### Refine

#### Year of publication

- 1998 (30) (remove)

#### Document Type

- Preprint (30) (remove)

#### Keywords

- coset enumeration (2)
- particle methods (2)
- subgroup problem (2)
- Boltzmann Equation (1)
- Complexity (1)
- Dirichlet series (1)
- Gröbner base (1)
- Gröbner bases (1)
- Gröbner bases in monoid and group rings (1)
- Ill-Posed Problems (1)

#### Faculty / Organisational entity

- Fachbereich Mathematik (30) (remove)

In order to improve the distribution system for the Nordic countries the BASF AG considered 13 alternative scenarios to the existing system. These involved the construction of warehouses at various locations. For every scenario the transportation, storage, and handling cost incurred was to be as low as possible, where restrictions on the delivery time were given. The scenarios were evaluated according to (minimal) total cost and weighted average delivery time. The results led to a restriction to only three cases, involving only one new warehouse each. For these a more accurate model for the cost was developped and evaluated, yielding results similar to a simple linear model. Since there were no clear preferences between cost and delivery time, the final decision was chosen to represent a compromise between the two criteria.

Robust facility location
(1998)

Let A be a nonempty finite subset of R^2 representing the geographical coordinates of a set of demand points (towns, ...), to be served by a facility, whose location within a given region S is sought. Assuming that the unit cost for a in A if the facility is located at x in S is proportional to dist(x,a) - the distance from x to a - and that demand of point a is given by w_a, minimizing the total trnsportation cost TC(w,x) amounts to solving the Weber problem. In practice, it may be the case, however, that the demand vector w is not known, and only an estimator {hat w} can be provided. Moreover the errors in sich estimation process may be non-negligible. We propose a new model for this situation: select a threshold valus B 0 representing the highest admissible transportation cost. Define the robustness p of a location x as the minimum increase in demand needed to become inadmissible, i.e. p(x) = min{||w^*-{hat w}|| : TC(w^*,x) B, w^* = 0} and solve then the optimization problem max_{x in S} p(x) to get the most robust location.

Knowledge about the distribution of a statistical estimator is important for various purposes like, for example, the construction of confidence intervals for model parameters or the determiation of critical values of tests. A widely used method to estimate this distribution is the so-called bootstrap which is based on an imitation of the probabilistic structure of the data generating process on the basis of the information provided by a given set of random observations. In this paper we investigate this classical method in the context of artificial neural networks used for estimating a mapping from input to output space. We establish consistency results for bootstrap estimates of the distribution of parameter estimates.

In this paper we study a particular class of \(n\)-node recurrent neural networks (RNNs).In the \(3\)-node case we use monotone dynamical systems theory to show,for a well-defined set of parameters, that,generically, every orbit of the RNN is asymptotic to a periodic orbit.Then, within the usual 'learning' context of NeuralNetworks, we investigate whether RNNs of this class can adapt their internal parameters soas to 'learn' and then replicate autonomously certain external periodic signals.Our learning algorithm is similar to identification algorithms in adaptivecontrol theory. The main feature of the adaptation algorithm is that global exponential convergenceof parameters is guaranteed. We also obtain partial convergence results in the \(n\)-node case.

Wavelets on closed surfaces in Euclidean space R3 are introduced starting from a scale discrete wavelet transform for potentials harmonic down to a spherical boundary. Essential tools for approximation are integration formulas relating an integral over the sphere to suitable linear combinations of functional values (resp. normal derivatives) on the closed surface under consideration. A scale discrete version of multiresolution is described for potential functions harmonic outside the closed surface and regular at infinity. Furthermore, an exact fully discrete wavelet approximation is developed in case of band-limited wavelets. Finally, the role of wavelets is discussed in three problems, namely (i) the representation of a function on a closed surface from discretely given data, (ii) the (discrete) solution of the exterior Dirichlet problem, and (iii) the (discrete) solution of the exterior Neumann problem.

For the determination of the earth" s gravity field many types of observations are available nowadays, e.g., terrestrial gravimetry, airborne gravimetry, satellite-to-satellite tracking, satellite gradiometry etc. The mathematical connection between these observables on the one hand and gravity field and shape of the earth on the other hand, is called the integrated concept of physical geodesy. In this paper harmonic wavelets are introduced by which the gravitational part of the gravity field can be approximated progressively better and better, reflecting an increasing flow of observations. An integrated concept of physical geodesy in terms of harmonic wavelets is presented. Essential tools for approximation are integration formulas relating an integral over an internal sphere to suitable linear combinations of observation functionals, i.e., linear functionals representing the geodetic observables. A scale discrete version of multiresolution is described for approximating the gravitational potential outside and on the earth" s surface. Furthermore, an exact fully discrete wavelet approximation is developed for the case of band-limited wavelets. A method for combined global outer harmonic and local harmonic wavelet modelling is proposed corresponding to realistic earth" s models. As examples, the role of wavelets is discussed for the classical Stokes problem, the oblique derivative problem, satellite-to-satellite tracking, satellite gravity gradiometry, and combined satellite-to-satellite tracking and gradiometry.

We present a particle method for the numerical simulation of boundary value problems for the steady-state Boltzmann equation. Referring to some recent results concerning steady-state schemes, the current approach may be used for multi-dimensional problems, where the collision scattering kernel is not restricted to Maxwellian molecules. The efficiency of the new approach is demonstrated by some numerical results obtained from simulations for the (two-dimensional) BEnard's instability in a rarefied gas flow.

In this paper we present a domain decomposition approach for the coupling of Boltzmann and Euler equations. Particle methods are used for both equations. This leads to a simple implementation of the coupling procedure and to natural interface conditions between the two domains. Adaptive time and space discretizations and a direct coupling procedure leads to considerable gains in CPU time compared to a solution of the full Boltzmann equation. Several test cases involving a large range of Knudsen numbers are numerically investigated.

In this paper the kinetic model for vehicular traffic developed in [3,4] is considered and theoretical results for the space homogeneous kinetic equation are presented. Existence and uniqueness results for the time dependent equation are stated. An investigation of the stationary equation leads to a boundary value problem for an ordinary differential equation. Existence of the solution and some properties are proved. A numerical investigation of the stationary equation is included.