### Refine

#### Document Type

- Doctoral Thesis (3) (remove)

#### Language

- English (3) (remove)

#### Keywords

- Portfolio Optimization (3) (remove)

In this thesis, we deal with the worst-case portfolio optimization problem occuring in discrete-time markets.
First, we consider the discrete-time market model in the presence of crash threats. We construct the discrete worst-case optimal portfolio strategy by the indifference principle in the case of the logarithmic utility. After that we extend this problem to general utility functions and derive the discrete worst-case optimal portfolio processes, which are characterized by a dynamic programming equation. Furthermore, the convergence of the discrete worst-case optimal portfolio processes are investigated when we deal with the explicit utility functions.
In order to further study the relation of the worst-case optimal value function in discrete-time models to continuous-time models we establish the finite-difference approach. By deriving the discrete HJB equation we verify the worst-case optimal value function in discrete-time models, which satisfies a system of dynamic programming inequalities. With increasing degree of fineness of the time discretization, the convergence of the worst-case value function in discrete-time models to that in continuous-time models are proved by using a viscosity solution method.

In this thesis we consider the problem of maximizing the growth rate with proportional and fixed costs in a framework with one bond and one stock, which is modeled as a jump diffusion with compound Poisson jumps. Following the approach from [1], we prove that in this framework it is optimal for an investor to follow a CB-strategy. The boundaries depend only on the parameters of the underlying stock and bond. Now it is natural to ask for the investor who follows a CB-strategy which is given by the stopping times \((\tau_i)_{i\in\mathbb N}\) and impulses \((\eta_i)_{i\in\mathbb N}\) how often he has to rebalance. In other words we want to obtain the limit of the inter trading times
\[
\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{i=1}^n(\tau_{i+1}-\tau_{i}).
\]
We are able to obtain this limit which is given by the expected first exit time of the risky fraction process from some interval under the invariant measure of the Markov chain \((\eta_i)_{i\in\mathbb N}\) using the Ergodic Theorem from von Neumann and Birkhoff. In general, it is difficult to obtain the expectation of the first exit time for the process with jumps. Because of the jump part, when the process crosses the boundaries of the interval an overshoot may occur which makes it difficult to obtain the distribution. Nevertheless we can obtain the first exit time if the process has only negative jumps using scale functions. The main difficulty of this approach is that the scale functions are known only up to their Laplace transforms. In [2] and [3] the closed-form expression for the scale function of the Levy process with phase-type distributed jumps is obtained. Phase-type distributions build a rich class of positive-valued distributions: the exponential, hyperexponential, Erlang, hyper-Erlang and Coxian distributions. Since the scale function is given as a function in a closed form we can differentiate to obtain the expected first exit time using the fluctuation identities explicitly.
[1] Irle, A. and Sass,J.: Optimal portfolio policies under fixed and proportional transaction costs, Advances in Applied Probability 38, 916-942.
[2] Egami, M., Yamazaki, K.: On scale functions of spectrally negative Levy processes with phase-type jumps, working paper, July 3.
[3]Egami, M., Yamazaki, K.: Precautionary measures for credit risk management in jump models, working paper, June 17.

One crucial assumption of continuous financial mathematics is that the portfolio can be rebalanced continuously and that there are no transaction costs. In reality, this of course does not work. On the one hand, continuous rebalancing is impossible, on the other hand, each transaction causes costs which have to be subtracted from the wealth. Therefore, we focus on trading strategies which are based on discrete rebalancing - in random or equidistant times - and where transaction costs are considered. These strategies are considered for various utility functions and are compared with the optimal ones of continuous trading.