### Filtern

#### Erscheinungsjahr

- 1998 (5) (entfernen)

We develop a constructive method to derive exactly solvable quantum mechanical models of rational (Calogero) and trigonometric (Sutherland) type. This method starts from a linear algebra problem: finding eigenvectors of triangular finite matrices. These eigenvectors are transcribed into eigenfunctions of a selfadjoint Schrödinger operator. We prove the feasibility of our method by constructing a new "\(AG_3\) model" of trigonometric type (the rational case was known before from Wolfes 1975). Applying a Coxeter group analysis we prove its equivalence with the \(B_3\) model. In order to better understand features of our construction we exhibit the \(F_4\) rational model with our method.

The critical points of the continuous series are characterized by two complex numbers l_1,l_2 (Re(l_1,l_2)< 0), and a natural number n (n>=3) which enters the string susceptibility constant through gamma = -2/(n-1). The critical potentials are analytic functions with a convergence radius depending on l_1 or l_2. We use the orthogonal polynomial method and solve the Schwinger-Dyson equations with a technique borrowed from conformal field theory.