### Refine

#### Year of publication

- 1992 (55) (remove)

#### Document Type

- Report (29)
- Preprint (20)
- Master's Thesis (3)
- Article (2)
- Diploma Thesis (1)

#### Keywords

- Case-Based Reasoning (2)
- Fallbasiertes Schliessen (2)
- AG-RESY (1)
- CODET (1)
- Case-Based Planning (1)
- Fallbasiertes Planen (1)
- Fallbasiertes Schließen (1)
- PARO (1)
- SKALP (1)
- mathematical modeling (1)

#### Faculty / Organisational entity

- Fachbereich Mathematik (41)
- Fachbereich Informatik (13)
- Fachbereich Physik (1)

We are concerned with a parameter choice strategy for the Tikhonov regularization \((\tilde{A}+\alpha I)\tilde{x}\) = T* \(\tilde{y}\)+ w where \(\tilde{A}\) is a (not necessarily selfadjoint) approximation of T*T and T*\(\tilde y\)+ w is a perturbed form of the (not exactly computed) term T*y. We give conditions for convergence and optimal convergence rates.

Let \(a_i i:= 1,\dots,m.\) be an i.i.d. sequence taking values in \(\mathbb{R}^n\). Whose convex hull is interpreted as a stochastic polyhedron \(P\). For a special class of random variables which decompose additively relative to their boundary simplices, eg. the volume of \(P\), integral representations of their first two moments are given which lead to asymptotic estimations of variances for special "additive variables" known from stochastic approximation theory in case of rotationally symmetric distributions.

Let \(a_1, i:=1,\dots,m\), be an i.i.d. sequence taking values in \(\mathbb{R}^n\), whose convex hull is interpreted as a stochastic polyhedron \(P\). For a special class of random variables, which decompose additively relative to their boundary simplices, eg. the volume of \(P\), simple integral representations of its first two moments are given in case of rotationally symmetric distributions in order to facilitate estimations of variances or to quantify large deviations from the mean.

We show that the different module structures of GF(\(q^m\)) arising from the intermediate fields of GF(\(q^m\))and GF(q) can be studied simultaneously with the help of some basic properties of cyclotomic polynomials. We use this ideas to give a detailed and constructive proof of the most difficult part of a Theorem of D. Blessenohl and K. Johnsen (1986), i.e., the existence of elements v in GF(\(q^m\)) over GF(q) which generate normal bases over any intermediate field of GF(\(q^m\)) and GF(q), provided that m is a prime power. Such elements are called completely free in GF(\(q^m\)) over GF(q). We develop a recursive formula for the number of completely free elements in GF(\(q^m\)) over GF(q) in the case where m is a prime power. Some of the results can be generalized to finite cyclic Galois extensions
over arbitrary fields.

A Remark on Primes of the Form \(2^{3n}a + 2^{2n}b+2^nc+1\). Necessary and sufficient conditions for the numbers in the title to be prime are given. The tests are well suited for practical purposes.

We present a generalization of Proth's theorem for testing certain large integers for primality. The use of Gauß sums leads to a much simpler approach to these primality criteria as compared to the earlier tests. The running time of the algorithms is bounded by a polynomial in the length of the input string. The applicability of our algorithms is linked to certain diophantine approximations of \(l\)-adic roots of unity.