### Refine

#### Year of publication

- 1993 (26) (remove)

#### Document Type

- Preprint (26) (remove)

#### Keywords

#### Faculty / Organisational entity

Based on experiences from an autonomous mobile robot project called MOBOT -III, we found hard realtime-constraints for the operating-system-design. ALBATROSS is "A flexible multi-tasking and realtime network-operatingsystem-kernel", not limited to mobile- robot-projects only, but which might be useful also wherever you have to guarantee a high reliability of a realtime-system. The focus in this article is on a communication-scheme fulfilling the demanded (hard realtime-) assurances although not implying time-delays or jitters on the critical informationchannels. The central chapters discuss a locking-free shared buffer management, without the need for interrupts and a way to arrange the communication architecture in order to produce minimal protocol-overhead and short cycle-times. Most of the remaining communication-capacity (if there is any) is used for redundant transfers, increasing the reliability of the whole system. ALBATROSS is actually implemented on a multi-processor VMEbus-system.

Case-based problem solving can be significantly improved by applying domain knowledge (in opposition to problem solving knowledge), which can be acquired with reasonable effort, to derive explanations of the correctness of a case. Such explanations, constructed on several levels of abstraction, can be employed as the basis for similarity assessment as well as for adaptation by solution refinement. The general approach for explanation-based similarity can be applied to different real world problem solving tasks such as diagnosis and planning in technical areas. This paper presents the general idea as well as the two specific, completely implemented realizations for a diagnosis and a planning task.

The system of shallow water waves is one of the classical examples for nonlinear, twodimensional conservation laws. The paper investigates a simple kinetic equation depending on a parameter e which leads for e to 0 to the system of shallow water waves. The corresponding equilibrium distribution function has a compact support which depends on the eigenvalues of the hyperbolic system. It is shown that this kind of kinetic approach is restricted to a special class of nonlinear conservation laws. The kinetic model is used to develop a simple particle method for the numerical solution of shallow water waves. The particle method can be implemented in a straightforward way and produces in test examples sufficiently accurate results.

SPIN-NFDS Learning and Preset Knowledge for Surface Fusion - A Neural Fuzzy Decision System -
(1993)

The problem to be discussed in this paper may be characterized in short by the question: "Are these two surface fragments belonging together (i.e. belonging to the same surface)?" The presented techniques try to benefit from some predefined knowledge as well as from the possibility to refine and adapt this knowledge according to a (changing) real environment, resulting in a combination of fuzzy-decision systems and neural networks. The results are encouraging (fast convergence speed, high accuracy), and the model might be used for a wide range of applications. The general frame surrounding the work in this paper is the SPIN- project, where emphasis is on sub-symbolic abstractions, based on a 3-d scanned environment.

This paper refers to the problem of adaptability over an infinite period of time, regarding dynamic networks. A never ending flow of examples have to be clustered, based on a distance measure. The developed model is based on the self-organizing feature maps of Kohonen [6], [7] and some adaptations by Fritzke [3]. The problem of dynamic surface classification is embedded in the SPIN project, where sub-symbolic abstractions, based on a 3-d scanned environment is being done.

This report contains a collection of abstracts for talks given at the "Deduktionstreffen" held at Kaiserslautern, October 6 to 8, 1993. The topics of the talks range from theoretical aspects of term rewriting systems and higher order resolution to descriptions of practical proof systems in various applications. They are grouped together according the following classification: Distribution and Combination of Theorem Provers, Termination, Completion, Functional Programs, Inductive Theorem Proving, Automatic Theorem Proving, Proof Presentation. The Deduktionstreffen is the annual meeting of the Fachgruppe Deduktionssysteme in the Gesellschaft für Informatik (GI), the German association for computer science.

The paper presents the shuffle algorithm proposed by Baganoff, which can be implemented in simulation methods for the Boltzmann equation to simplify the binary collision process. It is shown that the shuffle algborithm is a discrete approximation of an isotropic collision law. The transition probability as well as the scattering cross section of the shuffle algorithm are opposed to the corresponding quantities of a hard-sphere model. The discrepancy between measures on a sphere is introduced in order to quantify the approximation error by using the shuffle algorithm.

In this paper, we deal with the problem of spherical interpolation of discretely given data of tensorial type. To this end, spherical tensor fields are investigated and a decomposition formula is described. Tensor spherical harmonics are introduced as eigenfunctions of a tensorial analogon to the Beltrami operator and discussed in detail. Based on these preliminaries, a spline interpolation process is described and error estimates are presented. Furthermore, some relations between the spline basis functions and the theory of radial basis functions are developed.

We discuss how kinetic and aerodynamic descriptions of a gas can be matched at some prescribed boundary. The boundary (matching) conditions arise from requirement that the relevant moments (p,u,...) of the particle density function be continuous at the boundary, and from the requirement that the closure relation, by which the aerodynamic equations (holding on one side of the boundary) arise from the kinetic equation (holding on the other side), be satisfied at the boundary. We do a case study involving the Knudsen gas equation on one side and a system involving the Burgers equation on the other side in section 2, and a discussion for the coupling of the full Boltzmann equation with the compressible Navier-Stokes equations in section 3.