### Refine

#### Document Type

- Doctoral Thesis (6) (remove)

#### Language

- English (6) (remove)

#### Keywords

- Numerische Strömungssimulation (6) (remove)

#### Faculty / Organisational entity

If gradient based derivative algorithms are used to improve industrial products by reducing their target functions, the derivatives need to be exact.
The last percent of possible improvement, like the efficiency of a turbine, can only be gained if the derivatives are consistent with the solution process that is used in the simulation software.
It is problematic that the development of the simulation software is an ongoing process which leads to the use of approximated derivatives.
If a derivative computation is implemented manually, it will be inconsistent after some time if it is not updated.
This thesis presents a generalized approach which differentiates the whole simulation software with Algorithmic Differentiation (AD), and guarantees a correct and consistent derivative computation after each change to the software.
For this purpose, the variable tagging technique is developed.
The technique checks at run-time if all dependencies, which are used by the derivative algorithms, are correct.
Since it is also necessary to check the correctness of the implementation, a theorem is developed which describes how AD derivatives can be compared.
This theorem is used to develop further methods that can detect and correct errors.
All methods are designed such that they can be applied in real world applications and are used within industrial configurations.
The process described above yields consistent and correct derivatives but the efficiency can still be improved.
This is done by deriving new derivative algorithms.
A fixed-point iterator approach, with a consistent derivation, yields all state of the art algorithms and produces two new algorithms.
These two new algorithms include all implementation details and therefore they produce consistent derivative results.
For detecting hot spots in the application, the state of the art techniques are presented and extended.
The data management is changed such that the performance of the software is affected only marginally when quantities, like the number of input and output variables or the memory consumption, are computed for the detection.
The hot spots can be treated with techniques like checkpointing or preaccumulation.
How these techniques change the time and memory consumption is analyzed and it is shown how they need to be used in selected AD tools.
As a last step, the used AD tools are analyzed in more detail.
The major implementation strategies for operator overloading AD tools are presented and implementation improvements for existing AD tools are discussed.\
The discussion focuses on a minimal memory consumption and makes it possible to compare AD tools on a theoretical level.
The new AD tool CoDiPack is based on these findings and its design and concepts are presented.
The improvements and findings in this thesis make it possible, that an automatic, consistent and correct derivative is generated in an efficient way for industrial applications.

This thesis deals with the numerical study of multiscale problems arising in the modelling of processes of the flow of fluid in plain and porous media. Many of these processes, governed by partial differential equations, are relevant in engineering, industry, and environmental studies. The overall task of modelling and simulating the filtration-related multiscale processes becomes interdisciplinary as it employs physics, mathematics and computer programming to reach its aim. Keeping the challenges in mind, the main focus is to overcome the limitations of accuracy, speed and memory and to develop novel efficient numerical algorithms which could, in part or whole, be utilized by those working in the field of porous media. This work has essentially four parts. A single grid basic algorithm and a corresponding parallel algorithm to solve the macroscopic Navier-Stokes-Brinkmann model is discussed. An upscaling subgrid algorithm is derived and numerically tested for the same model. Moving a step further in the line of multiscale methods, an iterative Mutliscale Finite Volume (iMSFV) method is developed for the Stokes-Darcy system. Additionally, the last part of the thesis deals with ways to incorporate changes occurring at different (meso) scale level. The flow equations are coupled with the Convection-Diffusion-Reaction (CDR) equation, which models the transport and capturing of particle concentrations. By employing the numerical method for the coupled flow and transport problem, we understand the interplay between the flow velocity and filtration.

The aim of this thesis was to link Computational Fluid Dynamics (CFD) and Population Balance Modelling (PBM) to gain a combined model for the prediction of counter-current liquid-liquid extraction columns. Parts of the doctoral thesis project were done in close cooperation with the Fraunhofer ITWM. Their in-house CFD code Finite Pointset Method (FPM) was further developed for two-phase simulations and used for the CFD-PBM coupling. The coupling and all simulations were also carried out in the commercial CFD code Fluent in parallel. For the solution methods of the PBM there was a close cooperation with Prof. Attarakih from the Al-Balqa Applied University in Amman, Jordan, who developed a new adaptive method, the Sectional Quadrature Method of Moments (SQMOM). At the beginning of the project, there was a lack of two-phase liquid-liquid CFD simulations and their experimental validation in literature. Therefore, stand-alone CFD simulations without PBM were carried out both in FPM and Fluent to test the predictivity of CFD for stirred liquid-liquid extraction columns. The simulations were validated by Particle Image Velocimetry (PIV) measurements. The two-phase PIV measurements were possible when using an iso-optical system, where the refractive indices of both liquid phases are identical. These investigations were done in segments of two Rotating Disc Contactors with 150mm and 450mm diameter to validate CFD at lab and at industrial scale. CFD results of the aqueous phase velocities, hold-up, droplet raising velocities and turbulent energy dissipation were compared to experimental data. The results show that CFD can predict most phenomena and there was an overall good agreement. In the next steps, different solution methods for the PBM, e.g. the SQMOM and the Quadrature Method of Moments (QMOM) were implemented, varied and tested in Fluent and FPM in a two-fluid model. In addition, different closures for coalescence and breakage were implemented to predict drop size distributions and Sauter mean diameters in the RDC DN150 column. These results show that a prediction of the droplet size distribution is possible, even when no adjustable parameters are used. A combined multi-fluid CFD-PBM model was developed by means of the SQMOM to overcome drawbacks of the two-fluid approach. Benefits of the multi-fluid approach could be shown, but the high computational load was also visible. Therefore, finally, the One Primary One Secondary Particle Method (OPOSPM), which is a very easy and efficient special case of the SQMOM, was introduced in CFD to simulate a full pilot plant column of the RDC DN150. The OPOSPM offers the possibility of a one equation model for the solution of the PBM in CFD. The predicted results for the mean droplet diameter and the dispersed phase hold up agree well with literature data. The results also show that the new CFD-PBM model is very efficient from computational point of view (two times less than the QMOM and five times less than the method of classes). The overall results give rise to the expectation that the coupled CFD-PBM model will lead to a better, faster and more cost-efficient layout of counter-current extraction columns in future.

The goal of this work is the development and investigation of an interdisciplinary and in itself closed hydrodynamic approach to the simulation of dilute and dense granular flow. The definition of “granular flow” is a nontrivial task in itself. We say that it is either the flow of grains in a vacuum or in a fluid. A grain is an observable piece of a certain material, for example stone when we mean the flow of sand. Choosing a hydrodynamic view on granular flow, we treat the granular material as a fluid. A hydrodynamic model is developed, that describes the process of flowing granular material. This is done through a system of partial differential equations and algebraic relations. This system is derived by the kinetic theory of granular gases which is characterized by inelastic collisions extended with approaches from soil mechanics. Solutions to the system have to be obtained to understand the process. The equations are so difficult to solve that an analytical solution is out of reach. So approximate solutions must be obtained. Hence the next step is the choice or development of a numerical algorithm to obtain approximate solutions of the model. Common to every problem in numerical simulation, these two steps do not lead to a result without implementation of the algorithm. Hence the author attempts to present this work in the following frame, to participate in and contribute to the three areas Physics, Mathematics and Software implementation and approach the simulation of granular flow in a combined and interdisciplinary way. This work is structured as follows. A continuum model for granular flow which covers the regime of fast dilute flow as well as slow dense flow up to vanishing velocity is presented in the first chapter. This model is strongly nonlinear in the dependence of viscosity and other coefficients on the hydrodynamic variables and it is singular because some coefficients diverge towards the maximum packing fraction of grains. Hence the second difficulty, the challenging task of numerically obtaining approximate solutions for this model is faced in the second chapter. In the third chapter we aim at the validation of both the model and the numerical algorithm through numerical experiments and investigations and show their application to industrial problems. There we focus intensively on the shear flow experiment from the experimental and analytical work of Bocquet et al. which serves well to demonstrate the algorithm, all boundary conditions involved and provides a setting for analytical studies to compare our results. The fourth chapter rounds up the work with the implementation of both the model and the numerical algorithm in a software framework for the solution of complex rheology problems developed as part of this thesis.

Wetting of a solid surface with liquids is an important parameter in the chemical engineering process such as distillation, absorption and desorption. The degree of wetting in packed columns mainly contributes in the generating of the effective interfacial area and then enhancing of the heat and mass transfer process. In this work the wetting of solid surfaces was studied in real experimental work and virtually through three dimensional CFD simulations using the multiphase flow VOF model implemented in the commercial software FLUENT. That can be used to simulate the stratified flows [1]. The liquid rivulet flow which is a special case of the film flow and mostly found in packed columns has been discussed. Wetting of a solid flat and wavy metal plate with rivulet liquid flow was simulated and experimentally validated. The local rivulet thickness was measured using an optically assisted mechanical sensor using a needle which is moved perpendicular to the plate surface with a step motor and in the other two directions using two micrometers. The measured and simulated rivulet profiles were compared to some selected theoretical models founded in the literature such as Duffy & Muffatt [2], Towell & Rothfeld [3] and Al-Khalil et al. [4]. The velocity field in a cross section of a rivulet flow and the non-dimensional maximum and mean velocity values for the vertical flat plate was also compared with models from Al-Khalil et al. [4] and Allen & Biggin [5]. Few CFD simulations for the wavy plate case were compared to the experimental findings, and the Towel model for a flat plate [3]. In the second stage of this work 3-D CFD simulations and experimental study has been performed for wetting of a structured packing element and packing sheet consisting of three elements from the type Rombopak 4M, which is a product of the company Kuhni, Switzerland. The hydrodynamics parameters of a packed column, e. i. the degree of wetting, the interfacial area and liquid hold-up have been depicted from the CFD simulations for different liquid systems and liquid loads. Flow patterns on the degree of wetting have been compared to that of the experiments, where the experimental values for the degree of wetting were estimated from the snap shooting of the flow on the packing sheet in a test rig. A new model to describe the hydrodynamics of packed columns equipped with Rombopak 4M was derived with help of the CFD–simulation results. The model predicts the degree of wetting, the specific or interfacial area and liquid hold-up at different flow conditions. This model was compared to Billet & Schultes [6], the SRP model Rocha et al. [7-9], to Shi & Mersmann [10] and others. Since the pressure drop is one of the most important parameter in packed columns especially for vacuum operating columns, few CFD simulations were performed to estimate the dry pressure drop in a structured and flat packing element and were compared to the experimental results. It was found a good agreement from one side, between the experimental and the CFD simulation results, and from the other side between the simulations and theoretical models for the rivulet flow on an inclined plate. The flow patterns and liquid spreading behaviour on the packing element agrees well with the experimental results. The VOF (Volume of Fluid) was found very sensitive to different liquid properties and can be used in optimization of the packing geometries and revealing critical details of wetting and film flow. An extension of this work to perform CFD simulations for the flow inside a block of the packing to get a detailed picture about the interaction between the liquid and packing surfaces is recommended as further perspective.

Extensions of Shallow Water Equations The subject of the thesis of Michael Hilden is the simulation of floods in urban areas. In case of strong rain events, water can flow out of the overloaded sewer system onto the street and damage the connected houses. The dependable simulation of water flow out of a manhole ("manhole") and over a curb ("curb") is crucial for the assessment of the flood risks. The incompressible 3D-Navier-Stokes Equations (3D-NSE) describe the free surface flow of water accurately, but require expensive computations. Therefore, the less CPU-intensive (factor ca.1/100) Shallow Water Equations (SWE) are usually applied in hydrology. They can be derived from 3D-NSE under the assumption of a hydrostatic pressure distribution via depth-integration and are applied successfully in particular to simulations of river flow processes. The SWE-computations of the flow problems "manhole" and "curb" differ to the 3D-NSE results. Thus, SWE need to be extended appropriately to give reliable forecasts for flood risks in urban areas within reduced computational efforts. These extensions are developed based on physical considerations not considered in the classical SWE. In one extension, a vortex layer on the ground is separated from the main flow representing its new bottom. In a further extension, the hydrostatic pressure distribution is corrected by additional terms due to approximations of vertical velocities and their interaction with the flow. These extensions increase the quality of the SWE results for these flow problems up to the quality level of the NSE results within a moderate increase of the CPU efforts.