### Refine

#### Year of publication

- 1999 (76) (remove)

#### Document Type

- Preprint (51)
- Article (16)
- Course Material (6)
- Doctoral Thesis (1)
- Master's Thesis (1)
- Periodical Part (1)

#### Keywords

- Praktikum (6)
- Brillouin light scattering spectroscopy (2)
- Wannier-Stark systems (2)
- entropy (2)
- localization (2)
- quantum mechanics (2)
- resonances (2)
- spin wave quantization (2)
- 90° orientation (1)
- Brillouin light scattering (1)

#### Faculty / Organisational entity

- Fachbereich Physik (76) (remove)

Abstract: We describe a general technique that allows for an ideal transfer of quantum correlations between light fields and metastable states of matter. The technique is based on trapping quantum states of photons in coherently driven atomic media, in which the group velocity is adiabatically reduced to zero. We discuss possible applications such as quantum state memories, generation of squeezed atomic states, preparation of entangled atomic ensembles and quantum information processing.

Abstract: We show that it is possible to "store" quantum states of single-photon fields by mapping them onto collective meta-stable states of an optically dense, coherently driven medium inside an optical resonator. An adiabatic technique is suggested which allows to transfer non-classical correlations from traveling-wave single-photon wave-packets into atomic states and vise versa with nearly 100% efficiency. In contrast to previous approaches involving single atoms, the present technique does not require the strong coupling regime corresponding to high-Q micro-cavities. Instead, intracavity Electromagnetically Induced Transparency is used to achieve a strong coupling between the cavity mode and the atoms.

Mirrorless oscillation based on resonantly enhanced 4-wave mixing: All-order analytic solutions
(1999)

Abstract: The phase transition to mirrorless oscillation in resonantly enhanced four-wave mixing in double-A systems are studied analytically for the ideal case of infinite lifetimes of ground-state coherences. The stationary susceptibilities are obtained in all orders of the generated fields and analytic solutions of the coupled nonlinear differential equations for the field amplitudes are derived and discussed.

Abstract: We utilize the generation of large atomic coherence to enhance the resonant nonlinear magneto-optic effect by several orders of magnitude, thereby eliminating power broadening and improving the fundamental signal-to-noise ratio. A proof-of-principle experiment is carried out in a dense vapor of Rb atoms. Detailed numerical calculations are in good agreement with the experimental results. Applications such as optical magnetometry or the search for violations of parity and time reversal symmetry are feasible.

Abstract: Spontaneous emission and Lamb shift of atoms in absorbing dielectrics are discussed. A Green's-function approach is used based on the multipolar interaction Hamiltonian of a collection of atomic dipoles with the quantised radiation field. The rate of decay and level shifts are determined by the retarded Green's-function of the interacting electric displacement field, which is calculated from a Dyson equation describing multiple scattering. The positions of the atomic dipoles forming the dielectrics are assumed to be uncorrelated and a continuum approximation is used. The associated unphysical interactions between different atoms at the same location is eliminated by removing the point-interaction term from the free-space Green's-function (local field correction). For the case of an atom in a purely dispersive medium the spontaneous emission rate is altered by the well-known Lorentz local-field factor. In the presence of absorption a result different from previously suggested expressions is found and nearest-neighbour interactions are shown to be important.

Abstract: We aim to establish a link between path-integral formulations of quantum and classical field theories via diagram expansions. This link should result in an independent constructive characterisation of the measure in Feynman path integrals in terms of a stochastic differential equation (SDE) and also in the possibility of applying methods of quantum field theory to classical stochastic problems. As a first step we derive in the present paper a formal solution to an arbitrary c-number SDE in a form which coincides with that of Wick's theorem for interacting bosonic quantum fields. We show that the choice of stochastic calculus in the SDE may be regarded as a result of regularisation, which in turn removes ultraviolet divergences from the corresponding diagram series.

We show that the solution to an arbitrary c-number stochastic differential equation (SDE) can be represented as a diagram series. Both the diagram rules and the properties of the graphical elements reflect causality properties of the SDE and this series is therefore called a causal diagram series. We also discuss the converse problem, i.e. how to construct an SDE of which a formal solution is a given causal diagram series. This then allows for a nonperturbative summation of the diagram series by solving this SDE, numerically or analytically.

Abstract: We propose a simple method for measuring the populations and the relative phase in a coherent superposition of two atomic states. The method is based on coupling the two states to a third common (excited) state by means of two laser pulses, and measuring the total fluorescence from the third state for several choices of the excitation pulses.

Abstract: We present experimental and theoretical results of a detailed study of laser-induced continuum structures (LICS) in the photoionization continuum of helium out of the metastable state 2s^1 S_0. The continuum dressing with a 1064 nm laser, couples the same region of the continuum to the 4s^1 S_0 state. The experimental data, presented for a range of intensities, show pronounced ionization suppression (by asmuch as 70% with respect to the far-from-resonance value) as well as enhancement, in a Beutler-Fano resonance profile. This ionization suppression is a clear indication of population trapping mediated by coupling to a contiuum. We present experimental results demonstrating the effect of pulse delay upon the LICS, and for the behavior of LICS for both weak and strong probe pulses. Simulations based upon numerical solution of the Schrödinger equation model the experimental results. The atomic parameters (Rabi frequencies and Stark shifts) are calculated using a simple model-potential method for the computation of the needed wavefunctions. The simulations of the LICS profiles are in excellent agreement with experiment. We also present an analytic formulation of pulsed LICS. We show that in the case of a probe pulse shorter than the dressing one the LICS profile is the convolution of the power spectra of the probe pulse with the usual Fano profile of stationary LICS. We discuss some consequences of deviation from steady-state theory.

We present results from a study of the coherence properties of a system involving three discrete states coupled to each other by two-photon processes via a common continuum. This tripod linkage is an extension of the standard laser-induced continuum structure (LICS) which involves two discrete states and two lasers. We show that in the tripod scheme, there exist two population trapping conditions; in some cases these conditions are easier to satisfy than the single trapping condition in two-state LICS. Depending on the pulse timing, various effects can be observed. We derive some basic properties of the tripod scheme, such as the solution for coincident pulses, the behaviour of the system in the adiabatic limit for delayed pulses, the conditions for no ionization and for maximal ionization, and the optimal conditions for population transfer between the discrete states via the continuum. In the case when one of the discrete states is strongly coupled to the continuum, the population dynamics reduces to a standard two-state LICS problem (involving the other two states) with modified parameters; this provides the opportunity to customize the parameters of a given two-state LICS system.