### Refine

#### Year of publication

- 1999 (76) (remove)

#### Document Type

- Preprint (51)
- Article (16)
- Course Material (6)
- Doctoral Thesis (1)
- Master's Thesis (1)
- Periodical Part (1)

#### Keywords

- Praktikum (6)
- Brillouin light scattering spectroscopy (2)
- Wannier-Stark systems (2)
- entropy (2)
- localization (2)
- quantum mechanics (2)
- resonances (2)
- spin wave quantization (2)
- 90° orientation (1)
- Brillouin light scattering (1)

#### Faculty / Organisational entity

- Fachbereich Physik (76) (remove)

We present an entropy concept measuring quantum localization in dynamical systems based on time averaged probability densities. The suggested entropy concept is a generalization of a recently introduced [PRL 75, 326 (1995)] phase-space entropy to any representation chosen according to the system and the physical question under consideration. In this paper we inspect the main characteristics of the entropy and the relation to other measures of localization. In particular the classical correspondence is discussed and the statistical properties are evaluated within the framework of random vector theory. In this way we show that the suggested entropy is a suitable method to detect quantum localization phenomena in dynamical systems.

The Filter-Diagonalization Method is applied to time periodic Hamiltonians and used to find selectively the regular and chaotic quasienergies of a driven 2D rotor. The use of N cross-correlation probability amplitudes enables a selective calculation of the quasienergies from short time propagation to the time T (N). Compared to the propagation time T (1) which is required for resolving the quasienergy spectrum with the same accuracy from auto-correlation calculations, the cross-correlation time T (N) is shorter by the factor N , that is T (1) = N T (N).

The global dynamical properties of a quantum system can be conveniently visualized in phase space by means of a quantum phase space entropy in analogy to a Poincare section in classical dynamics for two-dimensional time independent systems. Numerical results for the Pullen Edmonds systems demonstrate the properties of the method for systems with mixed chaotic and regular dynamics.

A novel method is presented which allows a fast computation of complex energy resonance states in Stark systems, i.e. systems in a homogeneous field. The technique is based on the truncation of a shift-operator in momentum space. Numerical results for space periodic and non-periodic systems illustrate the extreme simplicity of the method.

Magnetic anisotropies of MBE-grown fcc Co(110)-films on Cu(110) single crystal substrates have been determined by using Brillouin light scattering(BLS) and have been correlated with the structural properties determined by low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). Three regimes of film growth and associated anisotropy behavior are identified: coherent growth in the Co film thickness regime of up to 13 Å, in-plane anisotropic strain relaxation between 13 Å and about 50 Å and inplane isotropic strain relaxation above 50 Å. The structural origin of the transition between anisotropic and isotropic strain relaxation was studied using STM. In the regime of anisotropic strain relaxation long Co stripes with a preferential [ 110 ]-orientation are observed, which in the isotropic strain relaxation regime are interrupted in the perpendicular in-plane direction to form isotropic islands. In the Co film thickness regime below 50 Å an unexpected suppression of the magnetocrystalline anisotropy contribution is observed. A model calculation based on a crystal field formalism and discussed within the context of band theory, which explicitly takes tetragonal misfit strains into account, reproduces the experimentally observed anomalies despite the fact that the thick Co films are quite rough.

Quantum Chaos
(1999)

The study of dynamical quantum systems, which are classically chaotic, and the search for quantum manifestations of classical chaos, require large scale numerical computations. Special numerical techniques developed and applied in such studies are discussed: The numerical solution of the time-dependent Schr-odinger equation, the construction of quantum phase space densities, quantum dynamics in phase space, the use of phase space entropies for characterizing localization phenomena, etc. As an illustration, the dynamics of a driven one-dimensional anharmonic oscillator is studied, both classically and quantum mechanically. In addition, spectral properties and chaotic tunneling are addressed.

Absract: We report on measurements of the two-dimensional intensity distribtion of linear and non-linear spin wave excitations in a LuBiFeO film. The spin wave intensity was detected with a high-resolution Brillouinlight scatteringspectroscopy setup. The observed snake-like structure of the spin wave intensity distribution is understood as a mode beating between modes with different lateral spin wave intensity distributions. The theoretical treatment of the linear regime is performed analytically, whereas the propagation of non-linear spin waves is simulated by a numerical solution of a non-linear Schrödinger equation with suitable boundary conditions.

The paper studies metastable states of a Bloch electron in the presence of external ac and dc fields. Provided resonance condition between period of the driving frequency and the Bloch period, the complex quasienergies are numerically calculated for two qualitatively different regimes (quasiregular and chaotic) of the system dynamics. For the chaotic regime an effect of quantum stabilization, which suppresses the classical decay mechanism, is found. This effect is demonstrated to be a kind of quantum interference phenomenon sensitive to the resonance condition.

In this paper we present a renormalizability proof for spontaneously broken SU (2) gauge theory. It is based on Flow Equations, i.e. on the Wilson renormalization group adapted to perturbation theory. The power counting part of the proof, which is conceptually and technically simple, follows the same lines as that for any other renormalizable theory. The main difficulty stems from the fact that the regularization violates gauge invariance. We prove that there exists a class of renormalization conditions such that the renormalized Green functions satisfy the Slavnov-Taylor identities of SU (2) Yang-Mills theory on which the gauge invariance of the renormalized theory is based.

A new method for calculating Stark resonances is presented and applied for illustration to the simple case of a one-particle, one-dimensional model Hamiltonian. The method is applicable for weak and strong dc fields. The only need, also for the case of many particles in multi-dimensional space, are either the short time evolution matrix elements or the eigenvalues and Fourier components of the eigenfunctions of the field-free Hamiltonian.