### Refine

#### Document Type

- Doctoral Thesis (2) (remove)

#### Language

- English (2) (remove)

#### Keywords

- Modulraum (2) (remove)

In this dissertation we consider complex, projective hypersurfaces with many isolated singularities. The leading questions concern the maximal number of prescribed singularities of such hypersurfaces in a given linear system, and geometric properties of the equisingular stratum. In the first part a systematic introduction to the theory of equianalytic families of hypersurfaces is given. Furthermore, the patchworking method for constructing hypersurfaces with singularities of prescribed types is described. In the second part we present new existence results for hypersurfaces with many singularities. Using the patchworking method, we show asymptotically proper results for hypersurfaces in P^n with singularities of corank less than two. In the case of simple singularities, the results are even asymptotically optimal. These statements improve all previous general existence results for hypersurfaces with these singularities. Moreover, the results are also transferred to hypersurfaces defined over the real numbers. The last part of the dissertation deals with the Castelnuovo function for studying the cohomology of ideal sheaves of zero-dimensional schemes. Parts of the theory of this function for schemes in P^2 are generalized to the case of schemes on general surfaces in P^3. As an application we show an H^1-vanishing theorem for such schemes.

In this thesis the combinatorial framework of toric geometry is extended to equivariant sheaves over toric varieties. The central questions are how to extract combinatorial information from the so developed description and whether equivariant sheaves can, like toric varieties, be considered as purely combinatorial objects. The thesis consists of three main parts. In the first part, by systematically extending the framework of toric geometry, a formalism is developed for describing equivariant sheaves by certain configurations of vector spaces. In the second part, homological properties of a certain class of equivariant sheaves are investigated, namely that of reflexive equivariant sheaves. Several kinds of resolutions for these sheaves are constructed which depend only on the configuration of their associated vector spaces. Thus a partially positive answer to the question of combinatorial representability is given. As a particular result, a new way for computing minimal resolutions for Z^n - graded modules over polynomial rings is obtained. In the third part a complete classification of the simplest nontrivial sheaves, equivariant vector bundles of rank two over smooth toric surfaces, is given. A combinatorial characterization is given and parameter spaces (moduli spaces) are constructed which depend only on this characterization. In appendices a outlook on equivariant sheaves and the relation of Chern classes to their combinatorial classification is given, particularly focussing on the case of the projective plane. A classification of equivariant vector bundles of rank three over the projective plane is given.