### Refine

#### Document Type

- Doctoral Thesis (5) (remove)

#### Language

- English (5) (remove)

#### Keywords

- Optimization (5) (remove)

#### Faculty / Organisational entity

- Fachbereich Mathematik (5) (remove)

The work consists of two parts.
In the first part an optimization problem of structures of linear elastic material with contact modeled by Robin-type boundary conditions is considered. The structures model textile-like materials and possess certain quasiperiodicity properties. The homogenization method is used to represent the structures by homogeneous elastic bodies and is essential for formulations of the effective stress and Poisson's ratio optimization problems. At the micro-level, the classical one-dimensional Euler-Bernoulli beam model extended with jump conditions at contact interfaces is used. The stress optimization problem is of a PDE-constrained optimization type, and the adjoint approach is exploited. Several numerical results are provided.
In the second part a non-linear model for simulation of textiles is proposed. The yarns are modeled by hyperelastic law and have no bending stiffness. The friction is modeled by the Capstan equation. The model is formulated as a problem with the rate-independent dissipation, and the basic continuity and convexity properties are investigated. The part ends with numerical experiments and a comparison of the results to a real measurement.

This thesis deals with the solution of special problems arising in financial engineering or financial mathematics. The main focus lies on commodity indices. Chapter 1 addresses the important issue for the financial engineering practice of developing well-suited models for certain assets (here: commodity indices). Descriptive analysis of the Dow Jones-UBS commodity index compared to the Standard & Poor 500 stock index provides us with first insights of some features of the corresponding distributions. Statistical tests of normality and mean reversion then helps us in setting up a model for commodity indices. Additionally, chapter 1 encompasses a thorough introduction to commodity investment, history of commodities trading and the most important derivatives, namely futures and European options on futures. Chapter 2 proposes a model for commodity indices and derives fair prices for the most important derivatives in the commodity markets. It is a Heston model supplemented with a stochastic convenience yield. The Heston model belongs to the model class of stochastic volatility models and is currently widely used in stock markets. For the application in the commodity markets the stochastic convenience yield is included in the drift of the instantaneous spot return process. Motivated by the results of chapter 1 it seems reasonable to model the convenience yield by a mean reverting Ornstein-Uhlenbeck process. Since trading desks only apply and consider models with closed form solutions for options I derive such formulas for commodity futures by solving the corresponding partial differential equation. Additionally, semi-closed form formulas for European options on futures are determined. The Cauchy problem with respect to these options is more challenging than the first one. A solution can be provided. Unlike equities, which typically entitle the holder to a continuing stake in a corporation, commodity futures contracts normally specify a certain date for the delivery of the underlying physical commodity. In order to avoid the delivery process and maintain a futures position, nearby contracts must be sold and contracts that have not yet reached the delivery period must be purchased (so called rolling). Optimal trading days for selling and buying futures are determined by applying statistical tests for stochastic dominance. Besides the optimization of the rolling procedure for commodity futures we dedicate ourselves in chapter 3 with the optimization of the weightings of the commodity futures that make up the index. To this end, I apply the Markowitz approach or mean-variance optimization. The mean-variance optimization penalizes up-side and down-side risk equally, whereas most investors do not mind up-side risk. To overcome this, I consider in the next step other risk measures, namely Value-at-Risk and Conditional Value-at-Risk. The Conditional Value-at-Risk is generalized to discontinuous cumulative distribution functions of the loss. For continuous loss distributions, the Conditional Value-at-Risk at a given confidence level is defined as the expected loss exceeding the Value-at-Risk. Loss distributions associated with finite sampling or scenario modeling are, however, discontinuous. Various risk measures involving discontinuous loss distributions shall be introduced and compared. I then apply the theoretical results to the field of portfolio optimization with commodity indices. Furthermore, I uncover graphically the behavior of these risk measures. For this purpose, I consider the risk measures as a function of the confidence level. Based on a special discrete loss distribution, the graphs demonstrate the different properties of these risk measures. The goal of the first section of chapter 4 is to apply the mathematical concept of excursions for the creation of optimal highly automated or algorithmic trading strategies. The idea is to consider the gain of the strategy and the excursion time it takes to realize the gain. In this section I calculate formulas for the Ornstein-Uhlenbeck process. I show that the corresponding formulas can be calculated quite fast since the only function appearing in the formulas is the so called imaginary error function. This function is already implemented in many programs, such as in Maple. My main contribution of this topic is the optimization of the trading strategy for Ornstein-Uhlenbeck processes via the Banach fixed-point theorem. The second section of chapter 4 deals with statistical arbitrage strategies, a long horizon trading opportunity that generates a riskless profit. The results of this section provide an investor with a tool to investigate empirically if some strategies (for example momentum strategies) constitute statistical arbitrage opportunities or not.

In the thesis the author presents a mathematical model which describes the behaviour of the acoustical pressure (sound), produced by a bass loudspeaker. The underlying physical propagation of sound is described by the non--linear isentropic Euler system in a Lagrangian description. This system is expanded via asymptotical analysis up to third order in the displacement of the membrane of the loudspeaker. The differential equations which describe the behaviour of the key note and the first order harmonic are compared to classical results. The boundary conditions, which are derived up to third order, are based on the principle that the small control volume sticks to the boundary and is allowed to move only along it. Using classical results of the theory of elliptic partial differential equations, the author shows that under appropriate conditions on the input data the appropriate mathematical problems admit, by the Fredholm alternative, unique solutions. Moreover, certain regularity results are shown. Further, a novel Wave Based Method is applied to solve appropriate mathematical problems. However, the known theory of the Wave Based Method, which can be found in the literature, so far, allowed to apply WBM only in the cases of convex domains. The author finds the criterion which allows to apply the WBM in the cases of non--convex domains. In the case of 2D problems we represent this criterion as a small proposition. With the aid of this proposition one is able to subdivide arbitrary 2D domains such that the number of subdomains is minimal, WBM may be applied in each subdomain and the geometry is not altered, e.g. via polygonal approximation. Further, the same principles are used in the case of 3D problem. However, the formulation of a similar proposition in cases of 3D problems has still to be done. Next, we show a simple procedure to solve an inhomogeneous Helmholtz equation using WBM. This procedure, however, is rather computationally expensive and can probably be improved. Several examples are also presented. We present the possibility to apply the Wave Based Technique to solve steady--state acoustic problems in the case of an unbounded 3D domain. The main principle of the classical WBM is extended to the case of an external domain. Two numerical examples are also presented. In order to apply the WBM to our problems we subdivide the computational domain into three subdomains. Therefore, on the interfaces certain coupling conditions are defined. The description of the optimization procedure, based on the principles of the shape gradient method and level set method, and the results of the optimization finalize the thesis.

For the last decade, optimization of beam orientations in intensity-modulated radiation therapy (IMRT) has been shown to be successful in improving the treatment plan. Unfortunately, the quality of a set of beam orientations depends heavily on its corresponding beam intensity profiles. Usually, a stochastic selector is used for optimizing beam orientation, and then a single objective inverse treatment planning algorithm is used for the optimization of beam intensity profiles. The overall time needed to solve the inverse planning for every random selection of beam orientations becomes excessive. Recently, considerable improvement has been made in optimizing beam intensity profiles by using multiple objective inverse treatment planning. Such an approach results in a variety of beam intensity profiles for every selection of beam orientations, making the dependence between beam orientations and its intensity profiles less important. This thesis takes advantage of this property to accelerate the optimization process through an approximation of the intensity profiles that are used for multiple selections of beam orientations, saving a considerable amount of calculation time. A dynamic algorithm (DA) and evolutionary algorithm (EA), for beam orientations in IMRT planning will be presented. The DA mimics, automatically, the methods of beam's eye view and observer's view which are recognized in conventional conformal radiation therapy. The EA is based on a dose-volume histogram evaluation function introduced as an attempt to minimize the deviation between the mathematical and clinical optima. To illustrate the efficiency of the algorithms they have been applied to different clinical examples. In comparison to the standard equally spaced beams plans, improvements are reported for both algorithms in all the clinical examples even when, for some cases, fewer beams are used. A smaller number of beams is always desirable without compromising the quality of the treatment plan. It results in a shorter treatment delivery time, which reduces potential errors in terms of patient movements and decreases discomfort.

Traffic flow on road networks has been a continuous source of challenging mathematical problems. Mathematical modelling can provide an understanding of dynamics of traffic flow and hence helpful in organizing the flow through the network. In this dissertation macroscopic models for the traffic flow in road networks are presented. The primary interest is the extension of the existing macroscopic road network models based on partial differential equations (PDE model). In order to overcome the difficulty of high computational costs of PDE model an ODE model has been introduced. In addition, steady state traffic flow model named as RSA model on road networks has been dicsussed. To obtain the optimal flow through the network cost functionals and corresponding optimal control problems are defined. The solution of these optimization problems provides an information of shortest path through the network subject to road conditions. The resulting constrained optimization problem is solved approximately by solving unconstrained problem invovling exact penalty functions and the penalty parameter. A good estimate of the threshold of the penalty parameter is defined. A well defined algorithm for solving a nonlinear, nonconvex equality and bound constrained optimization problem is introduced. The numerical results on the convergence history of the algorithm support the theoretical results. In addition to this, bottleneck situations in the traffic flow have been treated using a domain decomposition method (DDM). In particular this method could be used to solve the scalar conservation laws with the discontinuous flux functions corresponding to other physical problems too. This method is effective even when the flux function presents more than one discontinuity within the same spatial domain. It is found in the numerical results that the DDM is superior to other schemes and demonstrates good shock resolution.