Refine
Year of publication
- 2007 (9) (remove)
Keywords
- Cyclopeptide (2)
- Fluoreszenz (2)
- cyclopeptides (2)
- Acrylamid (1)
- Alterung (1)
- Anionenerkennung (1)
- Anionenrezeptoren (1)
- Anthocyane (1)
- Apoptosis (1)
- Aroniabeere (1)
Faculty / Organisational entity
- Fachbereich Chemie (9) (remove)
Ziel der vorliegenden Arbeit war die Synthese und Charakterisierung fluoreszenzmarkierter Pyrrolin-N-oxide sowie von Stilbennitronen. Diese Verbindungen sind aufgrund ihrer chemischen Struktur zum Abfangen kurzlebiger Radikale befähigt, wobei sie selbst zu einem langlebigen Radikal-Addukt reagieren. Diese Methode ist unter dem Namen „Spin-Trapping“ bekannt und wird bevorzugt zum Nachweis reaktiver Sauerstoffspezies in biologischen Systemen eingesetzt. Zu diesem Zweck wurde zunächst die Synthese der Spin-Trap EMPO etabliert und versucht, diese durch Umesterung mit einem Fluoreszenzfarbstoff zu markieren. Da dieser Syntheseweg erfolglos blieb, wurden die neuen Spin-Trap-Verbindungen BocAEMPO, AEMPO, BocEAEMPO und EAEMPO synthetisiert. Versuche zur Umsetzung dieser Verbindungen mit einer Reihe von Fluoreszenzfarbstoffen verliefen jedoch ebenfalls ohne Erfolg. Ursache hierfür ist die ausgeprägte Reaktivität der zum Spin-Trapping benötigten Nitron-Gruppe. Die hierzu benötigten NBD- und BODIPY-Farbstoffderivate wurden ebenfalls selbst synthetisiert. Weiterhin wurden Versuche zur Direktsynthese einer fluoreszenzmarkierten Spin-Trap unternommen. Ziel war hierbei, vor dem Erzeugen der Nitron-Gruppe bereits ein Fluorophor im Molekül einzubauen. Diese Versuche scheiterten jedoch an der Empfindlichkeit der verwendeten Farbstoffe. In einem Fall konnte zwar ein BODIPY-System erfolgreich unter den Bedingungen der Nitronsynthese erhalten werden, jedoch war das erhaltene Produkt nicht eindeutig charakterisierbar. Weiterhin wurde die Synthese von DEPMPO etabliert und erste Versuche zur Modifikation dieser Spin-Trap unternommen. Die neu synthetisierten Spin-Traps wurden mit sechs verschiedenen Radikalen zu ihren Addukten umgesetzt und durch ESR-Spektroskopie charakterisiert. Aus den durchgeführten Kinetikmessungen wurden die Zerfallskonstanten und die Halbwertszeiten der Spin-Addukte bestimmt. In einem weiteren Teil dieser Arbeit wurden Stilbennitrone hergestellt. Hierbei wurde die Synthese von Stilbenaldehyd-Derivaten mittels Heck-Reaktionen etabliert und im Anschluss drei verschiedenen Stilbennitrone synthetisiert. Diese wurden sowohl ESR- als auch UV- und Fluoreszenz-spektroskopisch charakterisiert. Mit der Verbindung Nitrostilbennitron wurden erste Versuche zum Fluoreszenzquenching und zur Inkubation von COS7-Zellen unternommen. Bei den Quenchingversuchen konnten die erwarteten Effekte bei der Reaktion mit OH-Radikalen gemessen werden. Die Inkubation der COS7-Zellen verlief ebenfalls erfolgreich, wobei hier jedoch aufgrund technischer Limitierungen auf Seiten der verfügbaren Mikroskope keine Aussagen zur Spezifität der erreichten Färbung getroffen werden können.
Die vorliegende Arbeit beschreibt die Synthese neuartiger, substituierter N,N,N-tridentater Liganden auf der Basis der Stammverbindungen 2,6-Di(pyrazol-3-yl)pyridin und 2,6-Di(pyrimidin-4-yl)pyridin. Die katalytische Aktivität von Dichloroeisen- und Dichlorocobaltkomplexen dieser Liganden in der Olefinpolymerisation wurde getestet. Einen weiteren Schwerpunkt stellte die Synthese von Rutheniumkomplexen auf der Basis dieser neuartigen Liganden und deren Anwendbarkeit in homogen katalysierten Oxidations- und Epoxidationsreaktionen sowie der Hydrovinylierungsreaktion dar. Die Möglichkeit den Liganden 2,6-Di(pyrazol-3-yl)pyridin leicht chemisch modifizieren zu können, wurde genutzt, um Eigenschaften (z. B. die Löslichkeit in organischen Lösungsmitteln) des Liganden und der sich ableitenden Komplexe zu beeinflussen. Zur regioselektiven N-Funktionalisierung der Pyrazolringe wurden nucleophile Substitutionsreaktionen genutzt. Dieser einfache Zugangsweg zu substituierten 2,6-Di(pyrazol-3-yl)pyridinen wurde ebenso dazu verwendet, um funktionelle Gruppen, die eine Substraterkennung über Wasserstoffbrückenbindungen und eine Komplexierung von Lewis-Säuren ermöglichen sollte, in die Peripherie dieser Liganden anzubinden.
Die vorliegende Arbeit befasst sich mit Anionenrezeptoren aus einfach und zweifach verbrückten Bis(cyclopeptiden). Die Cyclohexapeptiduntereinheiten bestehen dabei aus einer alternierenden Sequenz aus L-Prolin und 6-Aminopicolinsäure. Im ersten Teil dieser Arbeit wurden eine Reihe neuer einfach verbrückter Bis(cyclopeptide) synthetisiert und mit dem bis jetzt einzigen bekannten verbrückten Bis(cyclopeptid) dieser Art verglichen. Bei diesen Untersuchungen konnte gezeigt werden, dass die neu dargestellten Bis(cyclopeptide) anorganische Anionen auf die gleiche Art wie das bereits bekannte binden. Dabei wird das Anion kooperativ durch die Cyclopeptiduntereinheiten über sechs Wasserstoffbrücken koordiniert. Mittels isothermer Titrationskalorimetrie (ITC) wurden die thermodynamischen Parameter der Komplexbildung der Anionen mit den Bis(cyclopeptiden) bestimmt. Es stellte sich heraus, dass die Linkerstruktur einen großen Einfluss auf die thermodynamischen Parameter der Komplexbildung besitzt, wenn auch die resultierenden Bindungskonstanten der Rezeptoren für ein Anion in einer ähnlichen Größenordung liegen. Mit einem log Ka von etwa 6,0 konnte in dieser Untersuchung einer der besten neutralen Sulfatrezeptoren in wässrigen Lösungsmitteln identifiziert werden. Im zweiten Teil dieser Arbeit wurde eine Strategie erarbeitet, die den Zugang zu zweifach verbrückten Bis(cyclopeptiden) ermöglicht. Dabei wurde die dynamische kovalente Chemie (DCC) bei der Synthese verwendet. Als reversible Reaktion wurde der Disulfidaustausch eingesetzt. Bei der Synthese wurde ein entsprechend dithiofunktionalisiertes Bis(cyclopeptid) in Anwesenheit verschiedener Dithiole als Linker und eines Templats umgesetzt. Dabei bildete sich die thermodynamisch stabilste Bis(cyclopeptid)-Linker Struktur aus. Es konnten im Laufe dieser Untersuchungen bereits erste Strukturen identifiziert werden, die selektiv für Anionen der Größe und Geometrie von Sulfat und Iodid waren. Dabei wurden nur Bis(cyclopeptide) gebildet, die einen Linker pro Brücke besaßen und es kam nicht zum Einbau verschiedener Linker in ein Bis(cyclopeptid). Im letzten Teil dieser Arbeit wurde überprüft, ob die Entwicklung eines Sensors auf Basis von einfach verbrückten Bis(cycloeptiden) möglich ist. Es konnte gezeigt werden, dass der Einsatz von Bis(cyclopeptiden) als Ionophore in ionenselektiven Elektroden (ISEs) kein viel versprechender Weg zur Erzeugung eines Sensors ist. Durch die Einführung eines fluoreszenzaktiven Linker konnte aber Bis(cyclopeptid) synthetisiert werden, dass in wässrigen Lösungen einen hochselektiven Fluoreszenzsensor für Sulfat darstellt. Dabei kommt es in Anwesenheit von Sulfat, selbst in Anwesenheit von 100 Äquivalenten Natriumchlorid, zu einer Löschung der Fluoreszenz. Keins der anderen acht untersuchten Anionen hatte einen ähnlichen Effekt auf das Fluoreszenzspektrum. Durch theoretische DFT Rechnungen konnte die Löschung der Fluoreszenz rationalisiert werden. Damit eröffnen sich erste praktische Anwendungen für die Bis(cyclopetide).
Anionenrezeptoren aus Cyclopeptiden mit 6-Aminopicolinsäure- und substituierten Prolinuntereinheiten
(2007)
Ziel dieser Arbeit war es, neue Cyclopeptide auf Basis der in der Arbeitsgruppe um S. Kubik untersuchten Anionenrezeptoren aus L-Prolin- und 6-Aminopicolinsäure zu entwickeln und hinsichtlich ihrer Rezeptor- und Sensoreigenschaften zu untersuchen. Das Hauptaugenmerk lag dabei auf dem Einfluss von Substituenten an den Prolinuntereinheiten auf die Bindungsaffinität und -selektivität. Durch eine systematische Syntheseoptimierung konnte eine effiziente Strategie für ein 4R-Amino-L-prolin-haltiges Dipeptid erarbeitet werden, welches es ermöglicht, verschiedene Substituenten mit der gewünschten Konfiguration an den C(γ)-Atomen der Prolineinheiten einzuführen. Aus den funktionalisierten Dipeptiden konnten anschließend die entsprechenden Cyclopeptide nach Standardmethoden aufgebaut werden. Die Charakterisierung der Bindungseigenschaften dieser Verbindungen hinsichtlich der Komplexierung verschiedener Sulfonate und Acetat erfolgte mittels NMR-Spektroskopie und isothermer Titrationskalorimetrie in unterschiedlichen Lösungsmitteln. Die Untersuchungen zeigten, dass die Struktur und die Flexibilität der peripheren Substituenten um den Cyclopeptidhohlraum einen signifikanten Einfluss auf die Substratbindung besitzt.
Die RNAi–Methode spielt eine grosse Rolle in der Wirkstoffentwicklung bei der Validierung eines pharmakologischen Ziels. Die Anwendbarkeit in der Toxikologie wurde noch nicht systematisch untersucht. Das Ziel dieser Arbeit ist die Evaluierung der RNAi-Methode für mechanistisch-toxikologische Studien und den Einfluss von posttranskriptioneller Genunterdrückung auf biochemisch-zelluläre Endpunkte zu zeigen. Die siRNAs wurden mit Hilfe eines computerunterstützten Algorithmus ausgewählt. Effiziente und reproduzierbare Einschleusung der siRNA in vitro wurde durch Elektroporation erreicht. Die molekulare Reduktion der Expression des Zielgens wurde auf mRNA- und Proteinexpressionslevel oder auf Proteinaktivitätsebene zwischen 24 und 144 Stunden nach Behandlung überwacht. Die siRNAs wurden in vitro getestet bevor sie in vivo angewandt wurden. Als Methode zum Erreichen der Leber in vivo wurde die intraperitoneale Gabe von siRNAs gegenüber hydrodynamischer Injektion in die Schwanzvene evaluiert. Auf folgenden Enzyme wurde mit RNAi in der Zellkultur abgezielt: ATP-Synthase in HepG2, Farnesylpyrophosphat-Synthase (FPPS) in humanen Nierenzellen (HK-2) und Caspase-3 in Primärhepatozyten der Ratte. In allen Experimenten war RNAi in der Lage, das mRNA- und Proteinexpressions- oder Proteinaktivitäts-Niveau zu reduzieren, wodurch die erfolgreiche Genunterdrückung gezeigt werden konnte. Die Unterdrückung der mitochondrialen ATP- Synthase β-Untereinheit hatte keinen signifikanten Einfluss auf die Überlebensrate und den Energiestoffwechsel von HepG2-Zellen. Obwohl Oligomycin B-Behandlung zu ATP- Depletion und Verlust des mitochondiralen Membranpotentials führte, war keine Sensitivierung der Zellen gegenüber Oligomycin B- oder Diclofenac-induzierten Veränderungen des mitochondrialen Membranpotentials oder Zytotoxizität zu beobachten. Die Genunterdrückung der ATP-Synthase in HepG2-Zellen führte zu einer ähnlichen transkriptionellen Signatur wie Diclofenac-Behandlung in vivo, so dass eine mögliche Verbindung zwischen ATP-Synthase und Hepcidin, BiP und ALAS-1 durch Koregulation nahegelegt wird. Die Genunterdrückung von FPPS führte zu tendenziell erhöhter Zytotoxizität von Zoledronsäure, hatte aber keinen Einfluss auf den Prenylierungsstatus der kleinen GTPasen. Der Caspase-3/7-Inhibitor Ac-DEVD-CHO verhinderte SDZ IMM125-vermittelte Apoptose. Spezifische Genunterdrückung von Caspase-3 führte zur Reduktion der SDZ IMM125-induzierten Caspaseaktivität, während die Unterdrückung von Caspase-7 in dieser Hinsicht keinen Einfluss hatte. Die Effektschwelle des Genunterdrückung wurde durch Vergleich zwischen Caspase-3-silencing und Behandlung mit dem chemischen Caspase-Inhibitor Ac-DEVD-CHO auf Ebene der Caspase-3-Aktivität und der zytoprotektiven Wirksamkeit bestimmt. Der Effekt von Caspase-3-Unterdrückung war equivalent zur Wirkung von 1 μM Inhibitor. Die inhibitorvermittelte Schutzwirkung im Hinblick auf die Zytotoxizität wurde ausschliesslich bei höheren Inhibitorkonzentrationen erreicht, wodurch gezeigt wurde, dass die erreichte Genunterdrückung für zytoprotektive Wirkungen nicht ausreichend war. SiRNAs haben verglichen mit Enzyminhibitoren generell eine höhere Spezifität. Chemische Inhibitoren sind weniger spezifisch und können enzymatische Aktivitäten vollständig, in manchen Fällen irreversibel und schnell beeinflussen, so dass sie direkten Einfluss auf die zu untersuchenden Signalwege haben. SiRNAs unterscheiden sich in dieser Hinsicht, da die Abnahme des Proteins nicht vollständig, nur transient und langsam über eine Periode hinweg erfolgt, innerhalb welcher sich die Zellen durch kompensatorische Mechanismen anpassen und Primäreffekte maskiert werden können. Hydrodynamische Einschleusung von nicht-komplexierter siRNA in die Leber von CD-1-Mäusen war möglich und reduzierte die CYP2E1-Proteinexpression signifikant. Ein- oder mehrfache hochdosierte intraperitoneale Gabe von siRNA führte weder auf mRNA- noch auf Proteinebene zu signifikanten Effekten. Weitere Untersuchungen im Hinblick auf Stabilität und effiziente Einschleusung von siRNAs ist unvermeidlich, bevor siRNAs in vivo in der mechanistischen Toxikologie angewandt werden können. Zusammenfassend kann ausgesagt werden, dass die Anwendung von siRNAs in vitro eine universelle und spezifische Methode darstellt, welche in vielen mechanistisch-toxikologischen Studien als Werkzeug zur Signalweganalyse und zur Validierung von Zielproteinen eingesetzt werden kann. Die Stärke der enzymatischen Inhibition, die mit Hilfe eines chemischen Inhibitors erreicht werden kann, ist durch siRNA-vermittelte Genunterdrückung nicht zu erreichen. Genunterdrückung in vivo kann erreicht werden, doch die invasive hydrodynamische Methode ist nicht geeignet für Toxizitätsprüfungen im Tier. Die Einschleusung von siRNA in spezifische Zielorgane benötigt signifikante Verbesserung.
Acrylamid (AA) ist ein Kanzerogen, das beim Braten, Backen und Frittieren stärkehaltiger Le-bensmittel im Wesentlichen aus dem Vorläufer Asparagin in Gegenwart reduzierender Zucker in substantiellen Mengen gebildet wird. AA wird im Organismus metabolisch zu Glycidamid (GA) umgewandelt. Für GA wurden DNA-Addukte insbesondere mit dem N7 des Guanins nachgewiesen. Von besonderem Interesse für die Risikobewertung von AA ist Aufklärung des kanzerogenen Wirkmechanismus sowie des genotoxischen Potentials im Vergleich zu anderen bekannten Kanzerogenen. Ziel der Arbeit war es daher, das genotoxische Potential von AA und seinen Metaboliten GA sowie deren genotoxischen Wirkmechanismus zu charakterisieren. AA wurde im Vergleich zu den alpha, beta-ungesättigten Carbonylverbindungen Acrolein (Ac) und Hexenal (Hex) getestet, GA vergleichend zu aktiven Formen der Kanzerogene Benzo[a]pyren (B[a]P) und N-Nitrosodiethanolamin (NDELA) sowie den N-Nitrosoharnstoffen MNU und HENU und ausgewählten N-Nitroso-oxazolidinonen, einer Gruppe von N-Nitrosaminen, welche möglicherweise endogen im Organismus gebildet und nach Hydrolyse in ihre biologisch aktive Form überführt werden. Humanes Vollblut, isolierte Lymphozyten sowie V79-Säugerzellen wurden als Testsysteme verwendet. Als Endpunkte der Genotoxizität wurde die Induktion und Kinetik der Abnahme von DNA-Strangbrüchen sowie der Einfluss von Glutathion auf die DNA-Strangbruchinduktion im Comet Assay bestimmt. Die Sensitivität und Selektivität des Comet Assays wurde durch zusätzliche Behandlung der DNA mit dem DNA-Reparaturenzym Formamido-pyrimidin-DNA-glykosylase (FPG) gesteigert. FPG erkennt AP Stellen, ring-geöffnete Pyrimidine sowie oxidierte Purine und überführt diese in zusätzliche DNA-Strangbrüche. Das mutagene Potential der Verbindungen nach 5-tägiger Expressionszeit wurde in V79 Zellen mittels hPRT-Genmutations-Assay untersucht. AA erwies sich in allen Testsystemen als nicht genotoxisch. Die im Vergleich getesteten alpha, beta-ungesättigten Carbonylverbindungen Ac und Hex waren ebenfalls in humanem Vollblut nicht genotoxisch, verursachten jedoch in isolierten Lymphozyten in hohen Konzentrationen(> 3000 µM) DNA-Strangbrüche. GA war in allen Testsystemen genotoxisch. Im Comet Assay ohne FPG zeigten sich DNA-Strangbrüche ab 300 µM (1h). Nach zusätzlicher Behandlung der DNA mit FPG wurden bereits ab 10 µM (4h) DNA-Strangbrüche detektiert. DNA-Schäden waren erst ab einer Inkubationszeit von einer Stunde signifikant und erreichten nach 24h ein Maximum. GA induzierte in V79 Zellen zudem erst in 80-fach höheren Konzentrationen hPRT-Mutationen (800 µM) als DNA-Strangbrüche. Zusätzlich zeigte sich, dass die Mutationsrate erst in Konzentrationen signifikant erhöht war, in denen eine Reduktion der DNA-Schäden nicht mehr effektiv erfolgte. Die Genotoxizität von GA beruht vermutlich auf der präferentiellen Bindung an N7-Guanin. Die entstehenden N7-G-Addukte werden entweder spontan zur AP Stelle depuriniert oder zum Formamido-pyrimidin ring-geöffnet. Beide Arten von Folgeprodukten sind FPG-Substrate und werden vermutlich effizient repariert, sodass es erst bei hohen lokalen Konzentrationen (> 800 µM) zu einer signifikanten Ausprägung von Mutationen kommt. Die im Vergleich zu GA getesteten Kanzerogene (±)-BPDE und alpha-Acetoxy-NDELA waren im Comet Assay bei ähnlichen Konzentrationen genotoxisch (10-30 µM; 1h). Im Gegensatz zu GA induzierten beide allerdings hPRT-Mutationen (3-10 µM) im gleichen Konzentrationsbereich wie DNA-Strangbrüche. Ähnliche genotoxische Eigenschaften zeigten auch die im Vergleich zu GA getesteten N-Nitrosoverbindungen. Die Gruppe der N-Nitroso-oxazolidinone wurde erstmals im Hinblick auf Genotoxizität und Mutagenität geprüft. NOZ-2 induzierte in V79 Zellen bereits nach 15’ ab 3 µM maximal DNA-Strangbrüche. HENU induzierte DNA-Strangbrüche ab 100 µM (15’). In beiden Fällen hatte FPG keinen Einfluss auf die DNA-Strangbruchinduktion. Sowohl NOZ-2 als auch HENU sind hydroxyethylierend. Im Gegensatz dazu, waren das carboxymethylierende oder methylierende NOZ-5 und das methylierende MNU im Comet Assay ohne FPG nur gering aktiv (> 300 resp. 1000 µM; 15’), während nach FPG-Behandlung die Aktivität im Comet Assay (NOZ-5: >10µM; MNU: >100µM; 15’) deutlich gesteigert war. Die Kinetik der Abnahme von DNA-Strangbrüchen ist für die Verbindungen unterschiedlich. Während die NOZ-2-induzierten DNA-Läsionen (30µM) persistieren, wurden die durch NOZ-5 und HENU induzierten DNA-Schäden -vergleichbar mit GA- effektiv innerhalb einer 8-stündigen Nachbehandlungszeit reduziert. Für alle untersuchten N-Nitrosoverbindungen waren hPRT-Mutationen im gleichen Konzentrationsbereich wie DNA-Strangbrüche im Comet Assay mit FPG nachweisbar. Die N-Nitrosoverbindungen sind damit insgesamt deutlich potenter mutagen als GA. NOZ-2 und HENU führen vermutlich vergleichbar mit alpha-Acetoxy-NDELA zu einer Hydroxyethylierung der DNA-Phosphodiester. Die resultierenden Phosphotriester sind instabil und werden voraussichtlich schnell in DNA-Strangbrüche gespalten. Des Weiteren ist die Bildung instabiler N7-G- und promutagener O6-G-2-Hydroxyethyl-Addukte zu erwarten. Das potentiell DNA-carboxymethylierende/methylierende NOZ-5 und das DNA-methylierende MNU alkylieren ver-mutlich die gleichen Positionen in der DNA. Allerdings scheinen die gebildeten Methyl- oder Carboxymethyl-Phosphotriester stabil zu sein und werden nicht spontan in Strangbrüche überführt. Die gebildeten N7-G-Addukte sind FPG-Substrate, was sich am FPG-vermittelten Anstieg der DNA-Strangbruchrate zeigt. Dies steht im Gegensatz zu NOZ-2, bei welchem FPG keinen Einfluss auf die DNA-Strangbruchinduktion hatte. Vermutlich ist dies auf die Hydroxyethylierung der Phosphat-Gruppen durch NOZ-2 zurückzuführen, deren spontane DNA-Strangbruch-Induktion den Nachweis von N7-G-Addukten mittels FPG überlagert. Weiterhin zeigte sich, dass trotz vergleichbar hoher hPRT-Mutagenität, NOZ-5-induzierte DNA-Schäden deutlich geringer persistent als entsprechende NOZ-2-Läsionen sind. Das mutagene Potential von NOZ-5 ist daher vermutlich, neben anderen nicht reparierten DNA-Schäden, auf promutagene O6-G-Addukte zurückzuführen, welche in MGMT-defizienten V79 Zellen nicht repariert werden. Orientierend wurde der Einfluss detoxifizierender Makromoleküle auf die Genotoxizität von GA und alpha, beta-ungesättigten Carbonylverbindungen durch Vergleich der Aktivitäten in humanem Vollblut und isolierten Lymphozyten sowie durch Co-Inkubation mit Glutathion (GSH) in V79 Zellen untersucht. Während Ac und Hex in isolierten Lymphozyten deutlich potenter DNA-schädigend als in humanem Vollblut sind, ist GA in beiden Systemen vergleichbar genotoxisch. Offensichtlich wird in humanem Vollblut die Aktivität von GA durch detoxifizierende Blutbestandteile nur unwesentlich beeinflusst. Ein entsprechender Effekt zeigt sich auch bei der Co-Inkubation von V79 Zellen. Während GSH die DNA-schädigende Wirkung von Ac und Hex in V79 Zellen deutlich reduzierte, war für GA kein signifikanter Unterschied zur DNA-Strangbruchrate in ausschließlich GA-behandelten Zellen nachzuweisen. Zusammenfassend konnte mit dieser Arbeit gezeigt werden, dass AA selbst nicht genotoxisch bzw. mutagen ist; Ac und Hex in humanem Vollblut ebenfalls nicht genotoxisch sind, allerdings in isolierten Lymphozyten bei hohen Konzentrationen (> 3000 µM) Genotoxizität induzieren; die genotoxische/ mutagene Wirkung von AA durch GA vermittelt wird; GA im Vergleich zu anderen potenten Kanzerogenen Genotoxizität nur sehr langsam induziert (signifikant nach 1h) und eher schwach mutagen ist; GA-induzierte DNA-Läsionen schnell (innerhalb von 8h) repariert werden;die physiologische Umgebung in Humanblut nur geringen Einfluss auf die biologische Aktivität von GA hat; NOZ-2 vergleichbar mit HENU mit und ohne FPG-Behandlung signifikant DNA-Strangbrüche erzeugt. Vermutlich führt die Hydroxylierung am Phosphat-Rückgrad zu spontanen Strangbrüchen, die den FPG-Effekt überlagern; NOZ-5 (vermutlich methylierend oder carboxymethylierend im Comet Assay) im Gegensatz dazu ohne FPG-Behandlung im Comet Assay nur schwach aktiv ist, während nach FPG-Behandlung offenbar die vermutete Bildung von N7-G-Addukten zum Tragen kommt; NOZ’s in V79-Zellen potente Mutagene sind; dies vermutlich in Folge von O6-Guanin-Addukt-Bildung, welche in MGMT-defizienten V79 Zellen nicht repariert werden; durch Kombination unterschiedlicher Protokolle des Comet-Genotoxizitäts- und hPRT-Mutagenitätstests orientierende Aussagen über den Zusammenhang zwischen DNA-Alkylierung, Detoxifizierung, DNA-Reparatur und der Entstehung von Mutationen gemacht werden können.
In der vorliegenden Arbeit werden Sekundärstrukturmotive von isolierten Peptiden und Peptid-Aggregaten in der Gasphase analysiert. Zur Untersuchung ihrer intrinsischen Eigenschaften werden die isolierten Peptide durch adiabatische Abkühlung in Molekularstrahlen erzeugt. Durch die Anwendung hochsensitiver Techniken der Doppelresonanzspektroskopie, Resonante zwei Photonen Ionisation (R2PI) und Infrarot/Resonante zwei Photonen Ionisation (IR/R2PI), werden die Peptide und Peptid-Aggregate hinsichtlich ihrer Elektronen – und Schwingungsübergängen analysiert. Die Schwingungsfrequenzen im Bereich der Amid A, I, II Moden und im oberen „Fingerprintbereich“ von Peptiden sind sehr signifikant für die Geometrie des Rückgrates und der Seitenketten, z.B. unterscheiden sich Schwingungen von Gruppen, die an Wasserstoffbrückenbindungen beteiligt sind, sehr stark durch ihre Lage und Intensität gegenüber Schwingungen von frei vorliegenden Gruppen. Ein Vergleich mit berechneten Schwingungsfrequenzen aus ab initio und Dichtefunktionaltheorie Rechnungen ermöglicht eine Zuordnung zu einer bestimmten Struktur. Es werden in dieser Arbeit verschiedene Sekundärstrukturen über die Analyse von geschützten Aminosäuren, Di- und Tripeptiden untersucht. Insbesondere gelang es erstmals, ein ß-Faltblattmodellsystem für ein isoliertes Dimer eines Peptids nachzuweisen. Weiterhin werden zum molekularen Verständnis der Mikrosolvatation Aggregate mit Wassermolekülen betrachtet und somit der Einfluss auf die Sekundärstruktur durch sukzessive Aggregation von Wassermolekülen analysiert. In Kooperation mit Prof. Schrader (Universität Duisburg-Essen) werden Templatmoleküle charakterisiert, um ihre Fähigkeiten zur Anlagerung an schädliche ß-Faltblattstrukturen zu untersuchen, die in sogenannten neurodegenerativen Krankheiten häufig auftreten. Die Effizienz ist sowohl über die Analyse der Zahl und Stärke der inter- und intramolekularen Wasserstoffbrückenbindungen als auch über die gebildete Clusterstruktur untersucht worden.
Indirubin wurde als aktive Komponente einer aus der traditionellen chinesischen Medizin stammenden Wirkstoffmischung namens Danggui Longhui Wan identifiziert, welche sich unter anderem als ein wirksames Mittel gegen chronisch myeloische Leukämie (CML) erwiesen hat. Erste Untersuchungen zum Wirkmechanismus zeigten, dass es sich bei Indirubin und dessen Derivaten um potente Inhibitoren cyclin-abhängiger Kinasen (CDKs) handelt. Diese Enzyme spielen eine essentielle Rolle bei der Regulation des Zellzyklus’, welche bei Tumorzellen meist außer Kontrolle ist. Inkubation verschiedener Tumorzellen (u.a. MCF-7) mit dem Derivat Indirubin-3’-oxim führte zu einem konzentrationsabhängigen Zellzyklus-Arrest bei G1/S bzw. G2/M. Diese Beobachtungen machen Indirubin und dessen Derivate für einen eventuellen Einsatz als Tumortherapeutikum interessant. Für die Verwendung als Tumortherapeutikum erweist sich die geringe Wasserlöslichkeit und die damit einhergehende geringe Bioverfügbarkeit des Indirubins und vieler seiner Derivate als nachteilig. Im Rahmen dieser Arbeit sollte das Molekülgerüst des Indirubins durch das Einbringen geeigneter Substituenten so modifiziert werden, dass eine höhere Wasserlöslichkeit bei gleichzeitig starker inhibitorischer Wirkung auf CDKs (untersucht am CDK2/Cyc E Komplex) und starker Cytotoxizität (untersucht mittels SRB-Test an der MCF-7 Tumorzellinie) erzielt wird. Bei den dafür verwendeten Substituenten handelt es sich vorwiegend um ein- oder mehrfach hydroxylierte Alkylgruppen oder um ionische Gruppen wie die Carbonsäuregruppe, die an den Positionen 3’ bzw. 5 des Indirubinmoleküls eingeführt werden. Ergebnisse: Durch das Einführen hydroxylierter Alkyl-Substituenten in Position 3’ des Indirubingrundgerüstes konnte die Wasserlöslichkeit der entstandenen Derivate im Vergleich zum Indirubuin etwa 10- bis 50-fach erhöht werden (1 bis 5 mg/ml im Vergleich zu 0,1 mg/ml). Das Einführen einer Carboxygruppe in Position 5 (5-Carboxyindiruin, E810) führt zu einer noch höheren Wasserlöslichkeit von 41 mg/ml. Die inhibitorische Aktivität auf den CDK2/Cyc E Komplex einiger der synthetisierten Derivate liegt mit etwa 0,2 µM unter dem entsprechenden IC50-Wert des Indirubins (etwa 7 µM), und auch die Cytotoxizität liegt bei einigen Derivaten mit IC50-Werten von 0,1 bis 0,9 µM unter dem IC50-Wert von Indirubin (4 µM).
Ziel der vorliegenden Arbeit war es, durch Lagerung hervorgerufene unerwünschte Alterungsphänomene in Fruchtsäften und Konzentraten aus anthocyanhaltigen Früchten aufzuklären und zu minimieren. Ein wesentlicher Schwerpunkt lag dabei in der Betrachtung der Veränderung der komplexen Stoffgruppe der Polyphenole, die aufgrund ihrer Vielzahl an gesundheitlich positiven Wirkungen in jüngster Zeit immer mehr in den Focus einer gesunden Ernährung gerückt sind. Buntsäfte und Buntsaftkonzentrate aus roter Traube (Vitis Vinifera, nur Saft), schwarzer Johannisbeere (Ribes nigrum L.), und Aronia (Aronia melanocarpa) wurden hergestellt und anschließend über einen Zeitraum von zwölf Monaten bei 4 °C, 20 °C und 37 °C unter Lichtausschluss gelagert. Bei allen Buntsäften und Buntsaftkonzentraten wirkt sich die Zunahme von Lagertemperatur und Lagerdauer negativ aus. Die Intensität der Auswirkung differierte stark zwischen den untersuchten Parametern: Die Gesamtphenolgehalte (Folin-Ciocalteu) sowie die damit häufig korrelierende antioxidative Kapazität (TEAC) unterlagen in allen Säften und Konzentraten bei 4 °C und 20 °C über einen Zeitraum von 12 Monaten nur geringen Schwankungen. Möglicherweise entstehen während der Lagerung neue Pigmente wie polymere oder kondensierte Polyphenole, die ebenfalls eine hohe antioxidative Kapazität besitzen. Die originäre Farbe (CIELAB, Sensorik) blieb bei sehr stark gefärbten Proben (z.B. schwarze Johannisbeere) länger erhalten als bei nur schwach gefärbten Proben (z.B. Rebsorte cv. Spätburgunder), die zu einer wesentlich schnelleren Bräunung auch bei niedrigeren Lagertemperaturen neigten. Die Phenolprofile (HPLC) sind frucht- und sortenabhängig, die Phenolgehalte (HPLC) sind frucht-, sorten- und jahrgangsabhängig. Die höchsten Gehalte an farblosen Phenolen wurden im Rahmen dieser Arbeit für Aroniasaft und –konzentrat (1000 mg/L) gemessen. Während der Lagerung blieben die Werte für 4 °C in fast allen Proben relativ stabil, wohingegen für 20 °C bereits deutliche Abnahmen, insbesondere der Phenolcarbonsäuren und Flavan-3-ole, gemessen wurden. Die temperaturabhängige Abnahme von Flavan-3-olen in rotem Traubensaft cv. Spätburgunder steht wahrscheinlich im Zusammenhang mit der Bildung von Anthocyan-Tannin-Addukten, diese konnten als solche nach Größenausschlusschromatographie und anschließender LC-MS-Analytik identifiziert werden. Die Anthocyangehalte der originären Anthocyane (berechnet als Cya-3-glc bzw. Mal-3-glc, HPLC) nahmen in Abhängigkeit von der Lagertemperatur und der Lagerdauer in allen untersuchten Proben deutlich ab. Der Vergleich der aus den kinetischen Berechnungen auf der Basis der HPLC-Daten hervor gehenden Halbwertszeiten der Anthocyane verdeutlicht die unterschiedlichen Stabilitäten in den Säften. Generell ging eine hohe Ausgangskonzentration an Anthocyanen auch mit einer höheren Halbwertszeit und damit einer höheren Stabilität einher. Mit der Anthocyankonzentration (HPLC) korreliert der Monomerindex (pH-Shift-Methode), der auch als Marker zur Beschreibung der Alterung von Anthocyanen geeignet ist. Ein weiterer Schwerpunkt lag bei der Erhaltung der Farbe auf dem Zusatz von farblosen Phenolen, die durch sogenannte Copigmentierungsreaktionen Anthocyane stabilisieren. Während sich einige farblose Phenole (Kaffeesäure, Coumarsäure, Chlorogensäure) in Modellversuchen farbstabilisierend auf das Anthocyan Cyanidin-3-glucosid auswirkten, haben sich die verhältnismäßig geringen Konzentrationen in rotem Traubensaft nicht positiv bemerkbar gemacht. Die erst durch sehr hohe Dosen an Copigmenten eintretende Farbstabilisierung ist für die Praxis nicht realistisch und finanziell nicht umsetzbar. Ein stark farbdestabilisierender Effekt sowie eine deutliche Verstärkung der Bräunung sowohl in den Modelllösungen als auch in Realmedien wurden beim Zusatz von Ascorbinsäure beobachtet. Basierend auf den Ergebnissen aller Lagerstudien können klare Empfehlungen für die Eindämmung von Alterungsprozessen ausgesprochen werden: 1. Sehr gute Qualität der Rohware (reich insbesondere an Anthocyanen) 2. Vermeidung von Prozessschritten und Behandlungsmaßnahmen während der Verarbeitung, die eine starke Abnahme des Anthocyangehaltes verursachen (z.B. durch kurze Erhitzungsprozesse, Ausschluss von Sauerstoff, möglichst niedrige Verarbeitungstemperaturen, Inaktivierung von Polyphenoloxidasen) 3. Dauerhaft niedrige Lagertemperaturen (ca. 4 °C) 4. Lichtausschluss während der Lagerung 5. Möglichst kurze Lagerdauer, entsprechend des jeweiligen Produktes 6. Kein Zusatz von farblosen Phenolen als Copigmente sowie Ascorbinsäure, evtl. Verschnitt mit sehr farbintensiven Buntsäften 7. Lagerung als Direktsaft Für die Praxis können unter Berücksichtigung dieser Aspekte Grundlagen geschaffen werden, die Qualität von Buntsäften zu erhalten und im Hinblick der aktuellen functional food Diskussion einen Beitrag zu einem gesundheitsbewussten Lebenstil mit natürlichen Lebensmitteln zu leisten.