enterprise. To be able to define an integrated framework with other possibilties to improve an enterprise (e.g. information systems engineering) we determine the standard views of an enterprise. Next we define the views, that are necessary for developing a KBS.

A large set of criteria to evaluate formal methods for reactive systems is presented. To make this set more comprehensible, it is structured according to a Concept-Model of formal methods. It is made clear that it is necessary to make the catalogue more specific before applying it. Some of the steps needed to do so are explained. As an example the catalogue is applied within the context of the application domain building automation systems to three different formal methods: SDL, statecharts, and a temporallogic.

There are well known examples of monoids in literature which do not admit a finite andcanonical presentation by a semi-Thue system over a fixed alphabet, not even over an arbi-trary alphabet. We introduce conditional Thue and semi-Thue systems similar to conditionalterm rewriting systems as defined by Kaplan. Using these conditional semi-Thue systems wegive finite and canonical presentations of the examples mentioned above. Furthermore weshow, that each finitely generated monoid with decidable word problem is embeddable in amonoid which has a finite canonical conditional presentation.

An overview of the current status of the study of spin wave excitations in arrays of magnetic dots and wires is given. We describe both the status of theory and recent inelastic light scattering experiments addressing the three most important issues: the modification of magnetic properties by patterning due to shape aniso-tropies, anisotropic coupling between magnetic islands, and the quantization of spin waves due to the in-plane confinement of spin waves in islands.

In this paper we show that for each prime p=7 there exists a translation plane of order p^2 of Mason-Ostrom type. These planes occur as 6-dimensional ovoids being projections of the 8-dimensional binary ovoids of Conway, Kleidman and Wilson. In order to verify the existence of such projections we prove certain properties of two particular quadratic forms using classical methods form number theory.

We present an approach to prove several theorems in slightly different axiomsystems simultaneously. We represent the different problems as a taxonomy, i.e.a tree in which each node inherits all knowledge of its predecessors, and solve theproblems using inference steps on rules and equations with simple constraints,i.e. words identifying nodes in the taxonomy. We demonstrate that a substantialgain can be achieved by using taxonomic constraints, not only by avoiding therepetition of inference steps in the different problems but also by achieving runtimes that are much shorter than the accumulated run times when proving eachproblem separately.

We present an approach to learning cooperative behavior of agents. Our ap-proach is based on classifying situations with the help of the nearest-neighborrule. In this context, learning amounts to evolving a set of good prototypical sit-uations. With each prototypical situation an action is associated that should beexecuted in that situation. A set of prototypical situation/action pairs togetherwith the nearest-neighbor rule represent the behavior of an agent.We demonstrate the utility of our approach in the light of variants of thewell-known pursuit game. To this end, we present a classification of variantsof the pursuit game, and we report on the results of our approach obtained forvariants regarding several aspects of the classification. A first implementationof our approach that utilizes a genetic algorithm to conduct the search for a setof suitable prototypical situation/action pairs was able to handle many differentvariants.

The team work method is a concept for distributing automated theoremprovers and so to activate several experts to work on a given problem. We haveimplemented this for pure equational logic using the unfailing KnuthADBendixcompletion procedure as basic prover. In this paper we present three classes ofexperts working in a goal oriented fashion. In general, goal oriented experts perADform their job "unfair" and so are often unable to solve a given problem alone.However, as a team member in the team work method they perform highly effiADcient, even in comparison with such respected provers as Otter 3.0 or REVEAL,as we demonstrate by examples, some of which can only be proved using teamwork.The reason for these achievements results from the fact that the team workmethod forces the experts to compete for a while and then to cooperate by exADchanging their best results. This allows one to collect "good" intermediate resultsand to forget "useless" ones. Completion based proof methods are frequently reADgarded to have the disadvantage of being not goal oriented. We believe that ourapproach overcomes this disadvantage to a large extend.

We present an overview of various learning techniques used in automated theorem provers. We characterize the main problems arising in this context and classify the solutions to these problems from published approaches. We analyze the suitability of several combinations of solutions for different approaches to theorem proving and place these combinations in a spectrum ranging from provers using very specialized learning approaches to optimally adapt to a small class of proof problems, to provers that learn more general kinds of knowledge, resulting in systems that are less efficient in special cases but show improved performance for a wide range of problems. Finally, we suggest combinations of solutions for various proof philosophies.

This paper presents a new way to use planning in automated theorem provingby means of distribution. To overcome the problem that often subtasks fora proof problem can not be detected a priori (which prevents the use of theknown planning and distribution techniques) we use a team of experts that workindependently with different heuristics on the problem. After a certain amount oftime referees judge their results using the impact of the results on the behaviourof the expert and a supervisor combines the selected results to a new startingpoint.This supervisor also selects the experts that can work on the problem inthe next round. This selection is a reactive planning task. We outline whichinformation the supervisor can use to fulfill this task and how this informationis processed to result in a plan or to revise a plan. We also show that the useof planning for the assignment of experts to the team allows the system to solvemany different examples in an acceptable time with the same start configurationand without any consultation of the user.Plans are always subject to changeShin'a'in proverb

Multi-User Dimensions (MUDs) [3], and their Object-Oriented versions (MOOs) [6], are geographically distributed, programmable client-server systems that support the cooperation of multiple users according to the virtual environment metaphor. In this metaphor, users are allowed to concurrently navigate in a set of "virtual" rooms. Rooms are interconnected through doors and may contain objects. Users are allowed to explore the contents of rooms, create and manipulate objects, and contact other users visiting the same room.

This paper investigates the suitability of the mobile agents approach to the problem of integrating a collection of local DBMS into a single heterogeneous large-scale distributed DBMS. The paper proposes a model of distributed transactions as a set of mobile agents and presents the relevant execution semantics. In addition, the mechanisms which are needed to guarantee the ACID properties in the considered environment are discussed.

We consider the "representation type" of the classification problem of vector bundles on a projective curve. We prove that this problem is always either finite, or tame, or wild and we completely describe those curves which are of finite, resp. tame, vector bundle type. We also give a complete list of indecomposable vector bundles for the finite and tame cases.

Discrete Decision Problems, Multiple Criteria Optimization Classes and Lexicographic Max-Ordering
(1999)

The topic of this paper are discrete decision problems with multiple criteria. We first define discrete multiple criteria decision problems and introduce a classification scheme for multiple criteria optimization problems. To do so we use multiople criteria optimization classes. The main result is a characterization of the class of lexicographic max-ordering problems by two very useful properties, reduction and regularity. Subsequently we discuss the assumptions under which the application of this specific MCO class is justified. Finally we provide (simple) solution methods to find optimal decisions in the case of discrete multiple criteria optimization problems.

The computational complexity of combinatorial multiple objective programming problems is investigated. NP-completeness and #P-completeness results are presented. Using two definitions of approximability, general results are presented, which outline limits for approximation algorithms. The performance of the well known tree and Christofides' heuristics for the TSP is investigated in the multicriteria case with respect to the two definitions of approximability.

In this paper we give the definition of a solution concept in multicriteria combinatorial optimization. We show how Pareto, max-ordering and lexicographically optimal solutions can be incorporated in this framework. Furthermore we state some properties of lexicographic max-ordering solutions, which combine features of these three kinds of optimal solutions. Two of these properties, which are desirable from a decision maker" s point of view, are satisfied if and only of the solution concept is that of lexicographic max-ordering.

The notion of the balance number introduced in [3,page 139] through a certain set contraction procedure for nonscalarized multiobjective global optimization is represented via a min-max operation on the data of the problem. This representation yields a different computational procedure for the calculation of the balance number and allows us to generalize the approach for problems with countably many performance criteria.

Location problems with Q (in general conflicting) criteria are considered. After reviewing previous results of the authors dealing with lexicographic and Pareto location the main focus of the paper is on max-ordering locations. In these location problems the worst of the single objectives is minimized. After discussing some general results (including reductions to single criterion problems and the relation to lexicographic and Pareto locations) three solution techniques are introduced and exemplified using one location problem class, each: The direct approach, the decision space approach and the objective space approach. In the resulting solution algorithms emphasis is on the representation of the underlying geometric idea without fully exploring the computational complexity issue. A further specialization of max-ordering locations is obtained by introducing lexicographic max-ordering locations, which can be found efficiently. The paper is concluded by some ideas about future research topics related to max-ordering location problems.

In this paper we prove a reduction result for the number of criteria in convex multiobjective optimization. This result states that to decide wheter a point x in the decision space is pareto optimal it suffices to consider at most n? criteria at a time, where n is the dimension of the decision space. The main theorem is based on a geometric characterization of pareto, strict pareto and weak pareto solutions

Facility Location Problems are concerned with the optimal location of one or several new facilities, with respect to a set of existing ones. The objectives involve the distance between new and existing facilities, usually a weighted sum or weighted maximum. Since the various stakeholders (decision makers) will have different opinions of the importance of the existing facilities, a multicriteria problem with several sets of weights, and thus several objectives, arises. In our approach, we assume the decision makers to make only fuzzy comparisons of the different existing facilities. A geometric mean method is used to obtain the fuzzy weights for each facility and each decision maker. The resulting multicriteria facility location problem is solved using fuzzy techniques again. We prove that the final compromise solution is weakly Pareto optimal and Pareto optimal, if it is unique, or under certain assumptions on the estimates of the Nadir point. A numerical example is considered to illustrate the methodology.

In this paper relationships between Pareto points and saddle points in multiple objective programming are investigated. Convex and nonconvex problems are considered and the equivalence between Pareto points and saddle points is proved in both cases. The results are based on scalarizations of multiple objective programs and related linear and augmented Lagrangian functions. Partitions of the index sets of objectives and constranints are introduced to reduce the size of the problems. The relevance of the results in the context of decision making is also discussed.

This paper focuses on the issues involved when multiple mobile agents interact in multiagent systems. The application is an intelligent agent market place, where buyer and seller agents cooperate and compete to process sales transactions for their owners. The market place manager acts as afacilitator by giving necessary information to agents and managing communication between agents, and also as a mediator by proposing solutions to agents or stopping them to get into infinite loops bargaining back and forth.The buyer and seller agents range from using hardcoded logic to rule-based inferencing in their negotiation strategies. However these agents must support some communication skills using KQML or FIPA-ACL.So in contrast with other approaches to multiagent negotiation, we introduce an explicit mediator (market place manager) into the negotiation, and we propose a negotiation strategy based on dependence theory [1] implemented by our best buyers and best sellers.

Magnetic anisotropies of MBE-grown fcc Co(110)-films on Cu(110) single crystal substrates have been determined by using Brillouin light scattering(BLS) and have been correlated with the structural properties determined by low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). Three regimes of film growth and associated anisotropy behavior are identified: coherent growth in the Co film thickness regime of up to 13 Å, in-plane anisotropic strain relaxation between 13 Å and about 50 Å and inplane isotropic strain relaxation above 50 Å. The structural origin of the transition between anisotropic and isotropic strain relaxation was studied using STM. In the regime of anisotropic strain relaxation long Co stripes with a preferential [ 110 ]-orientation are observed, which in the isotropic strain relaxation regime are interrupted in the perpendicular in-plane direction to form isotropic islands. In the Co film thickness regime below 50 Å an unexpected suppression of the magnetocrystalline anisotropy contribution is observed. A model calculation based on a crystal field formalism and discussed within the context of band theory, which explicitly takes tetragonal misfit strains into account, reproduces the experimentally observed anomalies despite the fact that the thick Co films are quite rough.

Although work processes, like software processes, include a number of process aspects such as defined phases and deadlines, they are not plannable in detail. However, the advantages of today's process management, such as effective document routing and timeliness, can only be achieved with detailed models of work processes. This paper suggests a concept that uses detailed process models in conjunction with the possibility of defining the way a process model determines the work of individuals. Based on the WAM approach1, which allows workers to choose methods for their tasks according to the situation, we describe features to carry out planned parts of a process with workers always being able to start exceptional mechanisms. These mechanisms are based on the modelling paradigm of linked abstraction workflows (LAWs) that describe workflows at different levels of abstraction and classify refinements of tasks by the way lower tasks can be used.

We present a way to describe Reason Maintenance Systems using the sameformalism for justification based as well as for assumption based approaches.This formalism uses labelled formulae and thus is a special case of Gabbay'slabelled deductive systems. Since our approach is logic based, we are able toget a semantics oriented description of the systems in question.Instead of restricting ourselves to e.g. propositional Horn formulae, as wasdone in the past, we admit arbitrary logics. This enables us to characterizesystems as a whole, including both the reason maintenance component and theproblem solver, nevertheless maintaining a separation between the basic logicand the part that describes the label propagation. The possibility to freely varythe basic logic enables us to not only describe various existing systems, but canhelp in the design of completely new ones.We also show, that it is possible to implement systems based directly on ourlabelled logic and plead for "incremental calculi" crafted to attack undecidablelogics.Furthermore it is shown that the same approach can be used to handledefault reasoning, if the propositional labels are upgraded to first order.

In order to improve the quality of software systems and to set up a more effective process for their development, many attempts have been made in the field of software engineering. Reuse of existing knowledge is seen as a promising way to solve the outstanding problems in this field. In previous work we have integrated the design pattern concept with the formal design language SDL, resulting in a certain kind of pattern formalization. For the domain of communication systems we have also developed a pool of SDL patterns with an accompanying process model for pattern application. In this paper we present an extension that combines the SDL pattern approach with the experience base concept. This extension supports a systematic method for empirical evaluation and continuous improvement of the SDL pattern approach. Thereby the experience base serves as a repository necessary for effective reuse of the captured knowledge. A comprehensive usage scenario is described which shows the advantages of the combined approach. To demonstrate its feasibility, first results of a research case study are given.

Learning from examples is a field of research in machine learning where class descriptions, like decision trees or implications (production rules or horn clauses) are produced using positive and negative examples as information. To solve this task many different heuristic search strategies have been developed, so far. The search by specialization is the most widely used search strategy, whereas other approaches use a search by generalization only. JoJo is an algorithm that combines both search directions into one search procedure. According to the estimated quality of the currently regarded rule either a generalization or specialization step is carried out by deleting or adding one premise to the conjunction part of the rule. But, to create an even more flexible (and faster) algorithm, it should be possible to delete or add more than just one premise at a time. Relaxing this restriction of JoJo led to the new highly flexible algorithm Frog that additionally uses a third search direction.

In this paper a new trend is introduced into the field of multicriteria location problems. We combine the robustness approach using the minmax regret criterion together with Pareto-optimality. We consider the multicriteria Weber location problem which consists of simultaneously minimizing a number of weighted sum-distance functions and the set of Pareto-optimal locations as its solution concept. For this problem, we characterize the Pareto-optimal solutions within the set of robust locations for the original weighted sum-distance functions. These locations have both the properties of stability and non-domination which are required in robust and multicriteria programming.

We argue in this paper that sophisticated mi-croplanning techniques are required even formathematical proofs, in contrast to the beliefthat mathematical texts are only schematicand mechanical. We demonstrate why para-phrasing and aggregation significantly en-hance the flexibility and the coherence ofthe text produced. To this end, we adoptedthe Text Structure of Meteer as our basicrepresentation. The type checking mecha-nism of Text Structure allows us to achieveparaphrasing by building comparable combi-nations of linguistic resources. Specified interms of concepts in an uniform ontologicalstructure called the Upper Model, our se-mantic aggregation rules are more compactthan similar rules reported in the literature.

This paper outlines the microplanner of PROVERB , a system that generates multilingual text from machine-found mathematical proofs. The main representational vehicle is the text structure proposed by Meteer. Following Panaget, we also distinguish between the ideational and the textual semantic categories, and use the upper model to replace the former. Based on this, a further extension is made to support aggregation before realization decisions are made. While our the framework of our macroplanner is kept languageindependent, our microplanner draws on language specific linguistic sources such as realization classes and lexicon. Since English and German are the first two languages to be generated and because the sublanguage of our mathematical domain is relatively limited, the upper model and the textual semantic categories are designed to cope with both languages. Since the work reported is still in progress, we also discuss open problems we are facing.

This paper describes the linguistic part of a system called PROVERB, which transforms, abstracts,and verbalizes machine-found proofs into formatedtexts. Linguistically, the architecture of PROVERB follows most application oriented systems, and is a pipelined control of three components. Its macroplanner linearizes a proof and plans mediating communicative acts by employing a combination of hierarchical planning and focus-guided navigation. The microplanner then maps communicative acts and domain concepts into linguistic resources, paraphrases and aggregates such resources to producethe final Text Structure. A Text Structure contains all necessary syntactic information, and can be executed by our realizer into grammatical sentences. The system works fully automatically and performs particularly well for textbook size examples.

This paper outlines the linguistic part of an implemented system namedPROVERB[3] that transforms, abstracts, and verbalizes machine-found proofs innatural language. It aims to illustrate, that state-of-the-art techniques of natural language processing are necessary to produce coherent texts that resemble those found in typical mathematical textbooks, in contrast to the belief that mathematical texts are only schematic and mechanical.The verbalization module consists of a content planner, a sentence planner, and a syntactic generator. Intuitively speaking, the content planner first decides the order in which proof steps should be conveyed. It also some messages to highlight global proof structures. Subsequently, thesentence planner combines and rearranges linguistic resources associated with messages produced by the content planner in order to produce connected text. The syntactic generat or finally produces the surface text.