### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (608) (remove)

#### Language

- English (608) (remove)

#### Keywords

- Visualisierung (13)
- finite element method (8)
- Finite-Elemente-Methode (7)
- Algebraische Geometrie (6)
- Numerische Strömungssimulation (6)
- Visualization (6)
- Computergraphik (5)
- Finanzmathematik (5)
- Mobilfunk (5)
- Optimization (5)

#### Faculty / Organisational entity

- Fachbereich Mathematik (215)
- Fachbereich Informatik (130)
- Fachbereich Maschinenbau und Verfahrenstechnik (95)
- Fachbereich Chemie (58)
- Fachbereich Elektrotechnik und Informationstechnik (45)
- Fachbereich Biologie (27)
- Fachbereich Sozialwissenschaften (15)
- Fachbereich Wirtschaftswissenschaften (8)
- Fachbereich ARUBI (5)
- Fachbereich Physik (5)

In this thesis we extend the worst-case modeling approach as first introduced by Hua and Wilmott (1997) (option pricing in discrete time) and Korn and Wilmott (2002) (portfolio optimization in continuous time) in various directions.
In the continuous-time worst-case portfolio optimization model (as first introduced by Korn and Wilmott (2002)), the financial market is assumed to be under the threat of a crash in the sense that the stock price may crash by an unknown fraction at an unknown time. It is assumed that only an upper bound on the size of the crash is known and that the investor prepares for the worst-possible crash scenario. That is, the investor aims to find the strategy maximizing her objective function in the worst-case crash scenario.
In the first part of this thesis, we consider the model of Korn and Wilmott (2002) in the presence of proportional transaction costs. First, we treat the problem without crashes and show that the value function is the unique viscosity solution of a dynamic programming equation (DPE) and then construct the optimal strategies. We then consider the problem in the presence of crash threats, derive the corresponding DPE and characterize the value function as the unique viscosity solution of this DPE.
In the last part, we consider the worst-case problem with a random number of crashes by proposing a regime switching model in which each state corresponds to a different crash regime. We interpret each of the crash-threatened regimes of the market as states in which a financial bubble has formed which may lead to a crash. In this model, we prove that the value function is a classical solution of a system of DPEs and derive the optimal strategies.

Distributed systems are omnipresent nowadays and networking them is fundamental for the continuous dissemination and thus availability of data. Provision of data in real-time is one of the most important non-functional aspects that safety-critical networks must guarantee. Formal verification of data communication against worst-case deadline requirements is key to certification of emerging x-by-wire systems. Verification allows aircraft to take off, cars to steer by wire, and safety-critical industrial facilities to operate. Therefore, different methodologies for worst-case modeling and analysis of real-time systems have been established. Among them is deterministic Network Calculus (NC), a versatile technique that is applicable across multiple domains such as packet switching, task scheduling, system on chip, software-defined networking, data center networking and network virtualization. NC is a methodology to derive deterministic bounds on two crucial performance metrics of communication systems:
(a) the end-to-end delay data flows experience and
(b) the buffer space required by a server to queue all incoming data.
NC has already seen application in the industry, for instance, basic results have been used to certify the backbone network of the Airbus A380 aircraft.
The NC methodology for worst-case performance analysis of distributed real-time systems consists of two branches. Both share the NC network model but diverge regarding their respective derivation of performance bounds, i.e., their analysis principle. NC was created as a deterministic system theory for queueing analysis and its operations were later cast in a (min,+)-algebraic framework. This branch is known as algebraic Network Calculus (algNC). While algNC can efficiently compute bounds on delay and backlog, the algebraic manipulations do not allow NC to attain the most accurate bounds achievable for the given network model. These tight performance bounds can only be attained with the other, newly established branch of NC, the optimization-based analysis (optNC). However, the only optNC analysis that can currently derive tight bounds was proven to be computationally infeasible even for the analysis of moderately sized networks other than simple sequences of servers.
This thesis makes various contributions in the area of algNC: accuracy within the existing framework is improved, distributivity of the sensor network calculus analysis is established, and most significantly the algNC is extended with optimization principles. They allow algNC to derive performance bounds that are competitive with optNC. Moreover, the computational efficiency of the new NC approach is improved such that this thesis presents the first NC analysis that is both accurate and computationally feasible at the same time. It allows NC to scale to larger, more complex systems that require formal verification of their real-time capabilities.

Crowd condition monitoring concerns the crowd safety and concerns business performance metrics. The research problem to be solved is a crowd condition estimation approach to enable and support the supervision of mass events by first-responders and marketing experts, but is also targeted towards supporting social scientists, journalists, historians, public relations experts, community leaders, and political researchers. Real-time insights of the crowd condition is desired for quick reactions and historic crowd conditions measurements are desired for profound post-event crowd condition analysis.
This thesis aims to provide a systematic understanding of different approaches for crowd condition estimation by relying on 2.4 GHz signals and its variation in crowds of people, proposes and categorizes possible sensing approaches, applies supervised machine learning algorithms, and demonstrates experimental evaluation results. I categorize four sensing approaches. Firstly, stationary sensors which are sensing crowd centric signals sources. Secondly, stationary sensors which are sensing other stationary signals sources (either opportunistic or special purpose signal sources). Thirdly, a few volunteers within the crowd equipped with sensors which are sensing other surrounding crowd centric device signals (either individually, in a single group or collaboratively) within a small region. Fourthly, a small subset of participants within the crowd equipped with sensors and roaming throughout a whole city to sense wireless crowd centric signals.
I present and evaluate an approach with meshed stationary sensors which were sensing crowd centric devices. This was demonstrated and empirically evaluated within an industrial project during three of the world-wide largest automotive exhibitions. With over 30 meshed stationary sensors in an optimized setup across 6400m2 I achieved a mean absolute error of the crowd density of just 0.0115
people per square meter which equals to an average of below 6% mean relative error from the ground truth. I validate the contextual crowd condition anomaly detection method during the visit of chancellor Mrs. Merkel and during a large press conference during the exhibition. I present the approach of opportunistically sensing stationary based wireless signal variations and validate this during the Hannover CeBIT exhibition with 80 opportunistic sources with a crowd condition estimation relative error of below 12% relying only on surrounding signals in influenced by humans. Pursuing this approach I present an approach with dedicated signal sources and sensors to estimate the condition of shared office environments. I demonstrate methods being viable to even detect low density static crowds, such as people sitting at their desks, and evaluate this on an eight person office scenario. I present the approach of mobile crowd density estimation by a group of sensors detecting other crowd centric devices in the proximity with a classification accuracy of the crowd density of 66 % (improvement of over 22% over a individual sensor) during the crowded Oktoberfest event. I propose a collaborative mobile sensing approach which makes the system more robust against variations that may result from the background of the people rather than the crowd condition with differential features taking information about the link structure between actively scanning devices, the ratio between values observed by different devices, ratio of discovered crowd devices over time, team-wise diversity of discovered devices, number of semi- continuous device visibility periods, and device visibility durations into account. I validate the approach on multiple experiments including the Kaiserslautern European soccer championship public viewing event and evaluated the collaborative mobile sensing approach with a crowd condition estimation accuracy of 77 % while outperforming previous methods by 21%. I present the feasibility of deploying the wireless crowd condition sensing approach to a citywide scale during an event in Zurich with 971 actively sensing participants and outperformed the reference method by 24% in average.

Reading as a cultural skill is acquired over a long period of training. This thesis supports the idea that reading is based on specific strategies that result from modification and coordination of earlier developed object recognition strategies. The reading-specific processing strategies are considered to be more analytic compared to object recognition strategies, which are described as holistic. To enable proper reading skills these strategies have to become automatized. Study 1 (Chapter 4) examined the temporal and visual constrains of letter recognition strategies. In the first experiment two successively presented stimuli (letters or non-letters) had to be classified as same or different. The second stimulus could either be presented in isolation or surrounded by a shape, which was either similar (congruent) or different (incongruent) in its geometrical properties to the stimulus itself. The non-letter pairs were presented twice as often as the letter pairs. The results demonstrated a preference for the holistic strategy also in letters, even if the non- letter set was presented twice as often as the letter set, showing that the analytic strategy does not replace the holistic one completely, but that the usage of both strategies is task-sensitive. In Experiment 2, we compared the Global Precedence Effect (GPE) for letters and non-letters in central viewing, with the global stimulus size close to the functional visual field in whole word reading (6.5◦ of visual angle) and local stimuli close to the critical size for fluent reading of individual letters (0.5◦ of visual angle). Under these conditions, the GPE remained robust for non-letters. For letters, however, it disappeared: letters showed no overall response time advantage for the global level and symmetric congruence effects (local-to-global as well as global-to-local interference). These results indicate that reading is based on resident analytic visual processing strategies for letters. In Study 2 (Chapter 5) we replicated the latter result with a large group of participants as part of a study in which pairwise associations of non-letters and phonological or non-phonological sounds were systematically trained. We investigated whether training would eliminate the GPE also for non-letters. We observed, however, that the differentiation between letters and non-letter shapes persists after training. This result implies that pairwise association learning is not sufficient to overrule the process differentiation in adults. In addition, subtle effects arising in the letter condition (due to enhanced power) enable us to further specify the differentiation in processing between letters and non-letter shapes. The influence of reading ability on the GPE was examined in Study 3 (Chapter 6). Children with normal reading skills and children with poor reading skills were instructed to detect a target in Latin or Hebrew Navon letters. Children with normal reading skills showed a GPE for Latin letters, but not for Hebrew letters. In contrast, the dyslexia group did not show GPE for either kind of stimuli. These results suggest that dyslexic children are not able to apply the same automatized letter processing strategy as children with normal reading skills do. The difference between the analytic letter processing and the holistic non-letter processing was transferred to the context of whole word reading in Study 4 (Chapter 7). When participants were instructed to detect either a letter or a non-letter in a mixed character string, for letters the reaction times and error rates increased linearly from the left to the right terminal position in the string, whereas for non-letters a symmetrical U-shaped function was observed. These results suggest, that the letter-specific processing strategies are triggered automatically also for more word-like material. Thus, this thesis supports and expands prior results of letter-specific processing and gives new evidences for letter-specific processing strategies.

Wetting of a solid surface with liquids is an important parameter in the chemical engineering process such as distillation, absorption and desorption. The degree of wetting in packed columns mainly contributes in the generating of the effective interfacial area and then enhancing of the heat and mass transfer process. In this work the wetting of solid surfaces was studied in real experimental work and virtually through three dimensional CFD simulations using the multiphase flow VOF model implemented in the commercial software FLUENT. That can be used to simulate the stratified flows [1]. The liquid rivulet flow which is a special case of the film flow and mostly found in packed columns has been discussed. Wetting of a solid flat and wavy metal plate with rivulet liquid flow was simulated and experimentally validated. The local rivulet thickness was measured using an optically assisted mechanical sensor using a needle which is moved perpendicular to the plate surface with a step motor and in the other two directions using two micrometers. The measured and simulated rivulet profiles were compared to some selected theoretical models founded in the literature such as Duffy & Muffatt [2], Towell & Rothfeld [3] and Al-Khalil et al. [4]. The velocity field in a cross section of a rivulet flow and the non-dimensional maximum and mean velocity values for the vertical flat plate was also compared with models from Al-Khalil et al. [4] and Allen & Biggin [5]. Few CFD simulations for the wavy plate case were compared to the experimental findings, and the Towel model for a flat plate [3]. In the second stage of this work 3-D CFD simulations and experimental study has been performed for wetting of a structured packing element and packing sheet consisting of three elements from the type Rombopak 4M, which is a product of the company Kuhni, Switzerland. The hydrodynamics parameters of a packed column, e. i. the degree of wetting, the interfacial area and liquid hold-up have been depicted from the CFD simulations for different liquid systems and liquid loads. Flow patterns on the degree of wetting have been compared to that of the experiments, where the experimental values for the degree of wetting were estimated from the snap shooting of the flow on the packing sheet in a test rig. A new model to describe the hydrodynamics of packed columns equipped with Rombopak 4M was derived with help of the CFD–simulation results. The model predicts the degree of wetting, the specific or interfacial area and liquid hold-up at different flow conditions. This model was compared to Billet & Schultes [6], the SRP model Rocha et al. [7-9], to Shi & Mersmann [10] and others. Since the pressure drop is one of the most important parameter in packed columns especially for vacuum operating columns, few CFD simulations were performed to estimate the dry pressure drop in a structured and flat packing element and were compared to the experimental results. It was found a good agreement from one side, between the experimental and the CFD simulation results, and from the other side between the simulations and theoretical models for the rivulet flow on an inclined plate. The flow patterns and liquid spreading behaviour on the packing element agrees well with the experimental results. The VOF (Volume of Fluid) was found very sensitive to different liquid properties and can be used in optimization of the packing geometries and revealing critical details of wetting and film flow. An extension of this work to perform CFD simulations for the flow inside a block of the packing to get a detailed picture about the interaction between the liquid and packing surfaces is recommended as further perspective.

This research explores the development of web based reference software for
characterisation of surface roughness for two-dimensional surface data. The reference software used for verification of surface characteristics makes the evaluation methods easier for clients. The algorithms used in this software
are based on International ISO standards. Most software used in industrial measuring
instruments may give variations in the parameters calculated due to numerical changes in
calculation. Such variations can be verified using the proposed reference software.
The evaluation of surface roughness is carried out in four major steps: data capture, data
align, data filtering and parameter calculation. This work walks through each of these steps
explaining how surface profiles are evaluated by pre-processing steps called fitting and
filtering. The analysis process is then followed by parameter evaluation according to DIN EN
ISO 4287 and DIN EN ISO 13565-2 standards to extract important information from the
profile to characterise surface roughness.

Wearable activity recognition aims to identify and assess human activities with the help
of computer systems by evaluating signals of sensors which can be attached to the human
body. This provides us with valuable information in several areas: in health care, e.g. fluid
and food intake monitoring; in sports, e.g. training support and monitoring; in entertainment,
e.g. human-computer interface using body movements; in industrial scenarios, e.g.
computer support for detected work tasks. Several challenges exist for wearable activity
recognition: a large number of nonrelevant activities (null class), the evaluation of large
numbers of sensor signals (curse of dimensionality), ambiguity of sensor signals compared
to the activities and finally the high variability of human activity in general.
This thesis develops a new activity recognition strategy, called invariants classification,
which addresses these challenges, especially the variability in human activities. The
core idea is that often even highly variable actions include short, more or less invariant
sub-actions which are due to hard physical constraints. If someone opens a door, the
movement of the hand to the door handle is not fixed. However the door handle has to
be pushed to open the door. The invariants classification algorithm is structured in four
phases: segmentation, invariant identification, classification, and spotting. The segmentation
divides the continuous sensor data stream into meaningful parts, which are related
to sub-activities. Our segmentation strategy uses the zero crossings of the central difference
quotient of the sensor signals, as segment borders. The invariant identification finds
the invariant sub-activities by means of clustering and a selection strategy dependent on
certain features. The classification identifies the segments of a specific activity class, using
models generated from the invariant sub-activities. The models include the invariant
sub-activity signal and features calculated on sensor signals related to the sub-activity. In
the spotting, the classified segments are used to find the entire activity class instances in
the continuous sensor data stream. For this purpose, we use the position of the invariant
sub-activity in the related activity class instance for the estimation of the borders of the
activity instances.
In this thesis, we show that our new activity recognition strategy, built on invariant
sub-activities, is beneficial. We tested it on three human activity datasets with wearable
inertial measurement units (IMU). Compared to previous publications on the same
datasets we got improvement in the activity recognition in several classes, some with a
large margin. Our segmentation achieves a sensible method to separate the sensor data in
relation to the underlying activities. Relying on sub-activities makes us independent from
imprecise labels on the training data. After the identification of invariant sub-activities,
we calculate a value called cluster precision for each sensor signal and each class activity.
This tells us which classes can be easily classified and which sensor channels support
the classification best. Finally, in the training for each activity class, our algorithm selects
suitable signal channels with invariant sub-activities on different points in time and
with different length. This makes our strategy a multi-dimensional asynchronous motif
detection with variable motif length.

The thesis is concerned with the modelling of ionospheric current systems and induced magnetic fields in a multiscale framework. Scaling functions and wavelets are used to realize a multiscale analysis of the function spaces under consideration and to establish a multiscale regularization procedure for the inversion of the considered operator equation. First of all a general multiscale concept for vectorial operator equations between two separable Hilbert spaces is developed in terms of vector kernel functions. The equivalence to the canonical tensorial ansatz is proven and the theory is transferred to the case of multiscale regularization of vectorial inverse problems. As a first application, a special multiresolution analysis of the space of square-integrable vector fields on the sphere, e.g. the Earth’s magnetic field measured on a spherical satellite’s orbit, is presented. By this, a multiscale separation of spherical vector-valued functions with respect to their sources can be established. The vector field is split up into a part induced by sources inside the sphere, a part which is due to sources outside the sphere and a part which is generated by sources on the sphere, i.e. currents crossing the sphere. The multiscale technqiue is tested on a magnetic field data set of the satellite CHAMP and it is shown that crustal field determination can be improved by previously applying our method. In order to reconstruct ionspheric current systems from magnetic field data, an inversion of the Biot-Savart’s law in terms of multiscale regularization is defined. The corresponding operator is formulated and the singular values are calculated. Based on the konwledge of the singular system a regularzation technique in terms of certain product kernels and correponding convolutions can be formed. The method is tested on different simulations and on real magnetic field data of the satellite CHAMP and the proposed satellite mission SWARM.

Nanotechnology is now recognized as one of the most promising areas for technological
development in the 21st century. In materials research, the development of
polymer nanocomposites is rapidly emerging as a multidisciplinary research activity
whose results could widen the applications of polymers to the benefit of many different
industries. Nanocomposites are a new class of composites that are particle-filled
polymers for which at least one dimension of the dispersed particle is in the nanometer
range. In the related area polymer/clay nanocomposites have attracted considerable
interest because they often exhibit remarkable property improvements when
compared to virgin polymer or conventional micro- and macro- composites.
The present work addresses the toughening and reinforcement of thermoplastics via
a novel method which allows us to achieve micro- and nanocomposites. In this work
two matrices are used: amorphous polystyrene (PS) and semi-crystalline polyoxymethylene
(POM). Polyurethane (PU) was selected as the toughening agent for POM
and used in its latex form. It is noteworthy that the mean size of rubber latices is
closely matched with that of conventional toughening agents, impact modifiers.
Boehmite alumina and sodium fluorohectorite (FH) were used as reinforcements.
One of the criteria for selecting these fillers was that they are water swellable/
dispersible and thus their nanoscale dispersion can be achieved also in aqueous
polymer latex. A systematic study was performed on how to adapt discontinuousand
continuous manufacturing techniques for the related nanocomposites.
The dispersion of nanofillers was characterized by transmission, scanning electron
and atomic force microcopy (TEM, SEM and AFM respectively), X-ray diffraction
(XRD) techniques, and discussed. The crystallization of POM was studied by means
of differential scanning calorimetry and polarized light optical microscopy (DSC and
PLM, respectively). The mechanical and thermomechanical properties of the composites
were determined in uniaxial tensile, dynamic-mechanical thermal analysis
(DMTA), short-time creep tests, and thermogravimetric analysis (TGA).
PS composites were produced first by a discontinuous manufacturing technique,
whereby FH or alumina was incorporated in the PS matrix by melt blending with and
without latex precompounding of PS latex with the nanofiller. It was found that direct melt mixing (DM) of the nanofillers with PS resulted in micro-, whereas the latex mediated
pre-compounding (masterbatch technique, MB) in nanocomposites. FH was
not intercalated by PS when prepared by DM. On the other hand, FH was well dispersed
(mostly intercalated) in PS via the PS latex-mediated predispersion of FH following
the MB route. The nanocomposites produced by MB outperformed the DM
compounded microcomposites in respect to properties like stiffness, strength and
ductility based on dynamic-mechanical and static tensile tests. It was found that the
resistance to creep (summarized in master curves) of the nanocomposites were improved
compared to those of the microcomposites. Master curves (creep compliance
vs. time), constructed based on isothermal creep tests performed at different temperatures,
showed that the nanofiller reinforcement affects mostly the initial creep
compliance.
Next, ternary composites composed of POM, PU and boehmite alumina were produced
by melt blending with and without latex precompounding. Latex precompounding
served for the predispersion of the alumina particles. The related MB was produced
by mixing the PU latex with water dispersible boehmite alumina. The composites
produced by the MB technique outperformed the DM compounded composites in
respect to most of the thermal and mechanical characteristics.
Toughened and/or reinforced PS- and POM-based composites have been successfully
produced by a continuous extrusion technique, too. This technique resulted in
good dispersion of both nanofillers (boehmite) and impact modifier (PU). Compared
to the microcomposites obtained by conventional DM, the nanofiller dispersion became
finer and uniform when using the water-mediated predispersion. The resulting
structure markedly affected the mechanical properties (stiffness and creep resistance)
of the corresponding composites. The impact resistance of POM was highly
enhanced by the addition of PU rubber when manufactured by the continuous extrusion
manufacturing technique. This was traced to the dispersed PU particle size being
in the range required from conventional, impact modifiers.

In urban planning, sophisticated simulation models are key tools to estimate future population growth for measuring the impact of planning decisions on urban developments and the environment. Simulated population projections usually result in large, macro-scale, multivariate geospatial data sets. Millions of records have to be processed, stored, and visualized to help planners explore and analyze complex population patterns. We introduce a database driven framework for visualizing geospatial multidimensional simulation data based on the output from UrbanSim, a software for the analysis and planning of urban developments. The designed framework is extendable and aims at integrating empirical-stochastic methods and urban simulation models with techniques developed for information visualization and cartography. First, we develop an empirical model for the estimation of residential building types based on demographic household characteristics. The predicted dwelling type information is important for the analysis of future material use, carbon footprint calculations, and for visualizing simultaneously the results of land usage, density, and other significant parameters in 3D space. Our model uses multinomial logistic regression to derive building types at different scales. The estimated regression coefficients are applied to UrbanSim output in order to predict residential building types. The simulation results and the estimated building types are managed in an object-relational geodatabase. From the database, density, building types, and significant demographic variables are visually encoded as scalable, georeferenced 3D geometries and displayed on top of aerial photographs in a Google Earth visual synthesis. The geodatabase can be accessed and the visualization parameters can be chosen through a web-based user interface. The geometries are encoded in KML, Google's markup language, as ready-to-visualize data sets. The goal is to enhance human cognition by displaying abstract representations of multidimensional data sets in a realistic context and thus to support decision making in planning processes.

Due to the steadily growing flood of data, the appropriate use of visualizations for efficient data analysis is as important today as it has never been before. In many application domains, the data flood is based on processes that can be represented by node-link diagrams. Within such a diagram, nodes may represent intermediate results (or products), system states (or snapshots), milestones or real (and possibly georeferenced) objects, while links (edges) can embody transition conditions, transformation processes or real physical connections. Inspired by the engineering sciences application domain and the research project “SinOptiKom: Cross-sectoral optimization of transformation processes in municipal infrastructures in rural areas”, a platform for the analysis of transformation processes has been researched and developed based on a geographic information system (GIS). Caused by the increased amount of available and interesting data, a particular challenge is the simultaneous visualization of several visible attributes within one single diagram instead of using multiple ones. Therefore, two approaches have been developed, which utilize the available space between nodes in a diagram to display additional information.
Motivated by the necessity of appropriate result communication with various stakeholders, a concept for a universal, dashboard-based analysis platform has been developed. This web-based approach is conceptually capable of displaying data from various data sources and has been supplemented by collaboration possibilities such as sharing, annotating and presenting features.
In order to demonstrate the applicability and usability of newly developed applications, visualizations or user interfaces, extensive evaluations with human users are often inevitable. To reduce the complexity and the effort for conducting an evaluation, the browser-based evaluation framework (BREF) has been designed and implemented. Through its universal and flexible character, virtually any visualization or interaction running in the browser can be evaluated with BREF without any additional application (except for a modern web browser) on the target device. BREF has already proved itself in a wide range of application areas during the development and has since grown into a comprehensive evaluation tool.

The visualization of numerical fluid flow datasets is essential to the engineering processes that motivate their computational simulation. To address the need for visual representations that convey meaningful relations and enable a deep understanding of flow structures, the discipline of Flow Visualization has produced many methods and schemes that are tailored to a variety of visualization tasks. The ever increasing complexity of modern flow simulations, however, puts an enormous demand on these methods. The study of vortex breakdown, for example, which is a highly transient and inherently three-dimensional flow pattern with substantial impact wherever it appears, has driven current techniques to their limits. In this thesis, we propose several novel visualization methods that significantly advance the state of the art in the visualization of complex flow structures. First, we propose a novel scheme for the construction of stream surfaces from the trajectories of particles embedded in a flow. These surfaces are extremely useful since they naturally exploit coherence between neighboring trajectories and are highly illustrative in nature. We overcome the limitations of existing stream surface algorithms that yield poor results in complex flows, and show how the resulting surfaces can be used a building blocks for advanced flow visualization techniques. Moreover, we present a visualization method that is based on moving section planes that travel through a dataset and sample the flow. By considering the changes to the flow topology on the plane as it moves, we obtain a method of visualizing topological structures in three-dimensional flows that are not accessible by conventional topological methods. On the same algorithmic basis, we construct an algorithm for the tracking of critical points in such flows, thereby enabling the treatment of time-dependent datasets. Last, we address some problems with the recently introduced Lagrangian techniques. While conceptually elegant and generally applicable, they suffer from an enormous computational cost that we significantly use by developing an adaptive approximation algorithm. This allows the application of such methods on very large and complex numerical simulations. Throughout this thesis, we will be concerned with flow visualization aspect of general practical significance but we will particularly emphasize the remarkably challenging visualization of the vortex breakdown phenomenon.

In urban planning, both measuring and communicating sustainability are among the most recent concerns. Therefore, the primary emphasis of this thesis concerns establishing metrics and visualization techniques in order to deal with indicators of sustainability.
First, this thesis provides a novel approach for measuring and monitoring two indicators of sustainability - urban sprawl and carbon footprints – at the urban neighborhood scale. By designating different sectors of relevant carbon emissions as well as different household categories, this thesis provides detailed information about carbon emissions in order to estimate impacts of daily consumption decisions and travel behavior by household type. Regarding urban sprawl, a novel gridcell-based indicator model is established, based on different dimensions of urban sprawl.
Second, this thesis presents a three-step-based visualization method, addressing predefined requirements for geovisualizations and visualizing those indicator results, introduced above. This surface-visualization combines advantages from both common GIS representation and three-dimensional representation techniques within the field of urban planning, and is assisted by a web-based graphical user interface which allows for accessing the results by the public.
In addition, by focusing on local neighborhoods, this thesis provides an alternative approach in measuring and visualizing both indicators by utilizing a Neighborhood Relation Diagram (NRD), based on weighted Voronoi diagrams. Thus, the user is able to a) utilize original census data, b) compare direct impacts of indicator results on the neighboring cells, and c) compare both indicators of sustainability visually.

Nowadays, the increasing demand for ever more customizable products has emphasized the need for more flexible and fast-changing manufacturing systems. In this environment, simulation has become a strategic tool for the design, development, and implementation of such systems. Simulation represents a relatively low-cost and risk-free alternative for testing the impact and effectiveness of changes in different aspects of manufacturing systems.
Systems that deal with this kind of data for its use in decision making processes are known as Simulation-Based Decision Support Systems (SB-DSS). Although most SB-DSS provide a powerful variety of tools for the automatic and semi-automatic analysis of simulations, visual and interactive alternatives for the manual exploration of the results are still open to further development.
The work in this dissertation is focused on enhancing decision makers’ analysis capabilities by making simulation data more accessible through the incorporation of visualization and analysis techniques. To demonstrate how this goal can be achieved, two systems were developed. The first system, viPhos – standing for visualization of Phos: Greek for light –, is a system that supports lighting design in factory layout planning. viPhos combines simulation, analysis, and visualization tools and techniques to facilitate the global and local (overall factory or single workstations, respectively) interactive exploration and comparison of lighting design alternatives.
The second system, STRAD - standing for Spatio-Temporal Radar -, is a web-based systems that considers the spatio/attribute-temporal analysis of event data. Since decision making processes in manufacturing also involve the monitoring of the systems over time, STRAD enables the multilevel exploration of event data (e.g., simulated or historical registers of the status of machines or results of quality control processes).
A set of four case studies and one proof of concept prepared for both systems demonstrate the suitability of the visualization and analysis strategies adopted for supporting decision making processes in diverse application domains. The results of these case studies indicate that both, the systems as well as the techniques included in the systems can be generalized and extended to support the analysis of different tasks and scenarios.

Due to remarkable technological advances in the last three decades the capacity of computer systems has improved tremendously. Considering Moore's law, the number of transistors on integrated circuits has doubled approximately every two years and the trend is continuing. Likewise, developments in storage density, network bandwidth, and compute capacity show similar patterns. As a consequence, the amount of data that can be processed by today's systems has increased by orders of magnitude. At the same time, however, the resolution of screens has hardly increased by a factor of ten. Thus, there is a gap between the amount of data that can be processed and the amount of data that can be visualized. Large high-resolution displays offer a way to deal with this gap and provide a significantly increased screen area by combining the images of multiple smaller display devices. The main objective of this dissertation is the development of new visualization and interaction techniques for large high-resolution displays.

This dissertation focuses on the visualization of urban microclimate data sets,
which describe the atmospheric impact of individual urban features. The application
and adaptation of visualization and analysis concepts to enhance the
insight into observational data sets used this specialized area are explored, motivated
through application problems encountered during active involvement
in urban microclimate research at the Arizona State University in Tempe, Arizona.
Besides two smaller projects dealing with the analysis of thermographs
recorded with a hand-held device and visualization techniques used for building
performance simulation results, the main focus of the work described in
this document is the development of a prototypic tool for the visualization
and analysis of mobile transect measurements. This observation technique involves
a sensor platform mounted to a vehicle, which is then used to traverse
a heterogeneous neighborhood to investigate the relationships between urban
form and microclimate. The resulting data sets are among the most complex
modes of in-situ observations due to their spatio-temporal dependence, their
multivariate nature, but also due to the various error sources associated with
moving platform observations.
The prototype enables urban climate researchers to preprocess their data,
to explore a single transect in detail, and to aggregate observations from multiple
traverses conducted over diverse routes for a visual delineation of climatic
microenvironments. Extending traditional analysis methods, the suggested visualization
tool provides techniques to relate the measured attributes to each
other and to the surrounding land cover structure. In addition to that, an
improved method for sensor lag correction is described, which shows the potential
to increase the spatial resolution of measurements conducted with slow
air temperature sensors.
In summary, the interdisciplinary approach followed in this thesis triggers
contributions to geospatial visualization and visual analytics, as well as to urban
climatology. The solutions developed in the course of this dissertation are
meant to support domain experts in their research tasks, providing means to
gain a qualitative overview over their specific data sets and to detect patterns,
which can then be further analyzed using domain-specific tools and methods.

The focus of this work is to provide and evaluate a novel method for multifield topology-based analysis and visualization. Through this concept, called Pareto sets, one is capable to identify critical regions in a multifield with arbitrary many individual fields. It uses ideas found in graph optimization to find common behavior and areas of divergence between multiple optimization objectives. The connections between the latter areas can be reduced into a graph structure allowing for an abstract visualization of the multifield to support data exploration and understanding.
The research question that is answered in this dissertation is about the general capability and expandability of the Pareto set concept in context of visualization and application. Furthermore, the study of its relations, drawbacks and advantages towards other topological-based approaches. This questions is answered in several steps, including consideration and comparison with related work, a thorough introduction of the Pareto set itself as well as a framework for efficient implementation and an attached discussion regarding limitations of the concept and their implications for run time, suitable data, and possible improvements.
Furthermore, this work considers possible simplification approaches like integrated single-field simplification methods but also using common structures identified through the Pareto set concept to smooth all individual fields at once. These considerations are especially important for real-world scenarios to visualize highly complex data by removing small local structures without destroying information about larger, global trends.
To further emphasize possible improvements and expandability of the Pareto set concept, the thesis studies a variety of different real world applications. For each scenario, this work shows how the definition and visualization of the Pareto set is used and improved for data exploration and analysis based on the scenarios.
In summary, this dissertation provides a complete and sound summary of the Pareto set concept as ground work for future application of multifield data analysis. The possible scenarios include those presented in the application section, but are found in a wide range of research and industrial areas relying on uncertainty analysis, time-varying data, and ensembles of data sets in general.

The safety of embedded systems is becoming more and more important nowadays. Fault Tree Analysis (FTA) is a widely used technique for analyzing the safety of embedded systems. A standardized tree-like structure called a Fault Tree (FT) models the failures of the systems. The Component Fault Tree (CFT) provides an advanced modeling concept for adapting the traditional FTs to the hierarchical architecture model in system design. Minimal Cut Set (MCS) analysis is a method that works for qualitative analysis based on the FTs. Each MCS represents a minimal combination of component failures of a system called basic events, which may together cause the top-level system failure. The ordinary representations of MCSs consist of plain text and data tables with little additional supporting visual and interactive information. Importance analysis based on FTs or CFTs estimates the contribution of each potential basic event to a top-level system failure. The resulting importance values of basic events are typically represented in summary views, e.g., data tables and histograms. There is little visual integration between these forms and the FT (or CFT) structure. The safety of a system can be improved using an iterative process, called the safety improvement process, based on FTs taking relevant constraints into account, e.g., cost. Typically, relevant data regarding the safety improvement process are presented across multiple views with few interactive associations. In short, the ordinary representation concepts cannot effectively facilitate these analyses.
We propose a set of visualization approaches for addressing the issues above mentioned in order to facilitate those analyses in terms of the representations.
Contribution:
1. To support the MCS analysis, we propose a matrix-based visualization that allows detailed data of the MCSs of interest to be viewed while maintaining a satisfactory overview of a large number of MCSs for effective navigation and pattern analysis. Engineers can also intuitively analyze the influence of MCSs of a CFT.
2. To facilitate the importance analysis based on the CFT, we propose a hybrid visualization approach that combines the icicle-layout-style architectural views with the CFT structure. This approach facilitates to identify the vulnerable components taking the hierarchies of system architecture into account and investigate the logical failure propagation of the important basic events.
3. We propose a visual safety improvement process that integrates an enhanced decision tree with a scatter plot. This approach allows one to visually investigate the detailed data related to individual steps of the process while maintaining the overview of the process. The approach facilitates to construct and analyze improvement solutions of the safety of a system.
Using our visualization approaches, the MCS analysis, the importance analysis, and the safety improvement process based on the CFT can be facilitated.

The present research combines different paradigm in the area of visual perception of letter and words. These experiments aimed to understand the deficit underlying the problem associated with the faulty visual processing of letters and words. The present work summarizes the findings from two different types of population: (1) Dyslexics (reading-disabled children) and (2) Illiterates (adults who cannot read). In order to compare the results, comparisons were made between literate and illiterate group; dyslexics and control group (normal reading children). Differences for Even related potentials (ERP’s) between dyslexics and control children were made using mental rotation task for letters. According to the ERP’s, the effect of the mental rotation task of letter perception resulted as a delayed positive component and the component becomes less positive when the task becomes more difficult (Rotation related Negativity – RRN). The component was absent for dyslexics and present for controls. Dyslexics also showed some late effects in comparison to control children and this could be interpreted as problems at the decision stage where they are confused as to the letter is normal or mirrored. Dyslexics also have problems in responding to the letters having visual or phonological similarities (e.g. b vs d, p vs q). Visually similar letters were used to compare dyslexics and controls on a symmetry generalization task in two different contrast conditions (low and high). Dyslexics showed a similar pattern of response, and were overall slower in responding to the task compared to controls. The results were interpreted within the framework of the Functional Coordination Deficit (Lachmann, 2002). Dyslexics also showed delayed response in responding to the word recognition task during motion. Using red background decreases the Magnocellular pathway (M-pathway) activity, making more difficult to identify letters and this effect was worse for dyslexics because their M-pathway is weaker. In dyslexics, the M-pathway is worse; using a red background decreases the M activity and increases the difficulty in identifying lexical task in motion. This effect generated worse response to red compared to the green background. The reaction times with red were longer than those with green background. Further, Illiterates showed an analytic approach to responding to letters as well as on shapes. The analytic approach does not result from an individual capability to read, but is a primary base of visual organization or perception.

Today's ubiquity of visual content as driven by the availability of broadband Internet, low-priced storage, and the omnipresence of camera equipped mobile devices conveys much of our thinking and feeling as individuals and as a society. As a result the growth of video repositories is increasing at enourmous rates with content now being embedded and shared through social media. To make use of this new form of social multimedia, concept detection, the automatic mapping of semantic concepts and video content has to be extended such that concept vocabularies are synchronized with current real-world events, systems can perform scalable concept learning with thousands of concepts, and high-level information such as sentiment can be extracted from visual content. To catch up with these demands the following three contributions are made in this thesis: (i) concept detection is linked to trending topics, (ii) visual learning from web videos is presented including the proper treatment of tags as concept labels, and (iii) the extension of concept detection with adjective noun pairs for sentiment analysis is proposed.
In order for concept detection to satisfy users' current information needs, the notion of fixed concept vocabularies has to be reconsidered. This thesis presents a novel concept learning approach built upon dynamic vocabularies, which are automatically augmented with trending topics mined from social media. Once discovered, trending topics are evaluated by forecasting their future progression to predict high impact topics, which are then either mapped to an available static concept vocabulary or trained as individual concept detectors on demand. It is demonstrated in experiments on YouTube video clips that by a visual learning of trending topics, improvements of over 100% in concept detection accuracy can be achieved over static vocabularies (n=78,000).
To remove manual efforts related to training data retrieval from YouTube and noise caused by tags being coarse, subjective and context-depedent, this thesis suggests an automatic concept-to-query mapping for the retrieval of relevant training video material, and active relevance filtering to generate reliable annotations from web video tags. Here, the relevance of web tags is modeled as a latent variable, which is combined with an active learning label refinement. In experiments on YouTube, active relevance filtering is found to outperform both automatic filtering and active learning approaches, leading to a reduction of required label inspections by 75% as compared to an expert annotated training dataset (n=100,000).
Finally, it is demonstrated, that concept detection can serve as a key component to infer the sentiment reflected in visual content. To extend concept detection for sentiment analysis, adjective noun pairs (ANP) as novel entities for concept learning are proposed in this thesis. First a large-scale visual sentiment ontology consisting of 3,000 ANPs is automatically constructed by mining the web. From this ontology a mid-level representation of visual content – SentiBank – is trained to encode the visual presence of 1,200 ANPs. This novel approach of visual learning is validated in three independent experiments on sentiment prediction (n=2,000), emotion detection (n=807) and pornographic filtering (n=40,000). SentiBank is shown to outperform known low-level feature representations (sentiment prediction, pornography detection) or perform comparable to state-of-the art methods (emotion detection).
Altogether, these contributions extend state-of-the-art concept detection approaches such that concept learning can be done autonomously from web videos on a large-scale, and can cope with novel semantic structures such as trending topics or adjective noun pairs, adding a new dimension to the understanding of video content.

Synapses play a central role in the information propagation in the nervous system. A better understanding of synaptic structures and processes is vital for advancing nervous disease research. This work is part of an interdisciplinary project that aims at the quantitative examination of components of the neuromuscular junction, a synaptic connection between a neuron and a muscle cell.
The research project is based on image stacks picturing neuromuscular junctions captured by modern electron microscopes, which permit the rapid acquisition of huge amounts of image data at a high level of detail. The large amount and sheer size of such microscopic data makes a direct visual examination infeasible, though.
This thesis presents novel problem-oriented interactive visualization techniques that support the segmentation and examination of neuromuscular junctions.
First, I introduce a structured data model for segmented surfaces of neuromuscular junctions to enable the computational analysis of their properties. However, surface segmentation of neuromuscular junctions is a very challenging task due to the extremely intricate character of the objects of interest. Hence, such problematic segmentations are often performed manually by non-experts and thus requires further inspection.
With NeuroMap, I develop a novel framework to support proofreading and correction of three-dimensional surface segmentations. To provide a clear overview and to ease navigation within the data, I propose the surface map, an abstracted two-dimensional representation using key features of the surface as landmarks. These visualizations are augmented with information about automated segmentation error estimates. The framework provides intuitive and interactive data correction mechanisms, which in turn permit the expeditious creation of high-quality segmentations.
While analyzing such segmented synapse data, the formulation of specific research questions is often impossible due to missing insight into the data. I address this problem by designing a generic parameter space for segmented structures from biological image data. Furthermore, I introduce a graphical interface to aid its exploration, combining both parameter selection as well as data representation.

Graphs and flow networks are important mathematical concepts that enable the modeling and analysis of a large variety of real world problems in different domains such as engineering, medicine or computer science. The number, sizes and complexities of those problems permanently increased during the last decades. This led to an increased demand of techniques that help domain experts in understanding their data and its underlying structure to enable an efficient analysis and decision making process.
To tackle this challenge, this work presents several new techniques that utilize concepts of visual analysis to provide domain scientists with new visualization methodologies and tools. Therefore, this work provides novel concepts and approaches for diverse aspects of the visual analysis such as data transformation, visual mapping, parameter refinement and analysis, model building and visualization as well as user interaction.
The presented techniques form a framework that enriches domain scientists with new visual analysis tools and help them analyze their data and gain insight from the underlying structures. To show the applicability and effectiveness of the presented approaches, this work tackles different applications such as networking, product flow management and vascular systems, while preserving the generality to be applicable to further domains.

In this thesis viscoelastic material models are established to investigate the nature of continuous calving processes at Antarctic ice shelves. Physics-based descriptions of calving require appropriate fracture criteria to separate icebergs from the remaining ice shelf. Hence, criteria of the stress, the strain, and the self-similarity criterion are considered within finite-element computations. Crucial parameters in the models to determine the position of calving are the accurate knowledge of the geometry, especially the freeboard height, while the material parameters mainly influence the time span between two successive calving events. The extension to nonlinear material models is necessary to properly analyze the internal forces also for large deformations that occur for longer times of the viscous ice flow.

In the presented work, I evaluate if and how Virtual Reality (VR) technologies can be used to support researchers working in the geosciences by providing immersive, collaborative visualization systems as well as virtual tools for data analysis. Technical challenges encountered in the development of theses systems are identified and solutions for these are provided.
To enable geologists to explore large digital terrain models (DTMs) in an immersive, explorative fashion within a VR environment, a suitable terrain rendering algorithm is required. For realistic perception of planetary curvature at large viewer altitudes, spherical rendering of the surface is necessary. Furthermore, rendering must sustain interactive frame rates of about 30 frames per second to avoid sensory confusion of the user. At the same time, the data structures used for visualization should also be suitable for efficiently computing spatial properties such as height profiles or volumes in order to implement virtual analysis tools. To address these requirements, I have developed a novel terrain rendering algorithm based on tiled quadtree hierarchies using the HEALPix parametrization of a sphere. For evaluation purposes, the system is applied to a 500 GiB dataset representing the surface of Mars.
Considering the current development of inexpensive remote surveillance equipment such as quadcopters, it seems inevitable that these devices will play a major role in future disaster management applications. Virtual reality installations in disaster management headquarters which provide an immersive visualization of near-live, three-dimensional situational data could then be a valuable asset for rapid, collaborative decision making. Most terrain visualization algorithms, however, require a computationally expensive pre-processing step to construct a terrain database.
To address this problem, I present an on-the-fly pre-processing system for cartographic data. The system consists of a frontend for rendering and interaction as well as a distributed processing backend executing on a small cluster which produces tiled data in the format required by the frontend on demand. The backend employs a CUDA based algorithm on graphics cards to perform efficient conversion from cartographic standard projections to the HEALPix-based grid used by the frontend.
Measurement of spatial properties is an important step in quantifying geological phenomena. When performing these tasks in a VR environment, a suitable input device and abstraction for the interaction (a “virtual tool”) must be provided. This tool should enable the user to precisely select the location of the measurement even under a perspective projection. Furthermore, the measurement process should be accurate to the resolution of the data available and should not have a large impact on the frame rate in order to not violate interactivity requirements.
I have implemented virtual tools based on the HEALPix data structure for measurement of height profiles as well as volumes. For interaction, a ray-based picking metaphor was employed, using a virtual selection ray extending from the user’s hand holding a VR interaction device. To provide maximum accuracy, the algorithms access the quad-tree terrain database at the highest available resolution level while at the same time maintaining interactivity in rendering.
Geological faults are cracks in the earth’s crust along which a differential movement of rock volumes can be observed. Quantifying the direction and magnitude of such translations is an essential requirement in understanding earth’s geological history. For this purpose, geologists traditionally use maps in top-down projection which are cut (e.g. using image editing software) along the suspected fault trace. The two resulting pieces of the map are then translated in parallel against each other until surface features which have been cut by the fault motion come back into alignment. The amount of translation applied is then used as a hypothesis for the magnitude of the fault action. In the scope of this work it is shown, however, that performing this study in a top-down perspective can lead to the acceptance of faulty reconstructions, since the three-dimensional structure of topography is not considered.
To address this problem, I present a novel terrain deformation algorithm which allows the user to trace a fault line directly within a 3D terrain visualization system and interactively deform the terrain model while inspecting the resulting reconstruction from arbitrary perspectives. I demonstrate that the application of 3D visualization allows for a more informed interpretation of fault reconstruction hypotheses. The algorithm is implemented on graphics cards and performs real-time geometric deformation of the terrain model, guaranteeing interactivity with respect to all parameters.
Paleoceanography is the study of the prehistoric evolution of the ocean. One of the key data sources used in this research are coring experiments which provide point samples of layered sediment depositions at the ocean floor. The samples obtained in these experiments document the time-varying sediment concentrations within the ocean water at the point of measurement. The task of recovering the ocean flow patterns based on these deposition records is a challenging inverse numerical problem, however.
To support domain scientists working on this problem, I have developed a VR visualization tool to aid in the verification of model parameters by providing simultaneous visualization of experimental data from coring as well as the resulting predicted flow field obtained from numerical simulation. Earth is visualized as a globe in the VR environment with coring data being presented using a billboard rendering technique while the
time-variant flow field is indicated using Line-Integral-Convolution (LIC). To study individual sediment transport pathways and their correlation with the depositional record, interactive particle injection and real-time advection is supported.

Knowing the extent to which we rely on technology one may think that correct programs are nowadays the norm. Unfortunately, this is far from the truth. Luckily, possible reasons why program correctness is difficult often come hand in hand with some solutions. Consider concurrent program correctness under Sequential Consistency (SC). Under SC, instructions of each program's concurrent component are executed atomically and in order. By using logic to represent correctness specifications, model checking provides a successful solution to concurrent program verification under SC. Alas, SC’s atomicity assumptions do not reflect the reality of hardware architectures. Total Store Order (TSO) is a less common memory model implemented in SPARC and in Intel x86 multiprocessors that relaxes the SC constraints. While the architecturally de-atomized execution of stores under TSO speeds up program execution, it also complicates program verification. To be precise, due to TSO’s unbounded store buffers, a program’s semantics under TSO might be infinite. This, for example, turns reachability under SC (a PSPACE-complete task) into a non-primitive-recursive-complete problem under TSO. This thesis develops verification techniques targeting TSO-relaxed programs. To be precise, we present under- and over-approximating heuristics for checking reachability in TSO-relaxed programs as well as state-reducing methods for speeding up such heuristics. In a first contribution, we propose an algorithm to check reachability of TSO-relaxed programs lazily. The under-approximating refinement algorithm uses auxiliary variables to simulate TSO’s buffers along instruction sequences suggested by an oracle. The oracle’s deciding characteristic is that if it returns the empty sequence then the program’s SC- and TSO-reachable states are the same. Secondly, we propose several approaches to over-approximate TSO buffers. Combined in a refinement algorithm, these approaches can be used to determine safety with respect to TSO reachability for a large class of TSO-relaxed programs. On the more technical side, we prove that checking reachability is decidable when TSO buffers are approximated by multisets with tracked per address last-added-values. Finally, we analyze how the explored state space can be reduced when checking TSO and SC reachability. Intuitively, through the viewpoint of Shasha-and-Snir-like traces, we exploit the structure of program instructions to explain several state-space reducing methods including dynamic and cartesian partial order reduction.

A wide range of methods and techniques have been developed over the years to manage the increasing
complexity of automotive Electrical/Electronic systems. Standardization is an example
of such complexity managing techniques that aims to minimize the costs, avoid compatibility
problems and improve the efficiency of development processes.
A well-known and -practiced standard in automotive industry is AUTOSAR (Automotive
Open System Architecture). AUTOSAR is a common standard among OEMs (Original Equipment
Manufacturer), suppliers and other involved companies. It was developed originally with
the goal of simplifying the overall development and integration process of Electrical/Electronic
artifacts from different functional domains, such as hardware, software, and vehicle communication.
However, the AUTOSAR standard, in its current status, is not able to manage the problems
in some areas of the system development. Validation and optimization process of system configuration
handled in this thesis are examples of such areas, in which the AUTOSAR standard
offers so far no mature solutions.
Generally, systems developed on the basis of AUTOSAR must be configured in a way that all
defined requirements are met. In most cases, the number of configuration parameters and their
possible settings in AUTOSAR systems are large, especially if the developed system is complex
with modules from various knowledge domains. The verification process here can consume a
lot of resources to test all possible combinations of configuration settings, and ideally find the
optimal configuration variant, since the number of test cases can be very high. This problem is
referred to in literature as the combinatorial explosion problem.
Combinatorial testing is an active and promising area of functional testing that offers ideas
to solve the combinatorial explosion problem. Thereby, the focus is to cover the interaction
errors by selecting a sample of system input parameters or configuration settings for test case
generation. However, the industrial acceptance of combinatorial testing is still weak because of
the deficiency of real industrial examples.
This thesis is tempted to fill this gap between the industry and the academy in the area
of combinatorial testing to emphasizes the effectiveness of combinatorial testing in verifying
complex configurable systems.
The particular intention of the thesis is to provide a new applicable approach to combinatorial
testing to fight the combinatorial explosion problem emerged during the verification and
performance measurement of transport protocol parallel routing of an AUTOSAR gateway. The
proposed approach has been validated and evaluated by means of two real industrial examples
of AUTOSAR gateways with multiple communication buses and two different degrees of complexity
to illustrate its applicability.

The present work deals with the (global and local) modeling of the windfield on the real topography of Rheinland-Pfalz. Thereby the focus is on the construction of a vectorial windfield from low, irregularly distributed data given on a topographical surface. The developed spline procedure works by means of vectorial (homogeneous, harmonic) polynomials (outer harmonics) which control the oscillation behaviour of the spline interpoland. In the process the characteristic of the spline curvature which defines the energy norm is assumed to be on a sphere inside the Earth interior and not on the Earth’s surface. The numerical advantage of this method arises from the maximum-minimum principle for harmonic functions.

In this thesis we classify simple coherent sheaves on Kodaira fibers of types II, III and IV (cuspidal and tacnode cubic curves and a plane configuration of three concurrent lines). Indecomposable vector bundles on smooth elliptic curves were classified in 1957 by Atiyah. In works of Burban, Drozd and Greuel it was shown that the categories of vector bundles and coherent sheaves on cycles of projective lines are tame. It turns out, that all other degenerations of elliptic curves are vector-bundle-wild. Nevertheless, we prove that the category of coherent sheaves of an arbitrary reduced plane cubic curve, (including the mentioned Kodaira fibers) is brick-tame. The main technical tool of our approach is the representation theory of bocses. Although, this technique was mainly used for purely theoretical purposes, we illustrate its computational potential for investigating tame behavior in wild categories. In particular, it allows to prove that a simple vector bundle on a reduced cubic curve is determined by its rank, multidegree and determinant, generalizing Atiyah's classification. Our approach leads to an interesting class of bocses, which can be wild but are brick-tame.

Monte Carlo simulation is one of the commonly used methods for risk estimation on financial markets, especially for option portfolios, where any analytical approximation is usually too inaccurate. However, the usually high computational effort for complex portfolios with a large number of underlying assets motivates the application of variance reduction procedures. Variance reduction for estimating the probability of high portfolio losses has been extensively studied by Glasserman et al. A great variance reduction is achieved by applying an exponential twisting importance sampling algorithm together with stratification. The popular and much faster Delta-Gamma approximation replaces the portfolio loss function in order to guide the choice of the importance sampling density and it plays the role of the stratification variable. The main disadvantage of the proposed algorithm is that it is derived only in the case of Gaussian and some heavy-tailed changes in risk factors.
Hence, our main goal is to keep the main advantage of the Monte Carlo simulation, namely its ability to perform a simulation under alternative assumptions on the distribution of the changes in risk factors, also in the variance reduction algorithms. Step by step, we construct new variance reduction techniques for estimating the probability of high portfolio losses. They are based on the idea of the Cross-Entropy importance sampling procedure. More precisely, the importance sampling density is chosen as the closest one to the optimal importance sampling density (zero variance estimator) out of some parametric family of densities with respect to Kullback - Leibler cross-entropy. Our algorithms are based on the special choices of the parametric family and can now use any approximation of the portfolio loss function. A special stratification is developed, so that any approximation of the portfolio loss function under any assumption of the distribution of the risk factors can be used. The constructed algorithms can easily be applied for any distribution of risk factors, no matter if light- or heavy-tailed. The numerical study exhibits a greater variance reduction than of the algorithm from Glasserman et al. The use of a better approximation may improve the performance of our algorithms significantly, as it is shown in the numerical study.
The literature on the estimation of the popular market risk measures, namely VaR and CVaR, often refers to the algorithms for estimating the probability of high portfolio losses, describing the corresponding transition process only briefly. Hence, we give a consecutive discussion of this problem. Results necessary to construct confidence intervals for both measures under the mentioned variance reduction procedures are also given.

In this work two main approaches for the evaluation of credit derivatives are analyzed: the copula based approach and the Markov Chain based approach. This work gives the opportunity to use the advantages and avoid disadvantages of both approaches. For example, modeling of contagion effects, i.e. modeling dependencies between counterparty defaults, is complicated under the copula approach. One remedy is to use Markov Chain, where it can be done directly. The work consists of five chapters. The first chapter of this work extends the model for the pricing of CDS contracts presented in the paper by Kraft and Steffensen (2007). In the widely used models for CDS pricing it is assumed that only borrower can default. In our model we assume that each of the counterparties involved in the contract may default. Calculated contract prices are compared with those calculated under usual assumptions. All results are summarized in the form of numerical examples and plots. In the second chapter the copula and its main properties are described. The methods of constructing copulas as well as most common copulas families and its properties are introduced. In the third chapter the method of constructing a copula for the existing Markov Chain is introduced. The cases with two and three counterparties are considered. Necessary relations between the transition intensities are derived to directly find some copula functions. The formulae for default dependencies like Spearman's rho and Kendall's tau for defined copulas are derived. Several numerical examples are presented in which the copulas are built for given Markov Chains. The fourth chapter deals with the approximation of copulas if for a given Markov Chain a copula cannot be provided explicitly. The fifth chapter concludes this thesis.

Utilization of Correlation Matrices in Adaptive Array Processors for Time-Slotted CDMA Uplinks
(2002)

It is well known that the performance of mobile radio systems can be significantly enhanced by the application of adaptive antennas which consist of multi-element antenna arrays plus signal processing circuitry. In the thesis the utilization of such antennas as receive antennas in the uplink of mobile radio air interfaces of the type TD-CDMA is studied. Especially, the incorporation of covariance matrices of the received interference signals into the signal processing algorithms is investigated with a view to improve the system performance as compared to state of the art adaptive antenna technology. These covariance matrices implicitly contain information on the directions of incidence of the interference signals, and this information may be exploited to reduce the effective interference power when processing the signals received by the array elements. As a basis for the investigations, first directional models of the mobile radio channels and of the interference impinging at the receiver are developed, which can be implemented on the computer at low cost. These channel models cover both outdoor and indoor environments. They are partly based on measured channel impulse responses and, therefore, allow a description of the mobile radio channels which comes sufficiently close to reality. Concerning the interference models, two cases are considered. In the one case, the interference signals arriving from different directions are correlated, and in the other case these signals are uncorrelated. After a visualization of the potential of adaptive receive antennas, data detection and channel estimation schemes for the TD-CDMA uplink are presented, which rely on such antennas under the consideration of interference covariance matrices. Of special interest is the detection scheme MSJD (Multi Step Joint Detection), which is a novel iterative approach to multi-user detection. Concerning channel estimation, the incorporation of the knowledge of the interference covariance matrix and of the correlation matrix of the channel impulse responses is enabled by an MMSE (Minimum Mean Square Error) based channel estimator. The presented signal processing concepts using covariance matrices for channel estimation and data detection are merged in order to form entire receiver structures. Important tasks to be fulfilled in such receivers are the estimation of the interference covariance matrices and the reconstruction of the received desired signals. These reconstructions are required when applying MSJD in data detection. The considered receiver structures are implemented on the computer in order to enable system simulations. The obtained simulation results show that the developed schemes are very promising in cases, where the impinging interference is highly directional, whereas in cases with the interference directions being more homogeneously distributed over the azimuth the consideration of the interference covariance matrices is of only limited benefit. The thesis can serve as a basis for practical system implementations.

This thesis deals with risk measures based on utility functions and time consistency of dynamic risk measures. It is therefore aimed at readers interested in both, the theory of static and dynamic financial risk measures in the sense of Artzner, Delbaen, Eber and Heath [7], [8] and the theory of preferences in the tradition of von Neumann and Morgenstern [134].
A main contribution of this thesis is the introduction of optimal expected utility (OEU) risk measures as a new class of utility-based risk measures. We introduce OEU, investigate its main properties, and its applicability to risk measurement and put it in perspective to alternative risk measures and notions of certainty equivalents. To the best of our knowledge, OEU is the only existing utility-based risk measure that is (non-trivial and) coherent if the utility function u has constant relative risk aversion. We present several different risk measures that can be derived with special choices of u and illustrate that OEU reacts in a more sensitive way to slight changes of the probability of a financial loss than value at risk (V@R) and average value at risk.
Further, we propose implied risk aversion as a coherent rating methodology for retail structured products (RSPs). Implied risk aversion is based on optimal expected utility risk measures and, in contrast to standard V@R-based ratings, takes into account both the upside potential and the downside risks of such products. In addition, implied risk aversion is easily interpreted in terms of an individual investor's risk aversion: A product is attractive (unattractive) for an investor if its implied risk aversion is higher (lower) than his individual risk aversion. We illustrate this approach in a case study with more than 15,000 warrants on DAX ® and find that implied risk aversion is able to identify favorable products; in particular, implied risk aversion is not necessarily increasing with respect to the strikes of call warrants.
Another main focus of this thesis is on consistency of dynamic risk measures. To this end, we study risk measures on the space of distributions, discuss concavity on the level of distributions and slightly generalize Weber's [137] findings on the relation of time consistent dynamic risk measures to static risk measures to the case of dynamic risk measures with time-dependent parameters. Finally, this thesis investigates how recursively composed dynamic risk measures in discrete time, which are time consistent by construction, can be related to corresponding dynamic risk measures in continuous time. We present different approaches to establish this link and outline the theoretical basis and the practical benefits of this relation. The thesis concludes with a numerical implementation of this theory.

This thesis deals with the relationship between no-arbitrage and (strictly) consistent price processes for a financial market with proportional transaction costs
in a discrete time model. The exact mathematical statement behind this relationship is formulated in the so-called Fundamental Theorem of Asset Pricing (FTAP). Among the many proofs of the FTAP without transaction costs there
is also an economic intuitive utility-based approach. It relies on the economic
intuitive fact that the investor can maximize his expected utility from terminal
wealth. This approach is rather constructive since the equivalent martingale measure is then given by the marginal utility evaluated at the optimal terminal payoff.
However, in the presence of proportional transaction costs such a utility-based approach for the existence of consistent price processes is missing in the literature. So far, rather deep methods from functional analysis or from the theory of random sets have been used to show the FTAP under proportional transaction costs.
For the sake of existence of a utility-maximizing payoff we first concentrate on a generic single-period model with only one risky asset. The marignal utility evaluated at the optimal terminal payoff yields the first component of a
consistent price process. The second component is given by the bid-ask prices
depending on the investors optimal action. Even more is true: nearby this consistent price process there are many strictly consistent price processes. Their exact structure allows us to apply this utility-maximizing argument in a multi-period model. In a backwards induction we adapt the given bid-ask prices in such a way so that the strictly consistent price processes found from maximizing utility can be extended to terminal time. In addition possible arbitrage opportunities of the 2nd kind vanish which can present for the original bid-ask process. The notion of arbitrage opportunities of the 2nd kind has been so
far investigated only in models with strict costs in every state. In our model
transaction costs need not be present in every state.
For a model with finitely many risky assets a similar idea is applicable. However, in the single-period case we need to develop new methods compared
to the single-period case with only one risky asset. There are mainly two reasons
for that. Firstly, it is not at all obvious how to get a consistent price process
from the utility-maximizing payoff, since the consistent price process has to be
found for all assets simultaneously. Secondly, we need to show directly that the
so-called vector space property for null payoffs implies the robust no-arbitrage condition. Once this step is accomplished we can à priori use prices with a
smaller spread than the original ones so that the consistent price process found
from the utility-maximizing payoff is strictly consistent for the original prices.
To make the results applicable for the multi-period case we assume that the prices are given by compact and convex random sets. Then the multi-period case is similar to the case with only one risky asset but more demanding with regard to technical questions.

The last couple of years have marked the entire field of information technology with the introduction of a new global resource, called data. Certainly, one can argue that large amounts of information and highly interconnected and complex datasets were available since the dawn of the computer and even centuries before. However, it has been only a few years since digital data has exponentially expended, diversified and interconnected into an overwhelming range of domains, generating an entire universe of zeros and ones. This universe represents a source of information with the potential of advancing a multitude of fields and sparking valuable insights. In order to obtain this information, this data needs to be explored, analyzed and interpreted.
While a large set of problems can be addressed through automatic techniques from fields like artificial intelligence, machine learning or computer vision, there are various datasets and domains that still rely on the human intuition and experience in order to parse and discover hidden information. In such instances, the data is usually structured and represented in the form of an interactive visual representation that allows users to efficiently explore the data space and reach valuable insights. However, the experience, knowledge and intuition of a single person also has its limits. To address this, collaborative visualizations allow multiple users to communicate, interact and explore a visual representation by building on the different views and knowledge blocks contributed by each person.
In this dissertation, we explore the potential of subjective measurements and user emotional awareness in collaborative scenarios as well as support flexible and user- centered collaboration in information visualization systems running on tabletop displays. We commence by introducing the concept of user-centered collaborative visualization (UCCV) and highlighting the context in which it applies. We continue with a thorough overview of the state-of-the-art in the areas of collaborative information visualization, subjectivity measurement and emotion visualization, combinable tabletop tangibles, as well as browsing history visualizations. Based on a new web browser history visualization for exploring user parallel browsing behavior, we introduce two novel user-centered techniques for supporting collaboration in co-located visualization systems. To begin with, we inspect the particularities of detecting user subjectivity through brain-computer interfaces, and present two emotion visualization techniques for touch and desktop interfaces. These visualizations offer real-time or post-task feedback about the users’ affective states, both in single-user and collaborative settings, thus increasing the emotional self-awareness and the awareness of other users’ emotions. For supporting collaborative interaction, a novel design for tabletop tangibles is described together with a set of specifically developed interactions for supporting tabletop collaboration. These ring-shaped tangibles minimize occlusion, support touch interaction, can act as interaction lenses, and describe logical operations through nesting operations. The visualization and the two UCCV techniques are each evaluated individually capturing a set of advantages and limitations of each approach. Additionally, the collaborative visualization supported by the two UCCV techniques is also collectively evaluated in three user studies that offer insight into the specifics of interpersonal interaction and task transition in collaborative visualization. The results show that the proposed collaboration support techniques do not only improve the efficiency of the visualization, but also help maintain the collaboration process and aid a balanced social interaction.

The main goal of this work was the study of the applicability of a polymer film heat exchanger concept for the applications in the chemical industry, such as the condensation of organic solvents. The polymer film heat exchanger investigated is a plate heat exchanger with very thin (0.025 – 0.1 mm) plates or films, which separate the fluids and enable the heat transfer. After a successful application of this concept to seawater desalination in a previous work, a further step is in chemical engineering, where the good chemical resistance of polymers in aggressive fluids is the challenge.
Two approaches were performed in this work. The first one was experimental and included the study of the chemical and mechanical resistance of preselected films, made of polymer materials, such as polyimide (PI), polyethylene terephthalate (PET) and polytetrafluoroethylene (PTFE). To simulate realistic operating conditions in a heat exchanger the films were exposed to a combined thermal (up to 90°C) and mechanical pressure loads (4-6 bar) with permanent contact with the relevant organic solvents, such as toluene, hexane, heptane and tetrahydrofuran (THF). Furthermore, a lab-scale apparatus and a full-scale demonstrator were manufactured in cooperation with two industrial partners. These were used for the investigation of the heat transfer performance for operating modes with and without phase change.
In addition to the experimental work, a coupled finite element –computational fluid dynamics (FEM-CFD)-model was developed, based on the fluid-structure-interaction (FSI). Two major tasks had to be solved here. The first one was the modelling of the condensation process, based on available mathematical models and energy balances. The second one was the consideration of the partially reversible deformation of the used film during operation. Since this deformation changes the geometry of the fluid channels also has an influence on the overall performance of the apparatus, a coupled FEM-CFD model was developed.
During the experimental study of the chemical resistance of the films, the PTFE film showed the best performance, and hence can be used for all four tested solvents. For the polyimide film, failures while exposed to THF were observed, and the PET film can only be used with water and hexane. With the used lab-scale heat exchanger and the full-scale demonstrator competitive overall heat transfer coefficients between 270 W/m²K and 700 W/m²K could be reached for the liquid-liquid (water-water, water-hexane) operation mode without phase change. For the condensation process, overall heat transfer coefficients of up to 1700/m²K could be obtained.
The numerical approach led to a well-functioning coupled model in a very small scale (1 cm²). An upscale, however, failed due to enormous hardware resources necessary required for the simulation of the entire full-scale demonstrator. The main reason for this is the very low thickness of the films, which leads to tiny mesh element sizes (<0.05 mm) necessary to model the deformation of the film. The modelling of the liquid-liquid heat transfer provided an acceptable accuracy (approx. 10%), but at very low rates the deviations were then higher (over 30%). The results of the condensation modelling were ambivalent. One the one hand a physically plausible model was developed, which could map the entire condensation process. On the other hand, the corresponding energy balance revealed major inaccuracy and hence could not be used for the determination of the overall heat transfer and showed the current limits of the FEM-CFD approach.

Urban Design Guidelines have been used in Jakarta for controlling the form of the built environment. This planning instrument has been implemented in several central city redevelopment projects particularly in superblock areas. The instrument has gained popularity and implemented in new development and conservation areas as well. Despite its popularity, there is no formal literature on the Indonesian Urban Design Guideline that systematically explain its contents, structure and the formulation process. This dissertation attempts to explain the substantive of urban design guideline and the way to control its implementation. Various streams of urban design theories are presented and evaluated in term of their suitability for attaining a high urbanistic quality in major Indonesian cities. The explanation on the form and the practical application of this planning instrument is elaborated in a comparative investigation of similar instrument in other countries; namely the USA, Britain and Germany. A case study of a superblock development in Jakarta demonstrates the application of the urban design theories and guideline. Currently, the role of computer in the process of formulating the urban design guideline in Indonesia is merely as a replacement of the manual method, particularly in areas of worksheet calculation and design presentation. Further support of computer for urban planning and design tasks has been researched in developed countries, which shows its potential in supporting decision-making process, enabling public participation, team collaboration, documentation and publication of urban design decisions and so on. It is hoped that the computer usage in Indonesian urban design process can catch up with the global trend of multimedia, networking (Internet/Intranet) and interactive functions that is presented with examples from developed countries.

This Ph.D. project as a landscape research practice focuses on the less widely studied aspects of urban agriculture landscape and its application in recreation and leisure, as well as landscape beautification. I research on the edible landscape planning and design, its criteria, possibilities, and traditional roots for the particular situation of Iranian cities and landscapes. The primary objective is preparing a conceptual and practical framework for Iranian professions to integrate the food landscaping into the new greenery and open spaces developments. Furthermore, finding the possibilities of synthesis the traditional utilitarian gardening with the contemporary pioneer viewpoints of agricultural landscapes is the other significant proposed achievement.
Finished tasks and list of achieved results:
• Recognition the software and hardware principles of designing the agricultural landscape based on the Persian gardens
• Multidimensional identity of agricultural landscape in Persian gardens
• Principles of architectural integration and the characteristics of the integrative landscape in Persian gardens
• Distinctive characteristics of agricultural landscape in Persian garden
• Introducing the Persian and historical gardens as the starting point for reentering the agricultural phenomena into the Iranian cities and landscape
• Assessment the structure of Persian gardens based on the new achievements and criteria of designing the urban agriculture
• Investigate the role of Persian gardens in envisioning the urban agriculture in
Iranian cities’ landscape.

Lithium-ion batteries are broadly used nowadays in all kinds of portable electronics, such as laptops, cell phones, tablets, e-book readers, digital cameras, etc. They are preferred to other types of rechargeable batteries due to their superior characteristics, such as light weight and high energy density, no memory effect, and a big number of charge/discharge cycles. The high demand and applicability of Li-ion batteries naturally give rise to the unceasing necessity of developing better batteries in terms of performance and lifetime. The aim of the mathematical modelling of Li-ion batteries is to help engineers test different battery configurations and electrode materials faster and cheaper. Lithium-ion batteries are multiscale systems. A typical Li-ion battery consists of multiple connected electrochemical battery cells. Each cell has two electrodes - anode and cathode, as well as a separator between them that prevents a short circuit.
Both electrodes have porous structure composed of two phases - solid and electrolyte. We call macroscale the lengthscale of the whole electrode and microscale - the lengthscale at which we can distinguish the complex porous structure of the electrodes. We start from a Li-ion battery model derived on the microscale. The model is based on nonlinear diffusion type of equations for the transport of Lithium ions and charges in the electrolyte and in the active material. Electrochemical reactions on the solid-electrolyte interface couple the two phases. The interface kinetics is modelled by the highly nonlinear Butler-Volmer interface conditions. Direct numerical simulations with standard methods, such as the Finite Element Method or Finite Volume Method, lead to ill-conditioned problems with a huge number of degrees of freedom which are difficult to solve. Therefore, the aim of this work is to derive upscaled models on the lengthscale of the whole electrode so that we do not have to resolve all the small-scale features of the porous microstructure thus reducing the computational time and cost. We do this by applying two different upscaling techniques - the Asymptotic Homogenization Method and the Multiscale Finite Element Method (MsFEM). We consider the electrolyte and the solid as two self-complementary perforated domains and we exploit this idea with both upscaling methods. The first method is restricted only to periodic media and periodically oscillating solutions while the second method can be applied to randomly oscillating solutions and is based on the Finite Element Method framework. We apply the Asymptotic Homogenization Method to derive a coupled macro-micro upscaled model under the assumption of periodic electrode microstructure. A crucial step in the homogenization procedure is the upscaling of the Butler-Volmer interface conditions. We rigorously determine the asymptotic order of the interface exchange current densities and we perform a comprehensive numerical study in order to validate the derived homogenized Li-ion battery model. In order to upscale the microscale battery problem in the case of random electrode microstructure we apply the MsFEM, extended to problems in perforated domains with Neumann boundary conditions on the holes. We conduct a detailed numerical investigation of the proposed algorithm and we show numerical convergence of the method that we design. We also apply the developed technique to a simplified two-dimensional Li-ion battery problem and we show numerical convergence of the solution obtained with the MsFEM to the reference microscale one.

The aim of this dissertation is to explain processes in recruitment by gaining a better understanding of how perceptions evolve and how recruitment outcomes and perceptions are influenced. To do so, this dissertation takes a closer look at the formation of fit perceptions, the effects of top employer awards on pre-hire recruitment outcomes, and on how perceptions about external sources are influenced.

In this thesis we address two instances of duality in commutative algebra.
In the first part, we consider value semigroups of non irreducible singular algebraic curves
and their fractional ideals. These are submonoids of Z^n closed under minima, with a conductor and which fulfill special compatibility properties on their elements. Subsets of Z^n
fulfilling these three conditions are known in the literature as good semigroups and their ideals, and their class strictly contains the class of value semigroup ideals. We examine
good semigroups both independently and in relation with their algebraic counterpart. In the combinatoric setting, we define the concept of good system of generators, and we
show that minimal good systems of generators are unique. In relation with the algebra side, we give an intrinsic definition of canonical semigroup ideals, which yields a duality
on good semigroup ideals. We prove that this semigroup duality is compatible with the Cohen-Macaulay duality under taking values. Finally, using the duality on good semigroup ideals, we show a symmetry of the Poincaré series of good semigroups with special properties.
In the second part, we treat Macaulay’s inverse system, a one-to-one correspondence
which is a particular case of Matlis duality and an effective method to construct Artinian k-algebras with chosen socle type. Recently, Elias and Rossi gave the structure of the inverse system of positive dimensional Gorenstein k-algebras. We extend their result by establishing a one-to-one correspondence between positive dimensional level k-algebras and certain submodules of the divided power ring. We give several examples to illustrate
our result.

A main result of this thesis is a conceptual proof of the fact that the weighted number of tropical curves of given degree and genus, which pass through the right number of general points in the plane (resp., which pass through general points in R^r and represent a given point in the moduli space of genus g curves) is independent of the choices of points. Another main result is a new correspondence theorem between plane tropical cycles and plane elliptic algebraic curves.

This thesis is devoted to two main topics (accordingly, there are two chapters): In the first chapter, we establish a tropical intersection theory with analogue notions and tools as its algebro-geometric counterpart. This includes tropical cycles, rational functions, intersection products of Cartier divisors and cycles, morphisms, their functors and the projection formula, rational equivalence. The most important features of this theory are the following: - It unifies and simplifies many of the existing results of tropical enumerative geometry, which often contained involved ad-hoc computations. - It is indispensable to formulate and solve further tropical enumerative problems. - It shows deep relations to the intersection theory of toric varieties and connected fields. - The relationship between tropical and classical Gromov-Witten invariants found by Mikhalkin is made plausible from inside tropical geometry. - It is interesting on its own as a subfield of convex geometry. In the second chapter, we study tropical gravitational descendants (i.e. Gromov-Witten invariants with incidence and "Psi-class" factors) and show that many concepts of the classical Gromov-Witten theory such as the famous WDVV equations can be carried over to the tropical world. We use this to extend Mikhalkin's results to a certain class of gravitational descendants, i.e. we show that many of the classical gravitational descendants of P^2 and P^1 x P^1 can be computed by counting tropical curves satisfying certain incidence conditions and with prescribed valences of their vertices. Moreover, the presented theory is not restricted to plane curves and therefore provides an important tool to derive similar results in higher dimensions. A more detailed chapter synopsis can be found at the beginning of each individual chapter.

Tropical intersection theory
(2010)

This thesis consists of five chapters: Chapter 1 contains the basics of the theory and is essential for the rest of the thesis. Chapters 2-5 are to a large extent independent of each other and can be read separately. - Chapter 1: Foundations of tropical intersection theory In this first chapter we set up the foundations of a tropical intersection theory covering many concepts and tools of its counterpart in algebraic geometry such as affine tropical cycles, Cartier divisors, morphisms of tropical cycles, pull-backs of Cartier divisors, push-forwards of cycles and an intersection product of Cartier divisors and cycles. Afterwards, we generalize these concepts to abstract tropical cycles and introduce a concept of rational equivalence. Finally, we set up an intersection product of cycles and prove that every cycle is rationally equivalent to some affine cycle in the special case that our ambient cycle is R^n. We use this result to show that rational and numerical equivalence agree in this case and prove a tropical Bézout's theorem. - Chapter 2: Tropical cycles with real slopes and numerical equivalence In this chapter we generalize our definitions of tropical cycles to polyhedral complexes with non-rational slopes. We use this new definition to show that if our ambient cycle is a fan then every subcycle is numerically equivalent to some affine cycle. Finally, we restrict ourselves to cycles in R^n that are "generic" in some sense and study the concept of numerical equivalence in more detail. - Chapter 3: Tropical intersection products on smooth varieties We define an intersection product of tropical cycles on tropical linear spaces L^n_k and on other, related fans. Then, we use this result to obtain an intersection product of cycles on any "smooth" tropical variety. Finally, we use the intersection product to introduce a concept of pull-backs of cycles along morphisms of smooth tropical varieties and prove that this pull-back has all expected properties. - Chapter 4: Weil and Cartier divisors under tropical modifications First, we introduce "modifications" and "contractions" and study their basic properties. After that, we prove that under some further assumptions a one-to-one correspondence of Weil and Cartier divisors is preserved by modifications. In particular we can prove that on any smooth tropical variety we have a one-to-one correspondence of Weil and Cartier divisors. - Chapter 5: Chern classes of tropical vector bundles We give definitions of tropical vector bundles and rational sections of tropical vector bundles. We use these rational sections to define the Chern classes of such a tropical vector bundle. Moreover, we prove that these Chern classes have all expected properties. Finally, we classify all tropical vector bundles on an elliptic curve up to isomorphisms.

This thesis is devoted to furthering the tropical intersection theory as well as to applying the
developed theory to gain new insights about tropical moduli spaces.
We use piecewise polynomials to define tropical cocycles that generalise the notion of tropical Cartier divisors to higher codimensions, introduce an intersection product of cocycles with tropical cycles and use the connection to toric geometry to prove a Poincaré duality for certain cases. Our
main application of this Poincaré duality is the construction of intersection-theoretic fibres under a
large class of tropical morphisms.
We construct an intersection product of cycles on matroid varieties which are a natural
generalisation of tropicalisations of classical linear spaces and the local blocks of smooth tropical
varieties. The key ingredient is the ability to express a matroid variety contained in another matroid variety by a piecewise polynomial that is given in terms of the rank functions of the corresponding
matroids. In particular, this enables us to intersect cycles on the moduli spaces of n-marked abstract
rational curves. We also construct a pull-back of cycles along morphisms of smooth varieties, relate
pull-backs to tropical modifications and show that every cycle on a matroid variety is rationally
equivalent to its recession cycle and can be cut out by a cocycle.
Finally, we define families of smooth rational tropical curves over smooth varieties and construct a tropical fibre product in order to show that every morphism of a smooth variety to the moduli space of abstract rational tropical curves induces a family of curves over the domain of the morphism.
This leads to an alternative, inductive way of constructing moduli spaces of rational curves.

Das Ziel dieser Dissertation ist die Entwicklung und Implementation eines Algorithmus zur Berechnung von tropischen Varietäten über allgemeine bewertete Körper. Die Berechnung von tropischen Varietäten über Körper mit trivialer Bewertung ist ein hinreichend gelöstes Problem. Hierfür kombinieren die Autoren Bogart, Jensen, Speyer, Sturmfels und Thomas eindrucksvoll klassische Techniken der Computeralgebra mit konstruktiven Methoden der konvexer Geometrie.
Haben wir allerdings einen Grundkörper mit nicht-trivialer Bewertung, wie zum Beispiel den Körper der \(p\)-adischen Zahlen \(\mathbb{Q}_p\), dann stößt die konventionelle Gröbnerbasentheorie scheinbar an ihre Grenzen. Die zugrundeliegenden Monomordnungen sind nicht geeignet um Problemstellungen zu untersuchen, die von einer nicht-trivialen Bewertung auf den Koeffizienten abhängig sind. Dies führte zu einer Reihe von Arbeiten, welche die gängige Gröbnerbasentheorie modifizieren um die Bewertung des Grundkörpers einzubeziehen.\[\phantom{newline}\]
In dieser Arbeit präsentieren wir einen alternativen Ansatz und zeigen, wie sich die Bewertung mittels einer speziell eingeführten Variable emulieren lässt, so dass eine Modifikation der klassischen Werkzeuge nicht notwendig ist.
Im Rahmen dessen wird Theorie der Standardbasen auf Potenzreihen über einen Koeffizientenring verallgemeinert. Hierbei wird besonders Wert darauf gelegt, dass alle Algorithmen bei polynomialen Eingabedaten mit ihren klassischen Pendants übereinstimmen, sodass für praktische Zwecke auf bereits etablierte Softwaresysteme zurückgegriffen werden kann. Darüber hinaus wird die Konstruktion des Gröbnerfächers sowie die Technik des Gröbnerwalks für leicht inhomogene Ideale eingeführt. Dies ist notwendig, da bei der Einführung der neuen Variable die Homogenität des Ausgangsideal gebrochen wird.\[\phantom{newline}\]
Alle Algorithmen wurden in Singular implementiert und sind als Teil der offiziellen Distribution erhältlich. Es ist die erste Implementation, welches in der Lage ist tropische Varietäten mit \(p\)-adischer Bewertung auszurechnen. Im Rahmen der Arbeit entstand ebenfalls ein Singular Paket für konvexe Geometrie, sowie eine Schnittstelle zu Polymake.

Membrane proteins are generally soluble only in the presence of detergent micelles or other membrane-mimetic systems, which renders the determination of the protein’s molar mass or oligomeric state difficult. Moreover, the amount of bound detergent varies drastically among different proteins and detergents. However, the type of detergent and its concentration have a great influence on the protein’s structure, stability, and functionality and the success of structural and functional investigations and crystallographic trials. Size-exclusion chromatography, which is commonly used to determine the molar mass of water-soluble proteins, is not suitable for detergent-solubilised proteins because
the protein–detergent complex has a different conformation and, thus, commonly exhibits
a different migration behaviour than globular standard proteins. Thus, calibration curves obtained with standard proteins are not useful for membrane-protein analysis. However,
the combination of size-exclusion chromatography with ultraviolet absorbance, static light scattering, and refractive index detection provides a tool to determine the molar mass of protein–detergent complexes in an absolute manner and allows for distinguishing the contributions of detergent and protein to the complex.
The goal of this thesis was to refine the standard triple-detection size-exclusion chromatography measurement and data analysis procedure for challenging membrane-protein samples, non-standard detergents, and difficult solvents such as concentrated denaturant solutions that were thought to elude routine approaches. To this end, the influence of urea on the performance of the method beyond direct influences on detergents and proteins was investigated with the help of the water-soluble bovine serum albumin. On the basis of
the obtained results, measurement and data analysis procedures were refined for different detergents and protein–detergent complexes comprising the membrane proteins OmpLA and Mistic from Escherichia coli and Bacillus subtilis, respectively.
The investigations on mass and shape of different detergent micelles and the compositions of protein–detergent complexes in aqueous buffer and concentrated urea solutions
showed that triple-detection size-exclusion chromatography provides valuable information
about micelle masses and shapes under various conditions. Moreover, it is perfectly suited for the straightforward analysis of detergent-suspended proteins in terms of composition and oligomeric state not only under native but, more importantly, also under denaturing conditions.

In conventional radio communication systems, the system design generally starts from the transmitter (Tx), i.e. the signal processing algorithm in the transmitter is a priori selected, and then the signal processing algorithm in the receiver is a posteriori determined to obtain the corresponding data estimate. Therefore, in these conventional communication systems, the transmitter can be considered the master and the receiver can be considered the slave. Consequently, such systems can be termed transmitter (Tx) oriented. In the case of Tx orientation, the a priori selected transmitter algorithm can be chosen with a view to arrive at particularly simple transmitter implementations. This advantage has to be countervailed by a higher implementation complexity of the a posteriori determined receiver algorithm. Opposed to the conventional scheme of Tx orientation, the design of communication systems can alternatively start from the receiver (Rx). Then, the signal processing algorithm in the receiver is a priori determined, and the transmitter algorithm results a posteriori. Such an unconventional approach to system design can be termed receiver (Rx) oriented. In the case of Rx orientation, the receiver algorithm can be a priori selected in such a way that the receiver complexity is minimum, and the a posteriori determined transmitter has to tolerate more implementation complexity. In practical communication systems the implementation complexity corresponds to the weight, volume, cost etc of the equipment. Therefore, the complexity is an important aspect which should be taken into account, when building practical communication systems. In mobile radio communication systems, the complexity of the mobile terminals (MTs) should be as low as possible, whereas more complicated implementations can be tolerated in the base station (BS). Having in mind the above mentioned complexity features of the rationales Tx orientation and Rx orientation, this means that in the uplink (UL), i.e. in the radio link from the MT to the BS, the quasi natural choice would be Tx orientation, which leads to low cost transmitters at the MTs, whereas in the downlink (DL), i.e. in the radio link from the BS to the MTs, the rationale Rx orientation would be the favorite alternative, because this results in simple receivers at the MTs. Mobile radio downlinks with the rationale Rx orientation are considered in the thesis. Modern mobile radio communication systems are cellular systems, in which both the intracell and intercell interferences exist. These interferences are the limiting factors for the performance of mobile radio systems. The intracell interference can be eliminated or at least reduced by joint signal processing with consideration of all the signals in the considered cell. However such joint signal processing is not feasible for the elimination of intercell interference in practical systems. Knowing that the detrimental effect of intercell interference grows with its average energy, the transmit energy radiated from the transmitter should be as low as possible to keep the intercell interference low. Low transmit energy is required also with respect to the growing electro-phobia of the public. The transmit energy reduction for multi-user mobile radio downlinks by the rationale Rx orientation is dealt with in the thesis. Among the questions still open in this research area, two questions of major importance are considered here. MIMO is an important feature with respect to the transmit power reduction of mobile radio systems. Therefore, first questionconcerns the linear Rx oriented transmission schemes combined with MIMO antenna structures. The investigations of the MIMO benefit on the linear Rx oriented transmission schemes are studied in the thesis. Utilization of unconventional multiply connected quantization schemes at the receiver has also great potential to reduce the transmit energy. Therefore, the second question considers the designing of non-linear Rx oriented transmission schemes combined with multiply connected quantization schemes.

Hydrogels are known to be covalently or ionic cross-linked, hydrophilic three-dimensional
polymer networks, which exist in our bodies in a biological gel form such as the vitreous
humour that fills the interior of the eyes. Poly(N-isopropylacrylamide) (poly(NIPAAm))
hydrogels are attracting more interest in biomedical applications because, besides others, they
exhibit a well-defined lower critical solution temperature (LCST) in water, around 31–34°C,
which is close to the body temperature. This is considered to be of great interest in drug
delivery, cell encapsulation, and tissue engineering applications. In this work, the
poly(NIPAAm) hydrogel is synthesized by free radical polymerization. Hydrogel properties
and the dimensional changes accompanied with the volume phase transition of the
thermosensitive poly(NIPAAm) hydrogel were investigated in terms of Raman spectra,
swelling ratio, and hydration. The thermal swelling/deswelling changes that occur at different
equilibrium temperatures and different solutions (phenol, ethanol, propanol, and sodium
chloride) based on Raman spectrum were investigated. In addition, Raman spectroscopy has
been employed to evaluate the diffusion aspects of bovine serum albumin (BSA) and phenol
through the poly(NIPAAm) network. The determination of the mutual diffusion coefficient,
\(D_{mut}\) for hydrogels/solvent system was achieved successfully using Raman spectroscopy at
different solute concentrations. Moreover, the mechanical properties of the hydrogel, which
were investigated by uniaxial compression tests, were used to characterize the hydrogel and to
determine the collective diffusion coefficient through the hydrogel. The solute release coupled
with shrinking of the hydrogel particles was modelled with a bi-dimensional diffusion model
with moving boundary conditions. The influence of the variable diffusion coefficient is
observed and leads to a better description of the kinetic curve in the case of important
deformation around the LCST. A good accordance between experimental and calculated data
was obtained.

The simulation of physical phenomena involving the dynamic behavior of fluids and gases
has numerous applications in various fields of science and engineering. Of particular interest
is the material transport behavior, the tendency of a flow field to displace parts of the
medium. Therefore, many visualization techniques rely on particle trajectories.
Lagrangian Flow Field Representation. In typical Eulerian settings, trajectories are
computed from the simulation output using numerical integration schemes. Accuracy concerns
arise because, due to limitations of storage space and bandwidth, often only a fraction
of the computed simulation time steps are available. Prior work has shown empirically that
a Lagrangian, trajectory-based representation can improve accuracy [Agr+14]. Determining
the parameters of such a representation in advance is difficult; a relationship between the
temporal and spatial resolution and the accuracy of resulting trajectories needs to be established.
We provide an error measure for upper bounds of the error of individual trajectories.
We show how areas at risk for high errors can be identified, thereby making it possible to
prioritize areas in time and space to allocate scarce storage resources.
Comparative Visual Analysis of Flow Field Ensembles. Independent of the representation,
errors of the simulation itself are often caused by inaccurate initial conditions,
limitations of the chosen simulation model, and numerical errors. To gain a better understanding
of the possible outcomes, multiple simulation runs can be calculated, resulting in
sets of simulation output referred to as ensembles. Of particular interest when studying the
material transport behavior of ensembles is the identification of areas where the simulation
runs agree or disagree. We introduce and evaluate an interactive method that enables application
scientists to reliably identify and examine regions of agreement and disagreement,
while taking into account the local transport behavior within individual simulation runs.
Particle-Based Representation and Visualization of Uncertain Flow Data Sets. Unlike
simulation ensembles, where uncertainty of the solution appears in the form of different
simulation runs, moment-based Eulerian multi-phase fluid simulations are probabilistic in
nature. These simulations, used in process engineering to simulate the behavior of bubbles in
liquid media, are aimed toward reducing the need for real-world experiments. The locations
of individual bubbles are not modeled explicitly, but stochastically through the properties of
locally defined bubble populations. Comparisons between simulation results and physical
experiments are difficult. We describe and analyze an approach that generates representative
sets of bubbles for moment-based simulation data. Using our approach, application scientists
can directly, visually compare simulation results and physical experiments.

The use of trading stops is a common practice in financial markets for a variety of reasons: it provides a simple way to control losses on a given trade, while also ensuring that profit-taking is not deferred indefinitely; and it allows opportunities to consider reallocating resources to other investments. In this thesis, it is explained why the use of stops may be desirable in certain cases.
This is done by proposing a simple objective to be optimized. Some simple and commonly-used rules for the placing and use of stops are investigated; consisting of fixed or moving barriers, with fixed transaction costs. It is shown how to identify optimal levels at which to set stops, and the performances of different rules and strategies are compared. Thereby, uncertainty and altering of the drift parameter of the investment are incorporated.

Attention-awareness is a key topic for the upcoming generation of computer-human interaction. A human moves his or her eyes to visually attends to a particular region in a scene. Consequently, he or she can process visual information rapidly and efficiently without being overwhelmed by vast amount of information from the environment. Such a physiological function called visual attention provides a computer system with valuable information of the user to infer his or her activity and the surrounding environment. For example, a computer can infer whether the user is reading text or not by analyzing his or her eye movements. Furthermore, it can infer with which object he or she is interacting by recognizing the object the user is looking at. Recent developments of mobile eye tracking technologies enable us
to capture human visual attention in ubiquitous everyday environments. There are various types of applications where attention-aware systems may be effectively incorporated. Typical examples are augmented reality (AR) applications such as Wikitude which overlay virtual information onto physical objects. This type of AR application presents augmentative information of recognized objects to the user. However, if it presents information of all recognized objects at once, the over
ow of information could be obtrusive to the user. As a solution for such a problem, attention-awareness can be integrated into a system. If a
system knows to which object the user is attending, it can present only the information of
relevant objects to the user.
Towards attention-aware systems in everyday environments, this thesis presents approaches
for analysis of user attention to visual content. Using a state-of-the-art wearable eye tracking device, one can measure the user's eye movements in a mobile scenario. By capturing the user's eye gaze position in a scene and analyzing the image where the eyes focus, a computer can recognize the visual content the user is currently attending to. I propose several image analysis methods to recognize the user-attended visual content in a scene image. For example, I present an application called Museum Guide 2.0. In Museum Guide 2.0, image-based object recognition and eye gaze analysis are combined together to recognize user-attended objects in a museum scenario. Similarly, optical character recognition
(OCR), face recognition, and document image retrieval are also combined with eye gaze analysis to identify the user-attended visual content in respective scenarios. In addition to Museum Guide 2.0, I present other applications in which these combined frameworks are effectively used. The proposed applications show that the user can benefit from active information presentation which augments the attended content in a virtual environment with
a see-through head-mounted display (HMD).
In addition to the individual attention-aware applications mentioned above, this thesis
presents a comprehensive framework that combines all recognition modules to recognize the user-attended visual content when various types of visual information resources such as text, objects, and human faces are present in one scene. In particular, two processing strategies are proposed. The first one selects an appropriate image analysis module according to the user's current cognitive state. The second one runs all image analysis modules simultaneously and merges the analytic results later. I compare these two processing strategies in terms of user-attended visual content recognition when multiple visual information resources are present in the same scene.
Furthermore, I present novel interaction methodologies for a see-through HMD using eye gaze input. A see-through HMD is a suitable device for a wearable attention-aware system for everyday environments because the user can also view his or her physical environment
through the display. I propose methods for the user's attention engagement estimation with the display, eye gaze-driven proactive user assistance functions, and a method for interacting
with a multi-focal see-through display.
Contributions of this thesis include:
• An overview of the state-of-the-art in attention-aware computer-human interaction
and attention-integrated image analysis.
• Methods for the analysis of user-attended visual content in various scenarios.
• Demonstration of the feasibilities and the benefits of the proposed user-attended visual content analysis methods with practical user-supportive applications.
• Methods for interaction with a see-through HMD using eye gaze.
• A comprehensive framework for recognition of user-attended visual content in a complex
scene where multiple visual information resources are present.
This thesis opens a novel field of wearable computer systems where computers can understand the user attention in everyday environments and provide with what the user wants. I will show the potential of such wearable attention-aware systems for everyday
environments for the next generation of pervasive computer-human interaction.

As the complexity of embedded systems continuously rises, their development becomes more and more challenging. One technique to cope with this complexity is the employment of virtual prototypes. The virtual prototypes are intended to represent the embedded system’s properties on different levels of detail like register transfer level or transaction level. Virtual prototypes can be used for different tasks throughout the development process. They can act as executable specification, can be used for architecture exploration, can ease system integration, and allow for pre- and post-silicon software development and verification. The optimization objectives for virtual prototypes and their creation process are manifold. Finding an appropriate trade-off between the simulation accuracy, the simulation performance, and the implementation effort is a major challenge, as these requirements are contradictory.
In this work, two new and complementary techniques for the efficient creation of accurate and high-performance SystemC based virtual prototypes are proposed: Advanced Temporal Decoupling (ATD) and Transparent Transaction Level Modeling (TTLM). The suitability for industrial environments is assured by the employment of common standards like SystemC TLM-2.0 and IP-XACT.
Advanced Temporal Decoupling enhances the simulation accuracy while retaining high simulation performance by allowing for cycle accurate simulation in the context of SystemC TLM-2.0 temporal decoupling. This is achieved by exploiting the local time warp arising in SystemC TLM-2.0 temporal decoupled models to support the computation of resource contention effects. In ATD, accesses to shared resource are managed by Temporal Decoupled Semaphores (TDSems) which are integrated into the modeled shared resources. The set of TDSems assures the correct execution order of shared resource accesses and incorporates timing effects resulting from shared resource access execution and resource conflicts. This is done by dynamically varying the data granularity of resource accesses based on information gathered from the local time warp. ATD facilitates modeling of a wide range of resource and resource access properties like preemptable and non-preemptable accesses, synchronous and asynchronous accesses, multiport resources, dynamic access priorities, interacting and cascaded resources, and user specified schedulers prioritizing simultaneous resource accesses.
Transparent Transaction Level Modeling focuses on the efficient creation of virtual prototypes by reducing the implementation effort and consists of a library and a code generator. The TTLM library adds a layer of convenience functions to ATD comprising various application programming interfaces for inter module communication, virtual prototype configuration and run time information extraction. The TTLM generator is used to automatically generate the structural code of the virtual prototype from the formal hardware specification language IP-XACT.
The applicability and benefits of the presented techniques are demonstrated using an image processing centric automotive application. Compared to an existing cycle accurate SystemC model, the implementation effort can be reduced by approximately 50% using TTLM. Applying ATD, the simulation performance can be increased by a factor of up to five while retaining cycle accuracy.

Interactive visualization of large structured and unstructured data sets is a permanent challenge for scientific visualization. Large data sets are for example created by magnetic resonance imaging (MRI), computed tomography (CT), Computational fluid dynamics (CFD) finite element method (FEM), and computer aided design (CAD). For visualizing those data sets not only accelerated rasterization by means of using specialized hardware i.e. graphics cards is of interest, but also ray casting, as it is perfectly suited for scientific visualization. Ray casting does not only support many rendering modes (e.g., opaque rendering, semi transparent rendering, iso surface rendering, maximum intensity projection, x-ray, absorption emitter model, ...) for which it allows the creation of high quality images, but it also supports many primitives (e.g., not only triangles but also spheres, curved iso surfaces, NURBS, implicit functions, ...). It furthermore scales basically linear to the amount of processor cores used and - this makes it highly interesting for the visualization of large data sets - it scales for static scenes sublinear to data size. Interactive ray casting is currently not widely used within the scientifc visualization community. This is mainly based on historical reasons, as just a few years ago no applicable interactive ray casters for commodity hardware did exist. Interactive scientific visualization has only been possible by using graphics cards or specialized and/or expensive hardware. The goal of this work is to broaden the possibilies for interactive scientific visualization, by showing that interactive CPU based ray casting is today feasible on commodity hardware and that it may efficiently be used together with GPU based rasterization. In this thesis it is first shown that interactive CPU based ray casters may efficiently be integrated into already existing OpenGL frameworks. This is achieved through an OpenGL friendly interface that supports multiple threads and single instruction multiple data (SIMD) operations. For the visualization of rectilinear (and not necessarily cartesian) grids are new implicit kd-trees introduced. They have fast construction times, low memory requirements, and allow ontoday's commodity desktop machines interactive iso surface ray tracing and maximum intensity projection of large scalar fields. A new interactive SIMD ray tracing technique for large tetrahedral meshes is introduced. It is very portable and general and is therefore suited for portation upon different (future) hardware and for usage upon several applications. The thesis ends with a real life commercial application which shows that CPU-based ray casting has already reached the state where it may outperform GPU-based rasterization for scientific visualization.

Mechanical ventilation of patients with severe lung injury is an important clinical treatment to ensure proper lung oxygenation and to mitigate the extent of collapsed lung regions. While current imaging technologies such as Computed Tomography (CT) and chest X-ray allow for a thorough inspection of the thorax, they are limited to static pictures and exhibit several disadvantages, including exposure to ionizing radiation and high cost. Electrical Impedance Tomography (EIT) is a novel method to determine functional processes inside the thorax such as lung ventilation and cardiac activity. EIT reconstructs the internal electrical conductivity distribution within the thorax from voltage measurements on the body surface. Conductivity changes correlate with important clinical parameters such as lung volume and perfusion. Current EIT systems and algorithms use simplified or generalized thorax models to solve the reconstruction problem, which reduce image quality and anatomical significance. In this thesis, the development of a clinically relevant workflow to compute sophisticated three-dimensional thorax models from patient-specific CT data is described. The method allows medical experts to generate a multi-material segmentation in an interactive and fast way, while a volumetric mesh is computed automatically from the segmentation. The significantly improved image quality and anatomical precision of EIT images reconstructed with these 3D models is reported, and the impact on clinical applicability is discussed. In addition, three projects concerning quantitative CT (qCT) measurements and multi-modal 3D visualization are presented, which demonstrate the importance and productivity of interdisciplinary research groups including computer scientists and medical experts. The results presented in this thesis contribute significantly to clinical research efforts to pave the way towards improved patient-specific treatments of lung injury using EIT and qCT.

With the burgeoning computing power available, multiscale modelling and simulation has these days become increasingly capable of capturing the details of physical processes on different scales. The mechanical behavior of solids is oftentimes the result of interaction between multiple spatial and temporal scales at different levels and hence it is a typical phenomena of interest exhibiting multiscale characteristic. At the most basic level, properties of solids can be attributed to atomic interactions and crystal structure that can be described on nano scale. Mechanical properties at the macro scale are modeled using continuum mechanics for which we mention stresses and strains. Continuum models, however they offer an efficient way of studying material properties they are not accurate enough and lack microstructural information behind the microscopic mechanics that cause the material to behave in a way it does. Atomistic models are concerned with phenomenon at the level of lattice thereby allowing investigation of detailed crystalline and defect structures, and yet the length scales of interest are inevitably far beyond the reach of full atomistic computation and is rohibitively expensive. This makes it necessary the need for multiscale models. The bottom line and a possible avenue to this end is, coupling different length scales, the continuum and the atomistics in accordance with standard procedures. This is done by recourse to the Cauchy-Born rule and in so doing, we aim at a model that is efficient and reasonably accurate in mimicking physical behaviors observed in nature or laboratory. In this work, we focus on concurrent coupling based on energetic formulations that links the continuum to atomistics. At the atomic scale, we describe deformation of the solid by the displaced positions of atoms that make up the solid and at the continuum level deformation of the solid is described by the displacement field that minimize the total energy. In the coupled model, continuum-atomistic, a continuum formulation is retained as the overall framework of the problem and the atomistic feature is introduced by way of constitutive description, with the Cauchy-Born rule establishing the point of contact. The entire formulation is made in the framework of nonlinear elasticity and all the simulations are carried out within the confines of quasistatic settings. The model gives direct account to measurable features of microstructures developed by crystals through sequential lamination.

Rapid growth in sensors and sensor technology introduces variety of products to the market. The increasing number of available sensor concepts and implementations demands more versatile sensor electronics and signal conditioning. Nowadays signal conditioning for the available spectrum of sensors is becoming more and more challenging. Moreover, developing a sensor signal conditioning ASIC is a function of cost, area, and robustness to maintain signal integrity. Field programmable analog approaches and the recent evolvable hardware approaches offer partial solution for advanced compensation as well as for rapid prototyping. The recent research field of evolutionary concepts focuses predominantly on digital and is at its advancement stage in analog domain. Thus, the main research goal is to combine the ever increasing industrial demand for sensor signal conditioning with evolutionary concepts and dynamically reconfigurable matched analog arrays implemented in main stream Complementary Metal Oxide Semiconductors (CMOS) technologies to yield an intelligent and smart sensor system with acceptable fault tolerance and the so called self-x features, such as self-monitoring, self-repairing and self-trimming. For this aim, the work suggests and progresses towards a novel, time continuous and dynamically reconfigurable signal conditioning hardware platform suitable to support variety of sensors. The state-of-the-art has been investigated with regard to existing programmable/reconfigurable analog devices and the common industrial application scenario and circuits, in particular including resource and sizing analysis for proper motivation of design decisions. The pursued intermediate granular level approach called as Field Programmable Medium-granular mixed signal Array (FPMA) offers flexibility, trimming and rapid prototyping capabilities. The proposed approach targets at the investigation of industrial applicability of evolvable hardware concepts and to merge it with reconfigurable or programmable analog concepts, and industrial electronics standards and needs for next generation robust and flexible sensor systems. The devised programmable sensor signal conditioning test chips, namely FPMA1/FPMA2, designed in 0.35 µm (C35B4) Austriamicrosystems, can be used as a single instance, off the shelf chip at the PCB level for conditioning or in the loop with dedicated software to inherit the aspired self-x features. The use of such self–x sensor system carries the promise of improved flexibility, better accuracy and reduced vulnerability to manufacturing deviations and drift. An embedded system, namely PHYTEC miniMODUL-515C was used to program and characterize the mixed-signal test chips in various feedback arrangements to answer some of the questions raised by the research goals. Wide range of established analog circuits, ranging from single output to fully differential amplifiers, was investigated at different hierarchical levels to realize circuits like instrumentation amplifier and filters. A more extensive design issues based on low-power like for e.g., sub-threshold design were investigated and a novel soft sleep mode idea was proposed. The bandwidth limitations observed in the state of the art fine granular approaches were enhanced by the proposed intermediate granular approach. The so designed sensor signal conditioning instrumentation amplifier was then compared to the commercially available products in the market like LT 1167, INA 125 and AD 8250. In an adaptive prototype, evolutionary approaches, in particular based on particle swarm optimization with multi-objectives, were just deployed to all the test samples of FPMA1/FMPA2 (15 each) to exhibit self-x properties and to recover from manufacturing variations and drift. The variations observed in the performance of the test samples were compensated through reconfiguration for the desired specification.

Towards A Non-tracking Web
(2016)

Today, many publishers (e.g., websites, mobile application developers) commonly use third-party analytics services and social widgets. Unfortunately, this scheme allows these third parties to track individual users across the web, creating privacy concerns and leading to reactions to prevent tracking via blocking, legislation and standards. While improving user privacy, these efforts do not consider the functionality third-party tracking enables publishers to use: to obtain aggregate statistics about their users and increase their exposure to other users via online social networks. Simply preventing third-party tracking without replacing the functionality it provides cannot be a viable solution; leaving publishers without essential services will hurt the sustainability of the entire ecosystem.
In this thesis, we present alternative approaches to bridge this gap between privacy for users and functionality for publishers and other entities. We first propose a general and interaction-based third-party cookie policy that prevents third-party tracking via cookies, yet enables social networking features for users when wanted, and does not interfere with non-tracking services for analytics and advertisements. We then present a system that enables publishers to obtain rich web analytics information (e.g., user demographics, other sites visited) without tracking the users across the web. While this system requires no new organizational players and is practical to deploy, it necessitates the publishers to pre-define answer values for the queries, which may not be feasible for many analytics scenarios (e.g., search phrases used, free-text photo labels). Our second system complements the first system by enabling publishers to discover previously unknown string values to be used as potential answers in a privacy-preserving fashion and with low computation overhead for clients as well as servers. These systems suggest that it is possible to provide non-tracking services with (at least) the same functionality as today’s tracking services.

The purpose of Exploration in Oil Industry is to "discover" an oil-containing geological formation from exploration data. In the context of this PhD project this oil-containing geological formation plays the role of a geometrical object, which may have any shape. The exploration data may be viewed as a "cloud of points", that is a finite set of points, related to the geological formation surveyed in the exploration experiment. Extensions of topological methodologies, such as homology, to point clouds are helpful in studying them qualitatively and capable of resolving the underlying structure of a data set. Estimation of topological invariants of the data space is a good basis for asserting the global features of the simplicial model of the data. For instance the basic statistical idea, clustering, are correspond to dimension of the zero homology group of the data. A statistics of Betti numbers can provide us with another connectivity information. In this work represented a method for topological feature analysis of exploration data on the base of so called persistent homology. Loosely, this is the homology of a growing space that captures the lifetimes of topological attributes in a multiset of intervals called a barcode. Constructions from algebraic topology empowers to transform the data, to distillate it into some persistent features, and to understand then how it is organized on a large scale or at least to obtain a low-dimensional information which can point to areas of interest. The algorithm for computing of the persistent Betti numbers via barcode is realized in the computer algebra system "Singular" in the scope of the work.

Today’s pervasive availability of computing devices enabled with wireless communication and location- or inertial sensing capabilities is unprecedented. The number of smartphones sold worldwide are still growing and increasing numbers of sensor enabled accessories are available which a user can wear in the shoe or at the wrist for fitness tracking, or just temporarily puts on to measure vital signs. Despite this availability of computing and sensing hardware the merit of application seems rather limited regarding the full potential of information inherent to such senor deployments. Most applications build upon a vertical design which encloses a narrowly defined sensor setup and algorithms specifically tailored to suit the application’s purpose. Successful technologies, however, such as the OSI model, which serves as base for internet communication, have used a horizontal design that allows high level communication protocols to be run independently from the actual lower-level protocols and physical medium access. This thesis contributes to a more horizontal design of human activity recognition systems at two stages. First, it introduces an integrated toolchain to facilitate the entire process of building activity recognition systems and to foster sharing and reusing of individual components. At a second stage, a novel method for automatic integration of new sensors to increase a system’s performance is presented and discussed in detail.
The integrated toolchain is built around an efficient toolbox of parametrizable components for interfacing sensor hardware, synchronization and arrangement of data streams, filtering and extraction of features, classification of feature vectors, and interfacing output devices and applications. The toolbox emerged as open-source project through several research projects and is actively used by research groups. Furthermore, the toolchain supports recording, monitoring, annotation, and sharing of large multi-modal data sets for activity recognition through a set of integrated software tools and a web-enabled database.
The method for automatically integrating a new sensor into an existing system is, at its core, a variation of well-established principles of semi-supervised learning: (1) unsupervised clustering to discover structure in data, (2) assumption that cluster membership is correlated with class membership, and (3) obtaining at a small number of labeled data points for each cluster, from which the cluster labels are inferred. In most semi-supervised approaches, however, the labels are the ground truth provided by the user. By contrast, the approach presented in this thesis uses a classifier trained on an N-dimensional feature space (old classifier) to provide labels for a few points in an (N+1)-dimensional feature space which are used to generate a new, (N+1)-dimensional classifier. The different factors that make a distribution difficult to handle are discussed, a detailed description of heuristics designed to mitigate the influences of such factors is provided, and a detailed evaluation on a set of over 3000 sensor combinations from 3 multi-user experiments that have been used by a variety of previous studies of different activity recognition methods is presented.

Die vorliegende Arbeit befasst sich mit der Untersuchung von Absorptionseigenschaften und elektronischer Kurzzeit-Dynamik von organischen Farbstoffmolekülen und supramolekularen Photokatalysatoren in der Gasphase. Dabei wurde erstmals sehr intensiv ein eine relativ unbekannte experimentelle Methode eingesetzt, nämlich die zeitaufgelöste, pump-probe (Anregung-Abfrage) Photofragmentations-Spektroskopie. Die Kombination eines kommerziellen Quadrupol Ionenfallen Massenspektrometers mit einem Femtosekunden Lasersystem erlaubt es die intrinsischen, elektronischen Eigenschaften molekularer, ionischer Systeme abzubilden. Neben Populationsdynamik angeregter Zustände wurden erstmals Schwingungs- und Rotationswellenpaket-Dynamik mit dieser Methode beobachtet und dokumentiert.
Im ersten Teil der Arbeit werden die Ergebnisse der Untersuchungen an einigen ausgewählten Fluoresecein-Derivaten und eines Carbocyanin-Farbstoffes präsentiert. Obwohl diese Modellsysteme zunächst nur dem Zweck dienen sollten die Möglichkeiten des experimentellen Aufbaus zu evaluieren, ergaben die Untersuchungen weiterhin tiefgreifende Einblicke in die elektronische Struktur isolierter organischer Farbstoffe, die bis heute in Literatur nicht dokumentiert worden sind.
Der zweite Teil befasst sich mit der Untersuchung an drei supramolekularen, ionischen Systemen zur photokatalytischen Wasserstofferzeugung. Dabei dienten wieder zwei der Systeme dem Zweck den experimentellen Aufbau zu evaluieren. Neben der elektronischen Populationsdynamik wurde mittels polarisationsabhängiger Messungen weitere Einblicke in den Elektronentransferprozess erhalten – ein Kernpunkt in der Wirkweise supramolekularer Katalysatoren. Die neugewonnen Erkenntnisse wurden schließlich verwendet um einen neuartigen Katalysator zu untersuchen. Dabei stellte sich heraus, dass die Labilität der Ligandensphäre am katalytischen Metallzentrum Untersuchungen am intakten System in Lösung stark beeinträchtigt und somit nur aussagekräftige Ergebnisse mittels einer Gasphasen Methode, einer wie der hier verwendeten, erhalten werden können.
Die experimentellen Ergebnisse werden unterstützt durch quantenchemische Berechnungen von energetischen Minimum-Strukturen, den Strukturen von Übergangszuständen, sowie der Berechnung von Schwingungs- und UV/Vis-Absorptionsspektren mittels (zeitabhängiger) Dichtefunktionaltheorie (DFT & TD-DFT).

Constructing accurate earth models from seismic data is a challenging task. Traditional methods rely on ray based approximations of the wave equation and reach their limit in geologically complex areas. Full waveform inversion (FWI) on the other side seeks to minimize the misﬁt between modeled and observed data without such approximation.
While superior in accuracy, FWI uses a gradient based iterative scheme that makes it also very computationally expensive. In this thesis we analyse and test an Alternating Direction Implicit (ADI) scheme in order to reduce the costs of the two dimensional time domain algorithm for solving the acoustic wave equation. The ADI scheme can be seen as an intermediate between explicit and implicit ﬁnite diﬀerence modeling schemes. Compared to full implicit schemes the ADI scheme only requires the solution of much smaller matrices and is thus less computationally demanding. Using ADI we can handle coarser discretization compared to an explicit method. Although order of convergence and CFL conditions for the examined explicit method and ADI scheme are comparable, we observe that the ADI scheme is less prone to dispersion. Furhter, our algorithm is eﬃciently parallelized with vectorization and threading techniques. In a numerical comparison, we can demonstrate a runtime advantage of the ADI scheme over an explicit method of the same accuracy.
With the modeling in place, we test and compare several inverse schemes in the second part of the thesis. With the goal of avoiding local minima and improving speed of convergence, we use diﬀerent minimization functions and hierarchical approaches. In several tests, we demonstrate superior results of the L1 norm compared to the L2 norm – especially in the presence of noise. Furthermore we show positive eﬀects for applying three diﬀerent multiscale approaches to the inverse problem. These methods focus on low frequency, early recording, or far oﬀset during early iterations of the minimization and then proceed iteratively towards the full problem. We achieve best results with the frequency based multiscale scheme, for which we also provide a heuristical method of choosing iteratively increasing frequency bands.
Finally, we demonstrate the eﬀectiveness of the diﬀerent methods ﬁrst on the Marmousi model and then on an extract of the 2004 BP model, where we are able to recover both high contrast top salt structures and lower contrast inclusions accurately.

Channel estimation is of great importance in many wireless communication systems, since it influences the overall performance of a system significantly. Especially in multi-user and/or multi-antenna systems, i.e. generally in multi-branch systems, the requirements on channel estimation are very high, since the training signals or so called pilots that are used for channel estimation suffer from multiple access interference. Recently, in the context with such systems more and more attention is paid to concepts for joint channel estimation (JCE) which have the capability to eliminate the multiple access interference and also the interference between the channel coefficients. The performance of JCE can be evaluated in noise limited systems by the SNR degradation and in interference limited systems by the variation coefficient. Theoretical analysis carried out in this thesis verifies that both performance criteria are closely related to the patterns of the pilots used for JCE, no matter the signals are represented in the time domain or in the frequency domain. Optimum pilots like disjoint pilots, Walsh code based pilots or CAZAC code based pilots, whose constructions are described in this thesis, do not show any SNR degradation when being applied to multi-branch systems. It is shown that optimum pilots constructed in the time domain become optimum pilots in the frequency domain after a discrete Fourier transformation. Correspondingly, optimum pilots in the frequency domain become optimum pilots in the time domain after an inverse discrete Fourier transformation. However, even for optimum pilots different variation coefficients are obtained in interference limited systems. Furthermore, especially for OFDM-based transmission schemes the peak-to-average power ratio (PAPR) of the transmit signal is an important decision criteria for choosing the most suitable pilots. CAZAC code based pilots are the only pilots among the regarded pilot constructions that result in a PAPR of 0 dB for the transmit signal that origins in the transmitted pilots. When summarizing the analysis regarding the SNR degradation, the variation coefficient and the PAPR with respect to one single service area and considering the impact due to interference from other adjacent service areas that occur due to a certain choice of the pilots, one can conclude that CAZAC codes are the most suitable pilots for the application in JCE of multi-carrier multi-branch systems, especially in the case if CAZAC codes that origin in different mother codes are assigned to different adjacent service areas. The theoretical results of the thesis are verified by simulation results. The choice of the parameters for the frequency domain or time domain JCE is oriented towards the evaluated implementation complexity. According to the chosen parameterization of the regarded OFDM-based and FMT-based systems it is shown that a frequency domain JCE is the best choice for OFDM and a time domain JCE is the best choice for FMT applying CAZAC codes as pilots. The results of this thesis can be used as a basis for further theoretical research and also for future JCE implementation in wireless systems.

In the present work the modelling and numerical treatment of discontinuities in thermo-mechanical solids is investigated and applied to diverse physical problems. From this topic a structure for this work results, which considers the formulation of thermo-mechanical processes in continua in the first part and which forms the mechanical and thermodynamical framework for the description of discontinuities and interfaces, that is performed in the second part. The representation of the modelling of solid materials bases on the detailed derivation of geometrically nonlinear kinematics, that yields different strain and stress measures for the material and spatial configuration. Accordingly, this results in different formulations of the mechanical and thermodynamical balance equations. On these foundations we firstly derive by means of the concepts of the plasticity theory an elasto-plastic prototype-model, that is extended subsequently. In the centre of interest is the formulation of damage models in consideration of rate-dependent material behaviour. In the next step follows the extension of the isothermal material models to thermo-mechanically coupled problems, whereby also the special case of adiabatic processes is discussed. Within the representation of the different constitutive laws, the importance is attached to their modular structure. Moreover, a detailed discussion of the isothermal and the thermo-mechanically coupled problem with respect to their numerical treatment is performed. For this purpose the weak forms with respect to the different configurations and the corresponding linearizations are derived and discretized. The derived material models are highlighted by numerical examples and also proved with respect to plausibility. In order to take discontinuities into account appropriate kinematics are introduced and the mechanical and thermodynamical balance equations have to be modified correspondingly. The numerical description is accomplished by so-called interface-elements, which are based on an adequate discretization. In this context two application fields are distinguished. On the one side the interface elements provide a tool for the description of postcritical processes in the framework of localization problems, which include material separation and therefore they are appropriate for the description of cutting processes. Here in turn one has to make the difference between the domain-dependent and the domain-independent formulation, which mainly differ in the definition of the interfacial strain measure. On the other side material properties are attached to the interfaces whereas the spatial extension is neglectable. A typical application of this type of discontinuities can be found in the scope of the modelling of composites, for instance. In both applications the corresponding thermo-mechanical formulations are derived. Finally, the different interface formulations are highlighted by some numerical examples and they are also proved with respect to plausibility.

The work presented in this thesis discusses the thermal and power management of multi-core processors (MCPs) with both two dimensional (2D) package and there dimensional (3D) package chips. The power and thermal management/balancing is of increasing concern and is a technological challenge to the MCP development and will be a main performance bottleneck for the development of MCPs. This thesis develops optimal thermal and power management policies for MCPs. The system thermal behavior for both 2D package and 3D package chips is analyzed and mathematical models are developed. Thereafter, the optimal thermal and power management methods are introduced.
Nowadays, the chips are generally packed in 2D technique, which means that there is only one layer of dies in the chip. The chip thermal behavior can be described by a 3D heat conduction partial differential equation (PDE). As the target is to balance the thermal behavior and power consumption among the cores, a group of one dimensional (1D) PDEs, which is derived from the developed 3D PDE heat conduction equation, is proposed to describe the thermal behavior of each core. Therefore, the thermal behavior of the MCP is described by a group of 1D PDEs. An optimal controller is designed to manage the power consumption and balance the temperature among the cores based on the proposed 1D model.
3D package is an advanced package technology, which contains at least 2 layers of dies stacked in one chip. Different from 2D package, the cooling system should be installed among the layers to reduce the internal temperature of the chip. In this thesis, the micro-channel liquid cooling system is considered, and the heat transfer character of the micro-channel is analyzed and modeled as an ordinary differential equation (ODE). The dies are discretized to blocks based on the chip layout with each block modeled as a thermal resistance and capacitance (R-C) circuit. Thereafter, the micro-channels are discretized. The thermal behavior of the whole system is modeled as an ODE system. The micro-channel liquid velocity is set according to the workload and the temperature of the dies. Under each velocity, the system can be described as a linear ODE model system and the whole system is a switched linear system. An H-infinity observer is designed to estimate the states. The model predictive control (MPC) method is employed to design the thermal and power management/balancing controller for each submodel.
The models and controllers developed in this thesis are verified by simulation experiments via MATLAB. The IBM cell 8 cores processor and water micro-channel cooling system developed by IBM Research in collaboration with EPFL and ETHZ are employed as the experiment objects.

Within this thesis we present a novel approach towards the modeling of strong discontinuities in a three dimensional finite element framework for large deformations. This novel finite element framework is modularly constructed containing three essential parts: (i) the bulk problem, ii) the cohesive interface problem and iii) the crack tracking problem. Within this modular design, chapter 2 (Continuous solid mechanics) treats the behavior of the bulk problem (i). It includes the overall description of the continuous kinematics, the required balance equations, the constitutive setting and the finite element formulation with its corresponding discretization and required solution strategy for the emerging highly non-linear equations. Subsequently, we discuss the modeling of strong discontinuities within finite element discretization schemes in chapter 3 (Discontinuous solid mechanics). Starting with an extension of the continuous kinematics to the discontinuous situation, we discuss the phantom-node discretization scheme based on the works of Hansbo & Hansbo. Thereby, in addition to a comparison with the extended finite element method (XFEM), importance is attached to the technical details for the adaptive introduction of the required discontinuous elements: The splitting of finite elements, the numerical integration, the visualization and the formulation of geometrical correct crack tip elements. In chapter 4 (The cohesive crack concept), we consider the treatment of cohesive process zones and the associated treatment of cohesive tractions. By applying this approach we are able to merge all irreversible, crack propagation accompanying, failure mechanisms into an arbitrary traction separation relation. Additionally, this concept ensures bounded crack tip stresses and allows the use of stress-based failure criteria for the determination of crack growth. In summary, the use of the discontinuous elements in conjunction with cohesive traction separation allows the mesh-independent computation of crack propagation along pre-defined crack paths. Therefore, this combination is defined as the interface problem (ii) and represents the next building block in the modular design of this thesis. The description and the computation of the evolving crack surface, based on the actual status of a considered specimen is the key issue of chapter 5 (Crack path tracking strategies). In contrast to the two-dimensional case, where tracking the path in a C0-continuous way is straightforward, three-dimensional crack path tracking requires additional strategies. We discuss the currently available approaches regarding this issue and further compare the approaches by means of usual quality measures. In the modular design of this thesis these algorithms represent the last main part which is classified as the crack tracking problem (iii). Finally chapter 6 (Representative numerical examples) verifies the finite element tool by comparisons of the computational results which experiments and benchmarks of engineering fracture problems in concrete. Afterwards the finite element tool is applied to model folding induced fracture of geological structures.

Thermoelasticity represents the fusion of the fields of heat conduction and elasticity in solids and is usually characterized by a twofold coupling. Thermally induced stresses can be determined as well as temperature changes caused by deformations. Studying the mutual influence is subject of thermoelasticity. Usually, heat conduction in solids is based on Fourier’s law which describes a diffusive process. It predicts unnatural infinite transmission speed for parts of local heat pulses. At room temperature, for example, these parts are strongly damped. Thus, in these cases most engineering applications are described satisfactorily by the classical theory. However, in some situations the predictions according to Fourier’s law fail miserable. One of these situations occurs at temperatures near absolute zero, where the phenomenon of second sound1 was discovered in the 20th century. Consequently, non-classical theories experienced great research interest during the recent decades. Throughout this thesis, the expression “non-classical” refers to the fact that the constitutive equation of the heat flux is not based on Fourier’s law. Fourier’s classical theory hypothesizes that the heat flux is proportional to the temperature gradient. A new thermoelastic theory, on the one hand, needs to be consistent with classical thermoelastodynamics and, on the other hand, needs to describe second sound accurately. Hence, during the second half of the last century the traditional parabolic heat equation was replaced by a hyperbolic one. Its coupling with elasticity leads to non-classical thermomechanics which allows the modeling of second sound, provides a passage to the classical theory and additionally overcomes the paradox of infinite wave speed. Although much effort is put into non-classical theories, the thermoelastodynamic community has not yet agreed on one approach and a systematic research is going on worldwide.Computational methods play an important role for solving thermoelastic problems in engineering sciences. Usually this is due to the complex structure of the equations at hand. This thesis aims at establishing a basic theory and numerical treatment of non-classical thermoelasticity (rather than dealing with special cases). The finite element method is already widely accepted in the field of structural solid mechanics and enjoys a growing significance in thermal analyses. This approach resorts to a finite element method in space as well as in time.

The goal of this thesis is a physically motivated and thermodynamically consistent formulation of higher gradient inelastic material behavior. Thereby, the influence of the material microstructure is incorporated. Next to theoretical aspects, the thesis is complemented with the algorithmic treatment and numerical implementation of the derived model. Hereby, two major inelastic effects will be addressed: on the one hand elasto-plastic processes and on the other hand damage mechanisms, which will both be modeled within a continuum mechanics framework.

In this thesis, we deal with the worst-case portfolio optimization problem occuring in discrete-time markets.
First, we consider the discrete-time market model in the presence of crash threats. We construct the discrete worst-case optimal portfolio strategy by the indifference principle in the case of the logarithmic utility. After that we extend this problem to general utility functions and derive the discrete worst-case optimal portfolio processes, which are characterized by a dynamic programming equation. Furthermore, the convergence of the discrete worst-case optimal portfolio processes are investigated when we deal with the explicit utility functions.
In order to further study the relation of the worst-case optimal value function in discrete-time models to continuous-time models we establish the finite-difference approach. By deriving the discrete HJB equation we verify the worst-case optimal value function in discrete-time models, which satisfies a system of dynamic programming inequalities. With increasing degree of fineness of the time discretization, the convergence of the worst-case value function in discrete-time models to that in continuous-time models are proved by using a viscosity solution method.

In this dissertation convergence of binomial trees for option pricing is investigated. The focus is on American and European put and call options. For that purpose variations of the binomial tree model are reviewed.
In the first part of the thesis we investigated the convergence behavior of the already known trees from the literature (CRR, RB, Tian and CP) for the European options. The CRR and the RB tree suffer from irregular convergence, so our first aim is to find a way to get the smooth convergence. We first show what causes these oscillations. That will also help us to improve the rate of convergence. As a result we introduce the Tian and the CP tree and we proved that the order of convergence for these trees is \(O \left(\frac{1}{n} \right)\).
Afterwards we introduce the Split tree and explain its properties. We prove the convergence of it and we found an explicit first order error formula. In our setting, the splitting time \(t_{k} = k\Delta t\) is not fixed, i.e. it can be any time between 0 and the maturity time \(T\). This is the main difference compared to the model from the literature. Namely, we show that the good properties of the CRR tree when \(S_{0} = K\) can be preserved even without this condition (which is mainly the case). We achieved the convergence of \(O \left(n^{-\frac{3}{2}} \right)\) and we typically get better results if we split our tree later.

Fluid extraction is a typical chemical process where two types of fluids are mixed together. The high complexity of this process which involves droplet coalescence, breakup, mass transfer, and counter-current flow often makes design difficult. The industrial design of these processes is still based on expensive mini-plant and pilot plant experiments. Therefore, there is a strong need for research into the stimulation of fluid-fluid interaction processes using computational fluid dynamics (CFD).
Previous multi-phase fluid simulations have focused on the development of models that couple mass and momentum using the Navier-Stokes equation. Recent population balance models (PBM) have proved to be important methods for analyzing droplet breakage and collisions. A combination of CFD and PBM facilitates the simulation of flow property by solving coupling equations, and the calculation of the droplet size and numbers. In our study, we successfully coupled an Euler-Euler CFD model with the breakup and coalescence models proposed by Luo and Svendsen (59).
The simulation output of extraction columns provides a mathematical understand- ing of how fluids are mixed inside a mixing device. This mixing process shows that the dispersed phase of a flow generates large blobs and bubbles. Current mathemati- cal simulation results often fail to provide an intuitive representation of how well two different types of fluid interact, so intuitive and physically plausible visualization tech- niques are in high demand to help chemical engineers to explore and analyze bubble column simulation data. In chapter 3, we present the visualization tools we developed for extraction column data.
Fluid interfaces and free surfaces are topics of growing interest in the field of multi- phase computational fluid dynamics. However, the analysis of the flow field relative to the material interface shape and topology is a challenging task. In chapter 5, we present a technique that facilitates the visualization and analysis of complex material interface behaviors over time. To achieve this, we track the surface parameterization of time-varying material interfaces and identify locations where there are interactions between the material interfaces and fluid particles. Splatting and surface visualization techniques produce an intuitive representation of the derived interface stability. Our results demonstrate that the interaction of a flow field with a material interface can be understood using appropriate extraction and visualization techniques, and that our techniques can help the analysis of mixing and material interface consistency.
In addition to texture-based methods for surface analysis, the interface of two- phase fluid can be considered as an implicit function of the density or volume fraction values. High-level visualization techniques such as topology-based methods can re- veal the hidden structure underlying simple simulation data, which will enhance and advance our understanding of multi-fluid simulation data. Recent feature-based vi- sualization approaches have explored the possibility of using Reeb graphs to analyze scalar field topologies(19, 107). In chapter 6, we present a novel interpolation scheme for interpolating point-based volume fraction data and we further explore the implicit fluid interface using a topology-based method.

According to the domain specific models of speech perception, speech is supposed to be processed distinctively compared to non-speech. This assumption is supported by many studies dealing with the processing of speech and non-speech stimuli. However, the complexity of both stimulus classes is not matched in most studies, which might be a confounding factor, according to the cue specific models of speech perception. One solution is spectrally rotated speech, which has already been used in a range of fMRI and PET studies. In order to be able to investigate the role of stimulus complexity, vowels, spectrally rotated vowels and a second non-speech condition with two bands of sinusoidal waves, representing the first two formants of the vowels, were used in the present thesis. A detailed description of the creation and the properties of the whole stimulus set are given in Chapter 2 (Experiment 1) of this work. These stimuli were used to investigate the auditory processing of speech and non-speech sounds in a group of dyslexic adults and age matched controls (Experiment 2). The results support the assumption of a general auditory deficit in dyslexia. In order to compare the sensory processing of speech and non-speech in healthy adults on the electrophysiological level, stimuli were also presented within a multifeature oddball paradigm (Experiment 3). Vowels evoked a larger mismatch negativity (MMN) compared to both non-speech stimulus types. The MMN evoked by tones and spectrally rotated tones were compared in Experiment 4, to investigate the role of harmony. No difference in the area of MMN was found, indicating that the results found in Experiment 3 were not moderated by the harmonic structure of the vowels. All results are discussed in the context of the domain and cue specific models of speech perception.

Compared to our current knowledge of neuronal excitation, little is known about the development and maturation of inhibitory circuits. Recent studies show that inhibitory circuits develop and mature in a similar way like excitatory circuit. One such similarity is the development through excitation, irrespective of its inhibitory nature. Here in this current study, I used the inhibitory projection between the medial nucleus of the trapezoid body (MNTB) and the lateral superior olive (LSO) as a model system to unravel some aspects of the development of inhibitory synapses. In LSO neurons of the rat auditory brainstem, glycine receptor-mediated responses change from depolarizing to hyperpolarizing during the first two postnatal weeks (Kandler and Friauf 1995, J. Neurosci. 15:6890-6904). The depolarizing effect of glycine is due to a high intracellular chloride concentration ([Cl-]i), which induces a reversal potential of glycine (EGly) more positive than the resting membrane potential (Vrest). In older LSO neurons, the hyperpolarizing effect is due to a low [Cl-]i (Ehrlich et al., 1999, J. Physiol. 520:121-137). Aim of the present study was to elucidate the molecular mechanism behind Clhomeostasis in LSO neurons which determines polarity of glycine response. To do so, the role and developmental expression of Cl-cotransporters, such as NKCC1 and KCC2 were investigated. Molecular biological and gramicidin perforated patchclamp experiments revealed, the role of KCC2 as an outward Cl-cotransporter in mature LSO neurons (Balakrishnan et al., 2003, J Neurosci. 23:4134-4145). But, NKCC1 does not appear to be involved in accumulating chloride in immature LSO neurons. Further experiments, indicated the role of GABA and glycine transporters (GAT1 and GLYT2) in accumulating Cl- in immature LSO neurons. Finally, the experiments with hypothyroid animals suggest the possible role of thyroid hormone in the maturation of inhibitory synapse. Altogether, this thesis addressed the molecular mechanism underlying the Cl- regulation in LSO neurons and deciphered it to some extent.

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a highly toxic and persistent organic pollutant, which is ubiquitously found in the environment. The prototype dioxin compound was classified as a human carcinogen by the International Agency for Research on Cancer. TCDD acts as a potent liver tumor promoter in rats, which is one of the major concerns related to TCDD exposure. There is extensive evidence, that TCDD exerts anti-estrogenic effects via arylhydrocarbon receptor (AhR)-mediated induction of cytochromes P450 and interferes with the estrogen receptor alpha (ERalpha)-mediated signaling pathway. The present work was conducted to shed light on the hypothesis that enhanced activation of estradiol metabolism by TCDD-induced enzymes, mainly CYP1A1 and CYP1B1, leads to oxidative DNA damage in liver cells. Furthermore, the possible modulation by 17beta-estradiol (E2) was investigated. The effects were examined using four different AhR-responsive species- and sex-specific liver cell models, rat H4II2 and human HepG2 hepatoma cell lines as well as rat primary hepatocytes from male and female Wistar rats. The effective induction of CYP1A1 and CYP1B1 by TCDD was demonstrated in all liver cell models. Basal and TCDD-induced expression of CYP1B1, which is a key enzyme in stimulating E2 metabolism via the more reactive formation of the genotoxic 4-hydroxyestradiol, was most pronounced in rat primary hepatocytes. CYP-dependent induction of reactive oxygen species (ROS) was only observed in rodent cells. E2 induced ROS only in primary rat hepatocytes, which was associated with a weak CYP1B1 mRNA induction. Thus, E2 itself was suggested to induce its own metabolism in primary rat hepatocytes, resulting in the redox cycling of catechol estradiol metabolites leading to ROS formation. In this study the role of TCDD and E2 on oxidative DNA damage was investigated for the first time in vitro in the comet assay using liver cells. Both TCDD and E2 were shown to induce oxidative DNA base modifications only in rat hepatocytes. Additionally, direct oxidative DNA-damaging effects of the two main E2 metabolites, 4-hydroxyestradiol and 2-hydroxyestradiol, were only observed in rat hepatocytes and revealed that E2 damaged the DNA to the same extent. However, the induction of oxidative DNA damage by E2 could not completely be explained by the metabolic conversion of E2 via CYP1A1 and CYP1B1 and has to be further investigated. The expression of low levels of endogenous ERalpha mRNA in primary rat hepatocytes and the lack of ERalpha in hepatoma cell lines were identified as crucial. Therefore, the effects of interference of ERalpha with AhR were examined in HepG2 cells, which were transiently transfected with ERalpha. The over-expression of ERalpha led to enhanced AhR-mediated transcriptional activity by E2, suggesting a possible regulation of E2 levels. In turn, TCDD reduced E2-mediated ERalpha signaling, confirming the anti-estrogenic action of TCDD. Such a modulation of the combined effects of TCDD with E2 was not observed in any of the other experiments. Thus, the role of low endogenous ERalpha levels has to be further investigated in transfection experiments using rat primary hepatocytes. Overall, rat primary hepatocyte culture turned out to be the more adaptive cell model to investigate metabolism in the liver, reflecting a more realistic situation of the liver tissue. Nevertheless, during this work a crosstalk between ERalpha and AhR was shown for the first time using human hepatoma cell line HepG2 by transiently transfecting ERalpha.

Due to their N-glycosidase activity, ribosome-inactivating proteins (RIPs) are attractive candidates as antitumor and antiviral agents in medical and biological research. In the present study, we have successfully cloned two different truncated gelonins into pET-28a(+) vectors and expressed intact recombinant gelonin (rGel), recombinant C-terminally truncated gelonin (rC3-gelonin) and recombinant N- and C-terminally truncated gelonin (rN34C3-gelonin). Biological experiments showed that all these recombinant gelonins have no inhibiting effect on MCF-7 cell lines. These data suggest that the truncated-gelonins are still having a specific structure that does not allow for internalization into cells. Further, truncation of gelonin leads to partial or complete loss of N-glycosidase as well as DNase activity compared to intact rGel. Our data suggest that C-and N-terminal amino acid residues are involved in the catalytic and cytotoxic activities of rGel. In addition, the intact gelonin should be selected as a toxin in the immunoconjugate rather than truncated gelonin.
In the second part, an immunotoxin composed of gelonin, a basic protein of 30 kDa isolated from the Indian plant Gelonium multiflorum and the cytotoxic drug MTX has been studied as a potential tool of gelonin delivery into the cytoplasm of cells. Results of many experiments showed that, on the average, about 5 molecules of MTX were coupled to one molecule of gelonin. The MTX-gelonin conjugate is able to reduce the viability of MCF-7 cell in a dose-dependent manner (ID50, 10 nM) as shown by MTT assay and significantly induce direct and oxidative DNA damage as shown by the alkaline comet assay. However, in-vitro translation toxicity MTX-gelonin conjugates have IC50, 50.5 ng/ml which is less toxic than that of gelonin alone IC50, 4.6 ng/ml. It can be concluded that the positive charge plays an important role in the N-glycosidase activity of gelonin. Furthermore, conjugation of MTX with gelonin through α- and γ- carboxyl groups leads to the partial loss of its anti-folate activity compared to free MTX. These results, taken together, indicate that conjugation of MTX to gelonin permits delivery of the gelonin into the cytoplasm of cancer cells and exerts a measurable toxic effect.
In the third part, we have isolated and characterized two ribosome-inactivating proteins (RIPs) type I, gelonin and GAP31, from seeds of Gelonium multiflorum. Both proteins exhibit RNA-N-glycosidase activity. The amino acid sequences of gelonin and GAP31 were identified by MALDI and ESI mass spectrometry. Gelonin and GAP31 peptides - obtained by proteolytic digestion (trypsin and Arg-C) - are consistent with the amino acid sequence published by Rosenblum and Huang, respectively. Further structural characterization of gelonin and GAP31 (tryptic and Arg-C peptide mapping) showed that the two RIPs have 96% similarity in their sequence. Thus, these two proteins are most probably isoforms arisen from the same gene by alternative splicing. The ESI-MS analysis of gelonin and GAP31 exhibited at least three different post-translational modified forms. A standard plant paucidomannosidic N-glycosylation pattern (GlcNAc2Man2-5Xyl0-1 and GlcNAc2Man6-12Fuc1-2Xyl0-2) was identified using electrospray ionization MS for gelonin on N196 and GAP31 on N189, respectively. Based on these results, both proteins are located in the vacuoles of Gelonium multiflorum seeds.

In the thesis the author presents a mathematical model which describes the behaviour of the acoustical pressure (sound), produced by a bass loudspeaker. The underlying physical propagation of sound is described by the non--linear isentropic Euler system in a Lagrangian description. This system is expanded via asymptotical analysis up to third order in the displacement of the membrane of the loudspeaker. The differential equations which describe the behaviour of the key note and the first order harmonic are compared to classical results. The boundary conditions, which are derived up to third order, are based on the principle that the small control volume sticks to the boundary and is allowed to move only along it. Using classical results of the theory of elliptic partial differential equations, the author shows that under appropriate conditions on the input data the appropriate mathematical problems admit, by the Fredholm alternative, unique solutions. Moreover, certain regularity results are shown. Further, a novel Wave Based Method is applied to solve appropriate mathematical problems. However, the known theory of the Wave Based Method, which can be found in the literature, so far, allowed to apply WBM only in the cases of convex domains. The author finds the criterion which allows to apply the WBM in the cases of non--convex domains. In the case of 2D problems we represent this criterion as a small proposition. With the aid of this proposition one is able to subdivide arbitrary 2D domains such that the number of subdomains is minimal, WBM may be applied in each subdomain and the geometry is not altered, e.g. via polygonal approximation. Further, the same principles are used in the case of 3D problem. However, the formulation of a similar proposition in cases of 3D problems has still to be done. Next, we show a simple procedure to solve an inhomogeneous Helmholtz equation using WBM. This procedure, however, is rather computationally expensive and can probably be improved. Several examples are also presented. We present the possibility to apply the Wave Based Technique to solve steady--state acoustic problems in the case of an unbounded 3D domain. The main principle of the classical WBM is extended to the case of an external domain. Two numerical examples are also presented. In order to apply the WBM to our problems we subdivide the computational domain into three subdomains. Therefore, on the interfaces certain coupling conditions are defined. The description of the optimization procedure, based on the principles of the shape gradient method and level set method, and the results of the optimization finalize the thesis.

Wie Proteine sich innerhalb weniger Millisekunden korrekt falten können, ist eine der fundamentalen Fragen in der Biochemie. Ein beim Faltungsprozess durchlaufener Übergangszustand ist der molten globule Zustand (MG Zustand), der sich unter bestimmten Bedingungen stabilisieren und untersuchen lässt. In diesem Zustand ähnelt die Sekundärstruktur dem nativen Zustand, während die Tertiärstruktur eher dem vollständig entfalteten Zustand entspricht. In dieser Arbeit wurde der MG Zustand am Beispiel des Maltose bindenden Proteins (MBP) untersucht. Dazu wurde MBP bei pH 3,2 im MG-Zustand stabilisiert und dies mittels Fluoreszenz Spektroskopie bestätigt. Die Abstände zwischen definierten Aminosäuren im MG Zustand wurden durch Spinlabels, die an gezielt mutierten Cysteinpaaren angebracht wurden, mittels Elektronenspinresonanz (EPR) gemessen und mit den Abständen derselben Aminosäuren im nativen Zustand verglichen. Anhand von sieben verschiedenen Doppelmutanten wurde die periphere Struktur mittels gepulster EPR analysiert, zwei weitere Doppelmutanten dienten dazu, die Struktur der molekularen Bindungstasche von MBP mittels CW EPR zu untersuchen. Die Anwesenheit von Maltose führte im MG Zustand zu einer deutlichen Veränderung der Abstände bestimmter Spinlabels in der peripheren Struktur. Dies deutet darauf hin, dass MBP Maltose sogar im MG Zustand binden kann. Durch isotherme Titrationskalorimetrie (ITC) wurde diese Vermutung bestätigt: die Ergebnisse zeigen jedoch, dass der Bindungsprozess zwischen MBP und Maltose im MG Zustand mit 11 fach geringerer Bindungsenthalpie erfolgt wie im nativen Zustand. Die Abstände der Spinlabel Paare neben der Bindungstasche von MBP unterschieden sich im MG Zustand vom nativen Zustand weder mit noch ohne Maltose. Diese Ergebnisse weisen darauf hin, dass MBP im MG Zustand rund um die Bindungstasche bereits eine klar ausgebildete Tertiärstruktur besitzt. Um diese Befunde zu bestätigen, sollten nun Untersuchungen anhand weiterer Doppelmutanten und mittels empfindlicherer Messungen wie z.B. DQC durchgeführt werden.

We consider two major topics in this thesis: spatial domain partitioning which serves as a framework to simulate creep flows in representative volume elements.
First, we introduce a novel multi-dimensional space partitioning method. A new type of tree combines the advantages of the Octree and the KD-tree without having their disadvantages. We present a new data structure allowing local refinement, parallelization and proper restriction of transition ratios between nodes. Our technique has no dimensional restrictions at all. The tree's data structure is defined by a topological algebra based on the symbols \( A = \{ L, I, R \} \) that encode the partitioning steps. The set of successors is restricted such that each node has the partition of unity property to partition domains without overlap. With our method it is possible to construct a wide choice of spline spaces to compress or reconstruct scientific data such as pressure and velocity fields and multidimensional images. We present a generator function to build a tree that represents a voxel geometry. The space partitioning system is used as a framework to allow numerical computations. This work is triggered by the problem of representing, in a numerically appropriate way, huge three-dimensional voxel geometries that could have up to billions of voxels. These large datasets occure in situations where it is needed to deal with large representative volume elements (REV).
Second, we introduce a novel approach of variable arrangement for pressure and velocity to solve the Stokes equations. The basic idea of our method is to arrange variables in a way such that each cell is able to satisfy a given physical law independently from its neighbor cells. This is done by splitting velocity values to a left and right converging component. For each cell we can set up a small linear system that describes the momentum and mass conservation equations. This formulation allows to use the Gauß-Seidel algorithm to solve the global linear system. Our tree structure is used for spatial partitioning of the geometry and provides a proper initial guess. In addition, we introduce a method that uses the actual velocity field to refine the tree and improve the numerical accuracy where it is needed. We developed a novel approach rather than using existing approaches such as the SIMPLE algorithm, Lattice-Boltzmann methods or Exlicit jump methods since they are suited for regular grid structures. Other standard CFD approaches extract surfaces and creates tetrahedral meshes to solve on unstructured grids thus can not be applied to our datastructure. The discretization converges to the analytical solution with respect to grid refinement. We conclude a high strength in computational time and memory for high porosity geometries and a high strength in memory requirement for low porosity geometries.

European economic, social and territorial cohesion is one of the fundamental aims of the European Union (EU). It seeks to both reduce the effects of internal borders and enhance European integration. In order to facilitate territorial cohesion, the linkage of member states by means of efficient cross-border transport infrastructures and services is an important factor. Many cross-border transport challenges have historically existed in everyday life. They have hampered smooth passenger and freight flows within the EU.
Two EU policies, namely European Territorial Cooperation (ETC) and the Trans-European Transport Networks (TEN-T), promote enhancing cross-border transport through cooperation in soft spaces. This dissertation seeks to explore the influence of these two EU policies on cross-border transport and further European integration.
Based on an analysis of European, national and cross-border policy and planning documents, surveys with TEN-T Corridor Coordinators and INTERREG Secretariats and a high number of elite interviews, the dissertation will investigate how the objectives of the two EU policies were formally implemented in both soft spaces and the EU member states as well as which practical implementations have taken place. Thereby, the initiated Europeanisation and European integration processes will be evaluated. The analysis is conducted in nine preliminary case studies and two in-depth case studies. The cases comprise cross-border regions funded by the ETC policy that are crossed by a TEN-T corridor. The in-depth analysis explores the Greater Region Saar-Lor-Lux+ and the Brandenburg-Lubuskie region. The cases are characterised by different initial situations.
The research determined that the two EU policies support cross-border transport on different levels and, further, that they need to be better intertwined in order to make effective use of their complementarities. Moreover, it became clear that the EU policies have a distinct influence on domestic policy and planning documents of different administrative levels and countries as well as on the practical implementation. The final implementation of the EU objectives and the cross-border transport initiatives was strongly influenced by the member states’ initial situations – particularly, the regional and local transport needs. This dissertation concludes that the two EU policies cannot remove the entirety of the cross-border transport-related challenges. However, in addition to their financial investments in concrete projects, they promote the importance of cross-border transport and facilitate cooperation, learning and exchange processes. These are all of high relevance to cross-border transport development, driven by member states, as well as to further European integration.
The dissertation recommends that the transport planning competences of the EU in addition to the TEN-T network should not be enlarged in the future, but rather further transnational transport development tasks should be decentralised to transnational transport planning committees that are aware of regional needs and can coordinate a joint transport development strategy. The latter should be implemented with the support of additional EU funds for secondary and tertiary cross-border connections. Moreover, the potential complementarities of the transnational regions and transport corridors as well as the two EU policy fields should be made better use of by improving communication. This means that soft spaces, the TEN-T and ETC Policy as well as the domestic transport ministries and the domestic administrations that are responsible for the two EU policies need to intensify their cooperation. Furthermore, a focus of future ETC projects on topics that are of added value for the whole cross-border region or else that can be applied in different territorial contexts is recommended rather than investing in small-scale scattered expensive infrastructures and services that are only of benefit for a small part of the region. Additionally, the dissemination of project results should be enhanced so that the developed tools can be accessed by potential users and benefits become more visible to a wider society, despite the fact that they might not be measurable in numbers. In addition, the research points at another success factor for more concrete outputs: the frequent involvement of transport and spatial planners in transnational projects could increase the relation to planning practice. Besides that, advanced training regarding planning culture could reduce cooperation barriers.

The central topic of this thesis is Alperin's weight conjecture, a problem concerning the representation theory of finite groups.
This conjecture, which was first proposed by J. L. Alperin in 1986, asserts that for any finite group the number of its irreducible Brauer characters coincides with the number of conjugacy classes of its weights. The blockwise version of Alperin's conjecture partitions this problem into a question concerning the number of irreducible Brauer characters and weights belonging to the blocks of finite groups.
A proof for this conjecture has not (yet) been found. However, the problem has been reduced to a question on non-abelian finite (quasi-) simple groups in the sense that there is a set of conditions, the so-called inductive blockwise Alperin weight condition, whose verification for all non-abelian finite simple groups implies the blockwise Alperin weight conjecture. Now the objective is to prove this condition for all non-abelian finite simple groups, all of which are known via the classification of finite simple groups.
In this thesis we establish the inductive blockwise Alperin weight condition for three infinite series of finite groups of Lie type: the special linear groups \(SL_3(q)\) in the case \(q>2\) and \(q \not\equiv 1 \bmod 3\), the Chevalley groups \(G_2(q)\) for \(q \geqslant 5\), and Steinberg's triality groups \(^3D_4(q)\).

The research problem is that the land-use (re-)planning process in the existing Egyptian cities
does not attain sustainability. This is because of the unfulfillment of essential principles within
their land-use structures, lack of harmony between the added and old parts in the cities, and
other reasons. This leads to the need for developing an assessment system, which is a
computational spatial planning support system-SPSS. This SPSS is used for identifying the
degree of sustainability attainment in land-uses plans, predicting probable problems, and
suggesting modifications in the evaluated plans.
The main goal is to design the SPSS for supporting sustainability in the Egyptian cities. The
secondary goals are: studying the Egyptian planning and administrative systems for designing
the technical and administrative frameworks for the SPSS, the development of an assessment
model from the SPSS for assessing sustainability in land-use structures of urban areas, as well
as the identification of the improvements required in the model and the recommendations for
developing the SPSS.
The theoretical part aims to design each of the administrative and technical frameworks of the
SPSS. This requires studying each of the main planning approaches, the sustainability in urban
land-use planning, and the significance of using efficient assessment tools for evaluating the
sustainability in this process. The added value of the planning support systems-PSSs for
planning and their role in supporting sustainability attainment in urban land-use planning are
discussed. Then, a group of previous examples in the sustainability assessment from various
countries (developed and developing countries) are selected, which have used various
assessment tools. This is to extract some learned lessons to be guides for the SPSS. And so,
the comprehensive technical framework for the SPSS is designed, which includes the suggested
methods and techniques that perform various stages of the assessment process.
The Egyptian context is studied regarding the planning and administration systems within the
Egyptian cities, as well as the spatial and administrative problems facing the sustainable
development. And so, the administrative framework for the SPSS is identified, which includes
the entities that should be involved in the assessment process.
The empirical part focuses on the design of a selected assessment model from the
comprehensive technical framework of the SPSS to be established as a minimized version from
it. This model is programmed in the form of a new toolbox within the ArcGIS™ software through
geoscripting using Python programming language to be applied for assessing the sustainability
attainment in the land-use structure of urban areas. The required assessing criteria for the model
specialized for the Egyptian and German cities are identified, for applying it on German and
Egyptian study areas.
The conclusions regarding each of PSSs, the Egyptian local administration and planning
systems, sustainability attainment in the land-use planning process in Egyptian Cities, as well as
the proposed SPSS and the developed toolbox are drawn. The recommendations are regarding
each of challenges facing the development and application of PSSs, the Egyptian local
administration and planning systems, the spatial problems in Egyptian cities, the establishment
of the SPSS, and the application of the toolbox. The future agenda is in the fields of sustainable urban land-use planning, planning support science, and the development process in the
Egyptian cities.

This thesis is devoted to the study of tropical curves with emphasis on their enumerative geometry. Major results include a conceptual proof of the fact that the number of rational tropical plane curves interpolating an appropriate number of general points is independent of the choice of points, the computation of intersection products of Psi-classes on the moduli space of rational tropical curves, a computation of the number of tropical elliptic plane curves of given degree and fixed tropical j-invariant as well as a tropical analogue of the Riemann-Roch theorem for algebraic curves. The result are obtained in joint work with Hannah Markwig and/or Andreas Gathmann.

Tropical geometry is a rather new field of algebraic geometry. The main idea is to replace algebraic varieties by certain piece-wise linear objects in R^n, which can be studied with the aid of combinatorics. There is hope that many algebraically difficult operations become easier in the tropical setting, as the structure of the objects seems to be simpler. In particular, tropical geometry shows promise for application in enumerative geometry. Enumerative geometry deals with the counting of geometric objects that are determined by certain incidence conditions. Until around 1990, not many enumerative questions had been answered and there was not much prospect of solving more. But then Kontsevich introduced the moduli space of stable maps which turned out to be a very useful concept for the study of enumerative geometry. A well-known problem of enumerative geometry is to determine the numbers N_cplx(d,g) of complex genus g plane curves of degree d passing through 3d+g-1 points in general position. Mikhalkin has defined the analogous number N_trop(d,g) for tropical curves and shown that these two numbers coincide (Mikhalkin's Correspondence Theorem). Tropical geometry supplies many new ideas and concepts that could be helpful to answer enumerative problems. However, as a rather new field, tropical geometry has to be studied more thoroughly. This thesis is concerned with the ``translation'' of well-known facts of enumerative geometry to tropical geometry. More precisely, the main results of this thesis are: - a tropical proof of the invariance of N_trop(d,g) of the position of the 3d+g-1 points, - a tropical proof for Kontsevich's recursive formula to compute N_trop(d,0) and - a tropical proof of Caporaso's and Harris' algorithm to compute N_trop(d,g). All results were derived in joint work with my advisor Andreas Gathmann. (Note that tropical research is not restricted to the translation of classically well-known facts, there are actually new results shown by means of tropical geometry that have not been known before. For example, Mikhalkin gave a tropical algorithm to compute the Welschinger invariant for real curves. This shows that tropical geometry can indeed be a tool for a better understanding of classical geometry.)

This work deals with the mathematical modeling and numerical simulation of the dynamics of a curved inertial viscous Newtonian fiber, which is practically applicable to the description of centrifugal spinning processes of glass wool. Neglecting surface tension and temperature dependence, the fiber flow is modeled as a three-dimensional free boundary value problem via instationary incompressible Navier-Stokes equations. From regular asymptotic expansions in powers of the slenderness parameter leading-order balance laws for mass (cross-section) and momentum are derived that combine the unrestricted motion of the fiber center-line with the inner viscous transport. The physically reasonable form of the one-dimensional fiber model results thereby from the introduction of the intrinsic velocity that characterizes the convective terms. For the numerical simulation of the derived model a finite volume code is developed. The results of the numerical scheme for high Reynolds numbers are validated by comparing them with the analytical solution of the inviscid problem. Moreover, the influence of parameters, like viscosity and rotation on the fiber dynamics are investigated. Finally, an application based on industrial data is performed.

Proteins of the intermembrane space of mitochondria are generally encoded by nuclear genes that are synthesized in the cytosol. A group of small intermembrane space proteins lack classical mitochondrial targeting sequences, but these proteins are imported in an oxidation-driven reaction that relies on the activity of two components, Mia40 and Erv1. Both proteins constitute the mitochondrial disulfide relay system. Mia40 functions as an import receptor that interacts with incoming polypeptides via transient, intermolecular disulfide bonds. Erv1 is an FAD-binding sulfhydryl oxidase that activates Mia40 by re-oxidation, but the process how Erv1 itself is re-oxidized has been poorly understood. Here, I show that Erv1 interacts with cytochrome c which provides a functional link between the mitochondrial disulfide relay system and the respiratory chain. This mechanism not only increases the efficiency of mitochondrial inport by the re-oxidation of Erv1 and Mia40 but also prevents the formation of deleterious hydrogen peroxide within the intermembrane space. Thus, the miochondrial disulfide relay system is, analogous to that of the bacterial periplasm, connected to the electron transport chain of the inner membrane, which possibly allows an oxygen-dependend regulation of mitochondrial import rates. In addition, I modeled the structure of Erv1 on the basis of the Saccharomyces cerevisiae Erv2 crystal structure in order to gain insight into the molecular mechanism of Erv1. According to the high degree of sequence homologies, various characteristics found for Erv2 are also valid for Erv1. Finally, I propose a regulatory function of the disulfide relay system on the respiratory chain. The disulfide relay system senses the molecular oxygen levels in mitochondria and, thus, is able to adapt respiratory chain activity in order to prevent wastage of NADH and production of ROS.

In the theoretical part of this thesis, the difference of the solutions of the elastic and the elastoplastic boundary value problem is analysed, both for linear kinematic and combined linear kinematic and isotropic hardening material. We consider both models in their quasistatic, rate-independent formulation with linearised geometry. The main result of the thesis is, that the differences of the physical obervables (the stresses, strains and displacements) can be expressed as composition of some linear operators and play operators with respect to the exterior forces. Explicit homotopies between both solutions are presented. The main analytical devices are Lipschitz estimates for the stop and the play operator. We present some generalisations of the standard estimates. They allow different input functions, different initial memories and different scalar products. Thereby, the underlying time involving function spaces are the Sobolov spaces of first order with arbitrary integrability exponent between one and infinity. The main results can easily be generalised for the class of continuous functions with bounded total variation. In the practical part of this work, a method to correct the elastic stress tensor over a long time interval at some chosen points of the body is presented and analysed. In contrast to widespread uniaxial corrections (Neuber or ESED), our method takes multiaxiality phenomena like cyclic hardening/softening, ratchetting and non-masing behaviour into account using Jiang's model of elastoplasticity. It can be easily adapted to other constitutive elastoplastic material laws. The theory for our correction model is developped for linear kinematic hardening material, for which error estimated are derived. Our numerical algorithm is very fast and designed for the case that the elastic stress is piecewise linear. The results for the stresses can be significantly improved with Seeger's empirical strain constraint. For the improved model, a simple predictor-correcor algorithm for smooth input loading is established.

Cyanobacteria are the only prokaryotes with the ability to conduct oxygenic photosynthesis,
therefore having major influence on the evolution of life on earth. Their diverse morphology
was traditionally the basis for taxonomy and classification. For example, the genus
Chroococcidiopsis has been classified within the order Pleurocapsales, based on a unique
reproduction modus by baeocytes. Recent phylogenetic results suggested a closer
relationship of this genus to the order Nostocales. However, these studies were based
mostly on the highly conserved 16S rRNA and a small selection of Chroococcidiopsis
strains. One aim of this present thesis was to investigate the evolutionary relationships of
the genus Chroococcidiopsis, the Pleurocapsales and remaining cyanobacteria using
16S rRNA, rpoC1 and gyrB gene. Including the single gene, as the multigene analyses of
97 strains clearly showed a separation of the genus Chroococcidiopsis from the
Pleurocapsales. Furthermore, a sister relationship between the genus Chroococcidiopsis
and the order Nostocales was confirmed. Consequently, the monogeneric family
Chroococcidiopsidaceae Geitler ex. Büdel, Donner & Kauff familia nova is justified. The
phylogenetic analyses also revealed the polyphyly of the remaining Pleurocapsales, due to
the fact that the strain Pleurocapsa PCC 7327 was always separated from other strains.
This is supported by differences in their metabolism, ecology and physiology.
A second aim of this study was to investigate the thylakoid arrangement of
Chroococcidiopsis and a selection of cyanobacterial strains. The investigation of 13 strains
with Low Temperature Scanning Electron Microscopy revealed two unknown thylakoidal
arrangements within Chroococcidiopsis (parietal and stacked). This result revised the
knowledge of the thylakoid arrangement in this genus. Previously, only a coiled
arrangement was known for three strains. Based on the data of 66 strains, the feature
thylakoid arrangement was tested as a potential feature for morphological identification of
cyanobacteria. The results showed a strong relationship between the group assignment of
cyanobacteria and their thylakoid arrangements. Hence, it is in general possible to
conclude from this certain phenotypic character the affiliation to a particular family, order
or genus.
The third aim of this study was to investigate biogeographical patterns of the worldwide
distributed genus Chroococcidiopsis. The phylogenetic analysis suggested that the genus do not have biogeographical patterns, which is in contrast with a recent study on hypolithic
living Chroococcidiopsis strains and the majority of phylogeographic analysis of
microorganisms. Further analysis showed no separation of different life-strategies within
the genus. These results could be related to the genetic markers utilized, which may not
contain biogeographical information. Hence the present study can neither exclude nor
prove the possibility of biogeographic and life-strategy patterns in the genus
Chroococcidiopsis.
Future research should be focused on finding appropriate genetic markers investigate of
evolutionary relationships and biogeographical patterns within Chroococcidiopsis.

Functional data analysis is a branch of statistics that deals with observations \(X_1,..., X_n\) which are curves. We are interested in particular in time series of dependent curves and, specifically, consider the functional autoregressive process of order one (FAR(1)), which is defined as \(X_{n+1}=\Psi(X_{n})+\epsilon_{n+1}\) with independent innovations \(\epsilon_t\). Estimates \(\hat{\Psi}\) for the autoregressive operator \(\Psi\) have been investigated a lot during the last two decades, and their asymptotic properties are well understood. Particularly difficult and different from scalar- or vector-valued autoregressions are the weak convergence properties which also form the basis of the bootstrap theory.
Although the asymptotics for \(\hat{\Psi}{(X_{n})}\) are still tractable, they are only useful for large enough samples. In applications, however, frequently only small samples of data are available such that an alternative method for approximating the distribution of \(\hat{\Psi}{(X_{n})}\) is welcome. As a motivation, we discuss a real-data example where we investigate a changepoint detection problem for a stimulus response dataset obtained from the animal physiology group at the Technical University of Kaiserslautern.
To get an alternative for asymptotic approximations, we employ the naive or residual-based bootstrap procedure. In this thesis, we prove theoretically and show via simulations that the bootstrap provides asymptotically valid and practically useful approximations of the distributions of certain functions of the data. Such results may be used to calculate approximate confidence bands or critical bounds for tests.

This thesis deals with the application of binomial option pricing in a single-asset Black-Scholes market and its extension to multi-dimensional situations. Although the binomial approach is, in principle, an efficient method for lower dimensional valuation problems, there are at least two main problems regarding its application: Firstly, traded options often exhibit discontinuities, so that the Berry- Esséen inequality is in general tight; i.e. conventional tree methods converge no faster than with order 1/sqrt(N). Furthermore, they suffer from an irregular convergence behaviour that impedes the possibility to achieve a higher order of convergence via extrapolation methods. Secondly, in multi-asset markets conventional tree construction methods cannot ensure well-defined transition probabilities for arbitrary correlation structures between the assets. As a major aim of this thesis, we present two approaches to get binomial trees into shape in order to overcome the main problems in applications; the optimal drift model for the valuation of single-asset options and the decoupling approach to multi-dimensional option pricing. The new valuation methods are embedded into a self-contained survey of binomial option pricing, which focuses on the convergence behaviour of binomial trees. The optimal drift model is a new one-dimensional binomial scheme that can lead to convergence of order o(1/N) by exploiting the specific structure of the valuation problem under consideration. As a consequence, it has the potential to outperform benchmark algorithms. The decoupling approach is presented as a universal construction method for multi-dimensional trees. The corresponding trees are well-defined for an arbitrary correlation structure of the underlying assets. In addition, they yield a more regular convergence behaviour. In fact, the sawtooth effect can even vanish completely, so that extrapolation can be applied.

The main aim of this work was to obtain an approximate solution of the seismic traveltime tomography problems with the help of splines based on reproducing kernel Sobolev spaces. In order to be able to apply the spline approximation concept to surface wave as well as to body wave tomography problems, the spherical spline approximation concept was extended for the case where the domain of the function to be approximated is an arbitrary compact set in R^n and a finite number of discontinuity points is allowed. We present applications of such spline method to seismic surface wave as well as body wave tomography, and discuss the theoretical and numerical aspects of such applications. Moreover, we run numerous numerical tests that justify the theoretical considerations.

This dissertation deals with two main subjects. Both are strongly related to boundary problems for the Poisson equation and the Laplace equation, respectively. The oblique boundary problem of potential theory as well as the limit formulae and jump relations of potential theory are investigated. We divide this abstract into two parts and start with the oblique boundary problem. Here we prove existence and uniqueness results for solutions to the outer oblique boundary problem for the Poisson equation under very weak assumptions on boundary, coefficients and inhomogeneities. Main tools are the Kelvin transformation and the solution operator for the regular inner problem, provided in my diploma thesis. Moreover we prove regularization results for the weak solutions of both, the inner and the outer problem. We investigate the non-admissible direction for the oblique vector field, state results with stochastic inhomogeneities and provide a Ritz-Galerkin approximation. Finally we show that the results are applicable to problems from Geomathematics. Now we come to the limit formulae. There we combine the modern theory of Sobolev spaces with the classical theory of limit formulae and jump relations of potential theory. The convergence in Lebesgue spaces for integrable functions is already treated in literature. The achievement of this dissertation is this convergence for the weak derivatives of higher orders. Also the layer functions are elements of Sobolev spaces and the surface is a two dimensional suitable smooth submanifold in the three dimensional space. We are considering the potential of the single layer, the potential of the double layer and their first order normal derivatives. Main tool in the proof in Sobolev norm is the uniform convergence of the tangential derivatives, which is proved with help of some results taken from literature. Additionally, we need a result about the limit formulae in the Lebesgue spaces, which is also taken from literature, and a reduction result for normal derivatives of harmonic functions. Moreover we prove the convergence in the Hölder spaces. Finally we give an application of the limit formulae and jump relations. We generalize a known density of several function systems from Geomathematics in the Lebesgue spaces of square integrable measureable functions, to density in Sobolev spaces, based on the results proved before. Therefore we have prove the limit formula of the single layer potential in dual spaces of Soboelv spaces, where also the layer function is an element of such a distribution space.

In automotive testrigs we apply load time series to components such that the outcome is as close as possible to some reference data. The testing procedure should in general be less expensive and at the same time take less time for testing. In my thesis, I propose a testrig damage optimization problem (WSDP). This approach improves upon the testrig stress optimization problem (TSOP) used as a state of the art by industry experts.
In both (TSOP) and (WSDP), we optimize the load time series for a given testrig configuration. As the name suggests, in (TSOP) the reference data is the stress time series. The detailed behaviour of the stresses as functions of time are sometimes not the most important topic. Instead the damage potential of the stress signals are considered. Since damage is not part of the objectives in the (TSOP) the total damage computed from the optimized load time series is not optimal with respect to the reference damage. Additionally, the load time series obtained is as long as the reference stress time series and the total damage computation needs cycle counting algorithms and Goodmann corrections. The use of cycle counting algorithms makes the computation of damage from load time series non-differentiable.
To overcome the issues discussed in the previous paragraph this thesis uses block loads for the load time series. Using of block loads makes the damage differentiable with respect to the load time series. Additionally, in some special cases it is shown that damage is convex when block loads are used and no cycle counting algorithms are required. Using load time series with block loads enables us to use damage in the objective function of the (WSDP).
During every iteration of the (WSDP), we have to find the maximum total damage over all plane angles. The first attempt at solving the (WSDP) uses discretization of the interval for plane angle to find the maximum total damage at each iteration. This is shown to give unreliable results and makes maximum total damage function non-differentiable with respect to the plane angle. To overcome this, damage function for a given surface stress tensor due to a block load is remodelled by Gaussian functions. The parameters for the new model are derived.
When we model the damage by Gaussian function, the total damage is computed as a sum of Gaussian functions. The plane with the maximum damage is similar to the modes of the Gaussian Mixture Models (GMM), the difference being that the Gaussian functions used in GMM are probability density functions which is not the case in the damage approximation presented in this work. We derive conditions for a single maximum for Gaussian functions, similar to the ones given for the unimodality of GMM by Aprausheva et al. in [1].
By using the conditions for a single maximum we give a clustering algorithm that merges the Gaussian functions in the sum as clusters. Each cluster obtained through clustering is such that it has a single maximum in the absence of other Gaussian functions of the sum. The approximate point of the maximum of each cluster is used as the starting point for a fixed point equation on the original damage function to get the actual maximum total damage at each iteration.
We implement the method for the (TSOP) and the two methods (with discretization and with clustering) for (WSDP) on two example problems. The results obtained from the (WSDP) using discretization is shown to be better than the results obtained from the (TSOP). Furthermore we show that, (WSDP) using clustering approach to finding the maximum total damage, takes less number of iterations and is more reliable than using discretization.

Test rig optimization
(2014)

Designing good test rigs for fatigue life tests is a common task in the auto-
motive industry. The problem to find an optimal test rig configuration and
actuator load signals can be formulated as a mathematical program. We in-
troduce a new optimization model that includes multi-criteria, discrete and
continuous aspects. At the same time we manage to avoid the necessity to
deal with the rainflow-counting (RFC) method. RFC is an algorithm, which
extracts load cycles from an irregular time signal. As a mathematical func-
tion it is non-convex and non-differentiable and, hence, makes optimization
of the test rig intractable.
The block structure of the load signals is assumed from the beginning.
It highly reduces complexity of the problem without decreasing the feasible
set. Also, we optimize with respect to the actuators’ positions, which makes
it possible to take torques into account and thus extend the feasible set. As
a result, the new model gives significantly better results, compared with the
other approaches in the test rig optimization.
Under certain conditions, the non-convex test rig problem is a union of
convex problems on cones. Numerical methods for optimization usually need
constraints and a starting point. We describe an algorithm that detects each
cone and its interior point in a polynomial time.
The test rig problem belongs to the class of bilevel programs. For every
instance of the state vector, the sum of functions has to be maximized. We
propose a new branch and bound technique that uses local maxima of every
summand.

Termination of Rewriting
(1994)

More and more, term rewriting systems are applied in computer science aswell as in mathematics. They are based on directed equations which may be used as non-deterministic functional programs. Termination is a key property for computing with termrewriting systems.In this thesis, we deal with different classes of so-called simplification orderings which areable to prove the termination of term rewriting systems. Above all, we focus on the problemof applying these termination methods to examples occurring in practice. We introduce aformalism that allows clear representations of orderings. The power of classical simplifica-tion orderings - namely recursive path orderings, path and decomposition orderings, Knuth-Bendix orderings and polynomial orderings - is improved. Further, we restrict these orderingssuch that they are compatible with underlying AC-theories by extending well-known methodsas well as by developing new techniques. For automatically generating all these orderings,heuristic-based algorithms are given. A comparison of these orderings with respect to theirpowers and their time complexities concludes the theoretical part of this thesis. Finally, notonly a detailed statistical evaluation of examples but also a brief introduction into the designof a software tool representing the integration of the specified approaches is given.

Temporal Data Management and Incremental Data Recomputation with Wide-column Stores and MapReduce
(2017)

In recent years, ”Big Data” has become an important topic in academia
and industry. To handle the challenges and problems caused by Big Data,
new types of data storage systems called ”NoSQL stores” (means ”Not-only-
SQL”) have emerged.
”Wide-column stores” are one kind of NoSQL stores. Compared to relational database systems, wide-column stores introduce a new data model,
new IRUD (Insert, Retrieve, Update and Delete) semantics with support for
schema-flexibility, single-row transactions and data expiration constraints.
Moreover, each column stores multiple data versions with associated time-
stamps. Well-known examples are Google’s ”Big-table” and its open sourced
counterpart ”HBase”. Recently, such systems are increasingly used in business intelligence and data warehouse environments to provide decision support, controlling and revision capabilities.
Besides managing the current values, data warehouses also require management and processing of historical, time-related data. Data warehouses
frequently employ techniques for processing changes in various data sources
and incrementally applying such changes to the warehouse to keep it up-to-
date. Although both incremental data warehousing maintenance and temporal data management have been the subject of intensive research in the
relational database and finally commercial database products have picked up
the ability for temporal data processing and management, such capabilities
have not been explored systematically for today’s wide-column stores.
This thesis helps to address the shortcomings mentioned above. It care-
fully analyzes the properties of wide-column stores and the applicability
of mechanisms for temporal data management and incremental data ware-
house maintenance known from relational databases, extends well-known approaches and develops new capabilities for providing equivalent support in
wide-column stores.

The fact that long fibre reinforced thermoplastic composites (LFT) have higher tensile
strength, modulus and even toughness, compared to short fibre reinforced
thermoplastics with the same fibre loading has been well documented in literature.
These are the underlying factors that have made LFT materials one of the most
rapidly growing sectors of plastics industry. New developments in manufacturing of
LFT composites have led to improvements in mechanical properties and price
reduction, which has made these materials an attractive choice as a replacement for
metals in automobile parts and other similar applications. However, there are still
several open scientific questions concerning the material selection leading to the
optimal property combinations. The present work is an attempt to clarify some of
these questions. The target was to develop tools that can be used to modify, or to
“tailor”, the properties of LFT composite materials, according to the requirements of
automobile and other applications.
The present study consisted of three separate case studies, focusing on the current
scientific issues on LFT material systems. The first part of this work was focused on
LGF reinforced thermoplastic styrenic resins. The target was to find suitable maleic
acid anhydride (MAH) based coupling agents in order to improve the fibre-matrix
interfacial strength, and, in this way, to develop an LGF concentrate suitable for
thermoplastic styrenic resins. It was shown that the mechanical properties of LGF
reinforced “styrenics” were considerably improved when a small amount of MAH
functionalised polymer was added to the matrix. This could be explained by the better fibre-matrix adhesion, revealed by scanning electron microscopy of fracture surfaces.
A novel LGF concentrate concept showed that one particular base material can be
used to produce parts with different mechanical and thermal properties by diluting the
fibre content with different types of thermoplastic styrenic resins. Therefore, this
concept allows a flexible production of parts, and it can be used in the manufacturing
of interior parts for automobile components.The second material system dealt with so called hybrid composites, consisting of
long glass fibre reinforced polypropylene (LGF-PP) and mineral fillers like calcium
carbonate and talcum. The aim was to get more information about the fracture
behaviour of such hybrid composites under tensile and impact loading, and to
observe the influence of the fillers on properties. It was found that, in general, the
addition of fillers in LGF-PP, increased stiffness but the strength and fracture
toughness were decreased. However, calcium carbonate and talcum fillers resulted
in different mechanical properties, when added to LGF-PP: better mechanical
properties were achieved by using talcum, compared to calcium carbonate. This
phenomenon could be explained by the different nucleation effect of these fillers,
which resulted in a different crystalline morphology of polypropylene, and by the
particle orientation during the processing when talc was used. Furthermore, the
acoustic emission study revealed that the fracture mode of LGF-PP changed when
calcium carbonate was added. The characteristic acoustic signals revealed that the
addition of filler led to the fibre debonding at an earlier stage of fracture sequence
when compared to unfilled LGF-PP.
In the third material system, the target was to develop a novel long glass fibre
reinforced composite material based on the blend of polyamide with thermoset
resins. In this study a blend of polyamide-66 (PA66) and phenol formaldehyde resin
(PFR) was used. The chemical structure of the PA66-PFR resin was analysed by
using small molecular weight analogues corresponding to PA66 and PFR
components, as well as by carrying out experiments using the macromolecular
system. Theoretical calculations and experiments showed that there exists a strong
hydrogen bonding between the carboxylic groups of PA66 and the hydroxylic groups
of PFR, exceeding even the strength of amide-water hydrogen bonds. This was
shown to lead to the miscible blends, when PFR was not crosslinked. It was also
found that the morphology of such thermoplastic-thermoset blends can be controlled
by altering ratio of blend components (PA66, PFR and crosslinking agent). In the
next phase, PA66-PFR blends were reinforced by long glass fibres. The studies
showed that the water absorption of the blend samples was considerably decreased,
which was also reflected in higher mechanical properties at equilibrium state.
Wie man aus zahlreichen Untersuchungen und Anwendungsbeispielen entnehmen
kann, besitzen langfaserverstärkte Thermoplaste (LFT) eine bessere Zugfestigkeit,
Biege- und Schlagzähigkeit im Vergleich zu kurzfaserverstärkten Thermoplasten. Die
Vorteile in den mechanischen Eigenschaften haben die LFT zu einem
schnellwachsenden Bereich in der Kunststoffindustrie gemacht. Neue Entwicklungen
in Bereich der Herstellung von LFT haben für zusätzliche Verbesserungen der
mechanischen Eigenschaften sowie eine Preisreduzierung der Materialien in den
vergangenen Jahren gesorgt, was die LFT zu einer attraktiven Wahl u.a. als Ersatz
von Metallen in Automobilteilen macht. Es stellen sich allerdings immer noch einige
offene wissenschaftliche Fragen in Bezug auf z.B. die Materialbeschaffenheit, um
optimale Eigenschaftskombinationen zu erreichen. Die vorliegende Arbeit versucht,
einige dieser Fragen zu beantworten. Ziel war es, Vorgehensweisen zu entwickeln,
mit denen man die Eigenschaften von LFT gezielt beeinflussen und so den
Anforderungen von Automobilen oder anderen Anwendungen anpassen oder
„maßschneidern“ kann.
Die vorliegende Arbeit besteht aus drei Teilen, welche sich auf unterschiedliche
Materialsysteme, angepasst an den aktuellen Bedarf und das Interesse der Industrie,
konzentrieren.
Der erste Teil der Arbeit richtet sich auf die Eigenschaftsoptimierung von
langglasfaserverstärkten (LGF) thermoplastischen Styrolcopolymeren und von
Blends aus diesen Materialien. Es wurden passende, auf Maleinsäureanhydride
(MAH) basierende Kopplungsmittel gefunden, um die Faser-Matrix-Haftung zu
optimieren. Weiterhin wurde ein LGF Konzentrat entwickelt, welches mit
verschiedenen thermoplastischen Styrolcopolymeren kompatibel ist und somit als
„Verstärkungsadditiv“ eingesetzt werden kann.Das Konzept für ein neues LGF-Konzentrat auf Basis des kompatiblen
Materialsystems konzentriert sich insbesondere darauf, dass ein Basismaterial für
die Herstellung von Bauteilen bereit gestellt werden kann, mit dessen Hilfe gezielt
verschiedene mechanische und thermomechanischen Eigenschaften durch das
Zumischen von verschiedenen Styrolcopoylmeren und Blends verbessert werden
können. Dieses Konzept ermöglicht eine sehr flexible Produktion von Bauteilen und
wird seine Anwendung bei der Herstellung von Bauteilen u.a. im Interieur von Autos
finden.
Das zweite Materialsystem basiert auf sogenannten hybriden Verbundwerkstoffen,
welche aus Langglasfasern und mineralischen Füllstoffen wie Kalziumkarbonat und
Talkum in einer Polypropylen (PP) - Matrix zusammengesetzt sind. Ziel war es, durch
detaillierte bruchmechanische Analysen genaue Informationen über das
Bruchverhalten dieser hybriden Verbundwerkstoffe bei Zug- und Schlagbelastung zu
bekommen, um dann die Unterschiede zwischen den verschiedenen Füllstoffen in
Bezug auf ihre Eigenschaften zu dokumentieren. Es konnte beobachtet werden, dass
bei Zugabe der Füllstoffe zum LGF-PP normalerweise die Steifigkeit weiter
verbessert wurde, jedoch die Festigkeit und Schlagzähigkeit abnahmen. Weiterhin
zeigten die verschiedenen Füllstoffe wie Kalziumkarbonat und Talkum
unterschiedliche mechanische Eigenschaften auf, wenn sie zusammen mit LGF
Verstärkung eingesetzt wurden: Bei der Zugabe von Talkum wurde u.a. eine deutlich
bessere Schlagzähigkeit als bei der Zugabe von Kalziumkarbonat festgestellt. Dieses
Phänomen konnte durch das unterschiedliche Nukleierungsverhalten des PPs erklärt
werden, welches in einer unterschiedlichen Kristallmorphologie von Polypropylen
resultierte. Weiterhin konnte man durch Messungen der akustischen Emmissionen
während der Zugbelastung eines bruchmechanischen Versuchskörpers aufzeigen,
dass die höhere Bruchzähigkeit von LGF-PP ohne Füllstoffe daraus resultiert, dass
Faser-Pullout schon bei geringeren Kräften vorhanden war.

In recent years, formal property checking has become adopted successfully in industry and is used increasingly to solve the industrial verification tasks. This success results from property checking formulations that are well adapted to specific methodologies. In particular, assertion checking and property checking methodologies based on Bounded Model Checking or related techniques have matured tremendously during the last decade and are well supported by industrial methodologies. This is particularly true for formal property checking of computational System-on-Chip (SoC) modules. This work is based on a SAT-based formulation of property checking called Interval Property Checking (IPC). IPC originates in the Siemens company and is in industrial use since the mid 1990s. IPC handles a special type of safety properties, which specify operations in intervals between abstract starting and ending states. This paves the way for extremely efficient proving procedures. However, there are still two problems in the IPC-based verification methodology flow that reduce the productivity of the methodology and sometimes hamper adoption of IPC. First, IPC may return false counterexamples since its computational bounded circuit model only captures local reachability information, i.e., long-term dependencies may be missed. If this happens, the properties need to be strengthened with reachability invariants in order to rule out the spurious counterexamples. Identifying strong enough invariants is a laborious manual task. Second, a set of properties needs to be formulated manually for each individual design to be verified. This set, however, isn’t re-usable for different designs. This work exploits special features of communication modules in SoCs to solve these problems and to improve the productivity of the IPC methodology flow. First, the work proposes a decomposition-based reachability analysis to solve the problem of identifying reachability information automatically. Second, this work develops a generic, reusable set of properties for protocol compliance verification.

This thesis provides a fully automatic translation from synchronous programs to parallel software for different architectures, in particular, shared memory processing (SMP) and distributed memory systems. Thereby, we exploit characteristics of the synchronous model of computation (MoC) to reduce communication and to improve available parallelism and load-balancing by out-of-order (OOO) execution and data speculation.
Manual programming of parallel software requires the developers to partition a system into tasks and to add synchronization and communication. The model-based approach of development abstracts from details of the target architecture and allows to make decisions about the target architecture as late as possible. The synchronous MoC supports this approach by abstracting from time and providing implicit parallelism and synchronization. Existing compilation techniques translate synchronous programs into synchronous guarded actions (SGAs) which are an intermediate format abstracting from semantic problems in synchronous languages. Compilers for SGAs analyze causality problems, ensure logical correctness and the absence of schizophrenia problems. Hence, SGAs are a simplified and general starting point and keep the synchronous MoC at the same time. The instantaneous feedback in the synchronous MoC makes the mapping of these systems to parallel software a non-trivial task. In contrast, other MoCs such as data-flow processing networks (DPNs) directly match with parallel architectures. We translate the SGAs into DPNs,which represent a commonly used model to create parallel software. DPNs have been proposed as a programming model for distributed parallel systems that have communication paths with unpredictable latencies. The purely data-driven execution of DPNs does not require a global coordination and therefore DPNs can be easily mapped to parallel software for architectures with distributed memory. The generation of efficient parallel code from DPNs challenges compiler design with two issues: To perfectly utilize a parallel system, the communication and synchronization has to be kept low, and the utilization of the computational units has to be balanced. The variety of hardware architectures and dynamic execution techniques in processing units of these systems make a statically balanced distributed execution impossible.
The synchronous MoC is still reflected in our generated DPNs, which exhibits characteristics that allow optimizations concerning the previously mentioned issues. In particular, we apply a general communication reduction and OOO execution to achieve a dynamically balanced execution which is inspired from hardware design.

The main focus of this dissertation is the synthesis and characterization of more recent zeolites with different pore architectures. The unique shape-selective properties of the zeolites are important in various chemical processes and the new zeolites containing novel internal pore architectures are of high interest, since they could lead to further improvement of existing processes or open the way to new applications. This dissertation is organized in the following way: The first part is focused on the synthesis of selected recent zeolites with different pore architectures and their modification to the acidic and bifunctional forms. The second part comprises the characterization of the physicochemical properties of the prepared zeolites by selected physicochemical methods, viz. powder X-ray diffractometry (XRD), N2 adsorption, thermogravimetric analysis (TGA/DTA/MS), ultraviolet-visible (UV-Vis) spectroscopy, atomic absorption spectroscopy (AAS), infrared (IR) spectroscopy, scanning electron microscopy (SEM), 27Al and 29Si magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, temperature-programmed reduction (TPR), temperature-programmed desorption of pyridine (pyridine TPD) and adsorption experiments with hydrocarbon adsorptives. The third part of this work is devoted to the application of test reactions, i.e., the acid catalyzed disproportionation of ethylbenzene and the bifunctional hydroconversion of n-decane, to characterize the pore size and architecture of the prepared zeolites. They are known to be valuable tools for exploring the pore structure of zeolites. Finally, an additional test, viz. the competitive hydrogenation of 1-hexene and 2,4,4-trimethyl-1-pentene, has been applied to probe the location of noble metals in medium pore zeolite. The synthesis of the following zeolite molecular sieves was successfully performed in the frame of this thesis (they are ranked according to the largest window size in the respective structure): • 14-MR pores: UTD-1, CIT-5, SSZ-53 and IM-12 • 12-MR pores: ITQ-21 and MCM-68 • 10-MR pores: SSZ-35 and MCM-71 All of them were obtained as pure phase (except zeolite MCM-71 with a minor impurity phase that is hardly to avoid and also present in samples shown in the patent literature). The synthesis conditions are very critical with respect to the formation of the zeolite with a given structure. In this work, the recommended synthesis recipes are included. Among the 14-MR zeolites, the aluminosilicates UTD-1 (nSi/nAl = 28), CIT-5 (nSi/nAl = 116) and SSZ-53 (nSi/nAl = 55) with unidimensional extra-large pore opening formed from 14-MR rings exhibit promising catalytic properties with high thermal stability and they possess strong Brønsted-acid sites. By contrast, the germanosilicate IM-12 with a structure containing 14-MR channels intersecting with 12-MR channels is unstable toward moisture. It was found that UTD-1 and SSZ-53 zeolites are highly active catalysts for the acid catalyzed disproportionation of ethylbenzene and n-decane hydroconversion due to their high Brønsted acidity. To explore their pore structures, the applied two test reactions suggest that UTD-1, CIT-5 and SSZ-53 zeolites contain a very open pore system (12-MR or larger pore systems) because the product distributions are not hampered by too small pores. ITQ-21, a germanoaluminosilicate zeolite with a three-dimensional pore system and large spherical cages accessible through six 12-MR windows, can be synthesized with nSi/nAl ratios between 27 and >200. It possesses a large amount of Brønsted-acid sites. The aluminosilicate zeolite MCM-68 (nSi/nAl = 9) is an extremely active catalyst in the disproportionation of ethylbenzene and in the n-decane hydroconversion. This is due to the presence of a high density of strong Brønsted-acid sites in its structure. The disproportionation of ethylbenzene suggests that MCM-68 is a large pore (i.e., at least 12-MR) zeolite, in agreement with its crystallographic structure. In the hydroconversion of n-decane, the presence of tribranched and ethylbranched isomers and a high isopentane yield of 58 % in the hydrocracked products suggest the presence of large (12-MR) pores in its structure. By contrast, a relatively high value for CI* (modified constraint index) of 2.9 suggests the presence of medium (10-MR) pores in its structure. As a whole, the results are in-line with the crystallographic structure of MCM-68. SSZ-35, a 10-MR zeolite, can be synthesized in a broad range of nSi/nAl ratios between 11 and >500. This zeolite is interesting in terms of shape selectivity resulting from its unusual pore system having unidimensional channels alternating between 10-MR windows and large 18-MR cages. This thermally very stable zeolite contains both, strong Brønsted- and strong Lewis-acid sites. The disproportionation of ethylbenzene classifies SSZ-35 as a large pore zeolite. In the hydroconversion of n-decane, the suppression of bulky ethyloctanes and propylheptane clearly suggests the presence of 10-MR sections in the pore system. By contrast, the low CI* values of 1.2-2.3 and the high isopentane yields of 56-60 % in the hydrocracked products suggest that SSZ-35 also possesses larger intracystalline voids, i.e., the 18-MR cages. The results from the catalytic characterization are in good agreement with the crystallographic structure of zeolite SSZ-35. It was also found that the nSi/nAl ratio influences the crystallite size and therefore the external surface area. As a consequence, product selectivities are also influenced: The lowest nSi/nAl ratio or the smallest crystallite size sample produces larger amounts of the relatively bulky products. The formation of these products probably results from the higher conversion or they are preferentially formed on the external surface area of the catalyst. Zeolite MCM-71 (nSi/nAl = 8) possesses an extremely thermally stable structure and contains a high concentration of Brønsted-acid sites. Its structure allows for the separation of n-alkanes from branched alkanes by selective adsorption. MCM-71 exhibits unique shape-selective properties towards the product distribution in ethylbenzene disproportionation, which is different to those obtained in the medium pore SSZ-35 zeolite. All reaction parameters are fulfilled to classify MCM-71 as medium pore zeolite and this is in good agreement with its reported structure consisting of two-dimensional network of elliptical 10-MR channels and an orthogonal sinusoidal 8-MR channels. The competitive hydrogenation of 1-hexene and 2,4,4-trimethyl-1-pentene was exploited to probe that the major part of the noble metal is located inside the intracrystalline void volume of the medium pore zeolite SSZ-35.

Modelling languages are important in the process of software development. The suitability of a modelling language for a project depends on its applicability to the target domain. Here, domain-specific languages have an advantage over more general modelling languages. On the other hand, modelling languages like the Unified Modeling Language can be used in a wide range of domains, which supports the reuse of development knowledge between projects. This thesis treats the syntactical and semantical harmonisation of modelling languages and their combined use, and the handling of complexity of modelling languages by providing language subsets - called language profiles - with tailor-made formal semantics definitions, generated by a profile tool. We focus on the widely-used modelling languages SDL and UML, and formal semantics definitions specified using Abstract State Machines.

Mixed-signal systems combine analog circuits with digital hardware and software systems. A particular challenge is the sensitivity of analog parts to even small deviations in parameters, or inputs. Parameters of circuits and systems such as process, voltage, and temperature are never accurate; we hence model them as uncertain values (‘uncertainties’). Uncertain parameters and inputs can modify the dynamic behavior and lead to properties of the system that are not in specified ranges. For verification of mixed- signal systems, the analysis of the impact of uncertainties on the dynamical behavior plays a central role.
Verification of mixed-signal systems is usually done by numerical simulation. A single numerical simulation run allows designers to verify single parameter values out of often ranges of uncertain values. Multi-run simulation techniques such as Monte Carlo Simulation, Corner Case simulation, and enhanced techniques such as Importance Sampling or Design-of-Experiments allow to verify ranges – at the cost of a high number of simulation runs, and with the risk of not finding potential errors. Formal and symbolic approaches are an interesting alternative. Such methods allow a comprehensive verification. However, formal methods do not scale well with heterogeneity and complexity. Also, formal methods do not support existing and established modeling languages. This fact complicates its integration in industrial design flows.
In previous work on verification of Mixed-Signal systems, Affine Arithmetic is used for symbolic simulation. This allows combining the high coverage of formal methods with the ease-of use and applicability of simulation. Affine Arithmetic computes the propagation of uncertainties through mostly linear analog circuits and DSP methods in an accurate way. However, Affine Arithmetic is currently only able to compute with contiguous regions, but does not permit the representation of and computation with discrete behavior, e.g. introduced by software. This is a serious limitation: in mixed-signal systems, uncertainties in the analog part are often compensated by embedded software; hence, verification of system properties must consider both analog circuits and embedded software.
The objective of this work is to provide an extension to Affine Arithmetic that allows symbolic computation also for digital hardware and software systems, and to demonstrate its applicability and scalability. Compared with related work and state of the art, this thesis provides the following achievements:
1. The thesis introduces extended Affine Arithmetic Forms (XAAF) for the representation of branch and merge operations.
2. The thesis describes arithmetic and relational operations on XAAF, and reduces over-approximation by using an LP solver.
3. The thesis shows and discusses ways to integrate this XAAF into existing modeling languages, in particular SystemC. This way, breaks in the design flow can be avoided.
The applicability and scalability of the approach is demonstrated by symbolic simulation of a Delta-Sigma Modulator and a PLL circuit of an IEEE 802.15.4 transceiver system.