Refine
Year of publication
Document Type
- Doctoral Thesis (42)
- Article (27)
- Review (1)
Language
- English (70) (remove)
Has Fulltext
- yes (70)
Is part of the Bibliography
- no (70)
Keywords
- Blattschneiderameisen (2)
- Bottom-up (2)
- Cyanobacteria (2)
- Cyanobakterien (2)
- Evolution (2)
- SOC (2)
- Tropenökologie (2)
- auditory brainstem (2)
- bottom-up (2)
- forest fragmentation (2)
Faculty / Organisational entity
- Fachbereich Biologie (70) (remove)
In cyanobacteria and plants, VIPP1 plays crucial roles in the biogenesis and repair of thylakoid membrane protein complexes and in coping with chloroplast membrane stress. In chloroplasts, VIPP1 localizes in distinct patterns at or close to envelope and thylakoid membranes. In vitro, VIPP1 forms higher-order oligomers of >1 MDa that organize into rings and rods. However, it remains unknown how VIPP1 oligomerization is related to function. Using time-resolved fluorescence anisotropy and sucrose density gradient centrifugation, we show here that Chlamydomonas reinhardtii VIPP1 binds strongly to liposomal membranes containing phosphatidylinositol-4-phosphate (PI4P). Cryo-electron tomography reveals that VIPP1 oligomerizes into rods that can engulf liposomal membranes containing PI4P. These findings place VIPP1 into a group of membrane-shaping proteins including epsin and BAR domain proteins. Moreover, they point to a potential role of phosphatidylinositols in directing the shaping of chloroplast membranes.
Arctic, Antarctic and alpine biological soil crusts (BSCs) are formed by adhesion of soil particles to exopolysaccharides (EPSs) excreted by cyanobacterial and green algal communities, the pioneers and main primary producers in these habitats. These BSCs provide and influence many ecosystem services such as soil erodibility, soil formation and nitrogen (N) and carbon (C) cycles. In cold environments degradation rates are low and BSCs continuously increase soil organic C; therefore, these soils are considered to be CO2 sinks. This work provides a novel, nondestructive and highly comparable method to investigate intact BSCs with a focus on cyanobacteria and green algae and their contribution to soil organic C. A new terminology arose,basedonconfocallaserscanningmicroscopy(CLSM) 2-D biomaps, dividing BSCs into a photosynthetic active layer (PAL) made of active photoautotrophic organisms and a photosynthetic inactive layer (PIL) harbouring remnants of cyanobacteria and green algae glued together by their remaining EPSs. By the application of CLSM image analysis (CLSM–IA) to 3-D biomaps, C coming from photosynthetic activeorganismscouldbevisualizedasdepthprofileswithC peaks at 0.5 to 2mm depth. Additionally, the CO2 sink character of these cold soil habitats dominated by BSCs could be highlighted, demonstrating that the first cubic centimetre of soil consists of between 7 and 17% total organic carbon, identified by loss on ignition.
Membrane proteins are generally soluble only in the presence of detergent micelles or other membrane-mimetic systems, which renders the determination of the protein’s molar mass or oligomeric state difficult. Moreover, the amount of bound detergent varies drastically among different proteins and detergents. However, the type of detergent and its concentration have a great influence on the protein’s structure, stability, and functionality and the success of structural and functional investigations and crystallographic trials. Size-exclusion chromatography, which is commonly used to determine the molar mass of water-soluble proteins, is not suitable for detergent-solubilised proteins because
the protein–detergent complex has a different conformation and, thus, commonly exhibits
a different migration behaviour than globular standard proteins. Thus, calibration curves obtained with standard proteins are not useful for membrane-protein analysis. However,
the combination of size-exclusion chromatography with ultraviolet absorbance, static light scattering, and refractive index detection provides a tool to determine the molar mass of protein–detergent complexes in an absolute manner and allows for distinguishing the contributions of detergent and protein to the complex.
The goal of this thesis was to refine the standard triple-detection size-exclusion chromatography measurement and data analysis procedure for challenging membrane-protein samples, non-standard detergents, and difficult solvents such as concentrated denaturant solutions that were thought to elude routine approaches. To this end, the influence of urea on the performance of the method beyond direct influences on detergents and proteins was investigated with the help of the water-soluble bovine serum albumin. On the basis of
the obtained results, measurement and data analysis procedures were refined for different detergents and protein–detergent complexes comprising the membrane proteins OmpLA and Mistic from Escherichia coli and Bacillus subtilis, respectively.
The investigations on mass and shape of different detergent micelles and the compositions of protein–detergent complexes in aqueous buffer and concentrated urea solutions
showed that triple-detection size-exclusion chromatography provides valuable information
about micelle masses and shapes under various conditions. Moreover, it is perfectly suited for the straightforward analysis of detergent-suspended proteins in terms of composition and oligomeric state not only under native but, more importantly, also under denaturing conditions.
Like many other bacteria, the opportunistic pathogen P. aeruginosa encodes a broad network of enzymes that regulate the intracellular concentration of the second messenger c-di-GMP. One of these enzymes is the phosphodiesterase NbdA that consists of three domains: a membrane anchored, putative sensory MHYT domain, a non-functional diguanylate cyclase domain with degenerated GGDEF motif and an active PDE domain with EAL motif. Analysis of the nbdA open reading frame by 5’-RACE PCR revealed an erroneous annotation of nbdA in the Pseudomonas database with the ORF 170 bp shorter than previously predicted. The newly defined promoter region of nbdA contains recognition sites for the alternative sigma-factor RpoS as well as the transcription factor AmrZ. Promoter analysis within PAO1 wt as well as rpoS and amrZ mutant strains utilizing transcriptional fusions of the nbdA promoter to the reporter gene lacZ revealed transcriptional activation of nbdA by RpoS in stationary growth phase and transcriptional repression by AmrZ. Additionally, no influence of nitrite and neither exogenous nor endogenous NO on nbdA transcription could be shown in this study. However, deletion of the nitrite reductase gene nirS led to a strong increase of nbdA promoter activity which needs to be characterized further. Predicted secondary structures of the 5’-UTR of the nbdA mRNA indicated either an RNA thermometer function of the mRNA or post-transcriptional regulation of nbdA by the RNA binding proteins RsmA and RsmF. Nevertheless, translational studies using fusions of the 5’ UTR of nbdA to the reporter gene bgaB did not verify either of these hypotheses. In general, nbdA translational levels were very low and neither the production of the reporter BgaB nor genomically encoded NbdA could be detected on a western blot. Overproduction of NbdA variants induced many phenotypic changes in motility and biofilm formation. But strains overproducing variants containing the MHYT domain revealed greatly elongated cells and were impaired in surface growth, indicating a misbalance in the membrane protein homeostasis. Therefore, these phenotypes have to be interpreted very critically. Microscopic studies with fluorescently tagged NbdA revealed either a diffuse fluorescent signal of NbdA or the formation of fluorescent foci which were located mainly at the cell poles. Co-localization studies with the polar flagellum and the chemotaxis protein CheA showed that NbdA is not generally localizing to the flagellated cell pole. NbdA localization indicates the control of a specific local c-di-GMP pool in the cell which is most likely involved in MapZ mediated chemotactic flagellar motor switching.
Cell division and cell elongation are fundamental processes for growth. In contrast to animal cells, plant cells are surrounded by rigid walls and therefore loosening of the wall is required during elongation. On the other hand, vacuole size has been shown to correlate with cell size and inhibition of vacuolar expansion limits cell growth. However, the specific role of the vacuole during cell elongation is still not fully resolved. Especially the question whether the vacuole is the leading unit during cellular growth or just passively expands upon water uptake remains to be answered. Here, we review recent findings about the contribution of the vacuole to cell elongation. In addition, we also discuss the connection between cell wall status and vacuolar morphology. In particular, we focus on the question whether vacuolar size is dictated by cell size or vice versa and share our personnel view about the sequential steps during cell elongation.
Compared to our current knowledge of neuronal excitation, little is known about the development and maturation of inhibitory circuits. Recent studies show that inhibitory circuits develop and mature in a similar way like excitatory circuit. One such similarity is the development through excitation, irrespective of its inhibitory nature. Here in this current study, I used the inhibitory projection between the medial nucleus of the trapezoid body (MNTB) and the lateral superior olive (LSO) as a model system to unravel some aspects of the development of inhibitory synapses. In LSO neurons of the rat auditory brainstem, glycine receptor-mediated responses change from depolarizing to hyperpolarizing during the first two postnatal weeks (Kandler and Friauf 1995, J. Neurosci. 15:6890-6904). The depolarizing effect of glycine is due to a high intracellular chloride concentration ([Cl-]i), which induces a reversal potential of glycine (EGly) more positive than the resting membrane potential (Vrest). In older LSO neurons, the hyperpolarizing effect is due to a low [Cl-]i (Ehrlich et al., 1999, J. Physiol. 520:121-137). Aim of the present study was to elucidate the molecular mechanism behind Clhomeostasis in LSO neurons which determines polarity of glycine response. To do so, the role and developmental expression of Cl-cotransporters, such as NKCC1 and KCC2 were investigated. Molecular biological and gramicidin perforated patchclamp experiments revealed, the role of KCC2 as an outward Cl-cotransporter in mature LSO neurons (Balakrishnan et al., 2003, J Neurosci. 23:4134-4145). But, NKCC1 does not appear to be involved in accumulating chloride in immature LSO neurons. Further experiments, indicated the role of GABA and glycine transporters (GAT1 and GLYT2) in accumulating Cl- in immature LSO neurons. Finally, the experiments with hypothyroid animals suggest the possible role of thyroid hormone in the maturation of inhibitory synapse. Altogether, this thesis addressed the molecular mechanism underlying the Cl- regulation in LSO neurons and deciphered it to some extent.
About 2.4 Ga ago the Great Oxygenation Event (GOE) started the permanent oxygenation of Earth’s anoxic atmosphere. The oxygen was most likely produced by oxygenic photosynthesis in Cyanobacteria. However, hints for local occurrences of Cyanobacterial life and free oxygen exists for at least 300 Ma prior to the GOE. Different hypotheses were proposed to explain this delay between the evolution of oxygen producers and the start of the GOE. For this thesis, theoretic predictions made by two of those hypotheses were tested in laboratory experiments using ancestral, basal clade Cyanobacteria grown under simulated Archean like conditions.
Cyanobacteria might have evolved in freshwater environments and subsequently had to adapt to the higher salinity of the Archean ocean. In turn, this would have delayed their global expansion required for the GOE. Experiments with the most primitive freshwater Cyanobacterium Gloeobacter violaceus PCC 7421, showed its ability to tolerate and slowly grow in brackish water, thereby providing a route for the evolution of open ocean dwelling, salt tolerant species. The Archean ocean may have presented another hurdle to Cyanobacterial expansion as it contained large amounts of Fe(II), which is presumed to be toxic to Cyanobacteria. This thesis shows that the localised activity of Cyanobacteria could have formed marine oxygen oases in shallow coastal regions. This would have negated the toxicity of Fe(II) and could have produced more net O2 then modern oxic systems. Additionally, the formation of green rust was observed, which seemed to have a toxic effect on Cyanobacterial growth and could be an important factor for the genesis of banded iron formations.
In conclusion, this thesis could show the viability of both, the “freshwater-origin” and “Fe(II)-toxicity”, hypothesis. Nevertheless, how long it took for Cyanobacteria to overcome the restrictions described above to expand into the open ocean is uncertain and needs to be further studied.
Proteins of the intermembrane space of mitochondria are generally encoded by nuclear genes that are synthesized in the cytosol. A group of small intermembrane space proteins lack classical mitochondrial targeting sequences, but these proteins are imported in an oxidation-driven reaction that relies on the activity of two components, Mia40 and Erv1. Both proteins constitute the mitochondrial disulfide relay system. Mia40 functions as an import receptor that interacts with incoming polypeptides via transient, intermolecular disulfide bonds. Erv1 is an FAD-binding sulfhydryl oxidase that activates Mia40 by re-oxidation, but the process how Erv1 itself is re-oxidized has been poorly understood. Here, I show that Erv1 interacts with cytochrome c which provides a functional link between the mitochondrial disulfide relay system and the respiratory chain. This mechanism not only increases the efficiency of mitochondrial inport by the re-oxidation of Erv1 and Mia40 but also prevents the formation of deleterious hydrogen peroxide within the intermembrane space. Thus, the miochondrial disulfide relay system is, analogous to that of the bacterial periplasm, connected to the electron transport chain of the inner membrane, which possibly allows an oxygen-dependend regulation of mitochondrial import rates. In addition, I modeled the structure of Erv1 on the basis of the Saccharomyces cerevisiae Erv2 crystal structure in order to gain insight into the molecular mechanism of Erv1. According to the high degree of sequence homologies, various characteristics found for Erv2 are also valid for Erv1. Finally, I propose a regulatory function of the disulfide relay system on the respiratory chain. The disulfide relay system senses the molecular oxygen levels in mitochondria and, thus, is able to adapt respiratory chain activity in order to prevent wastage of NADH and production of ROS.
Background: Aneuploidy, or abnormal chromosome numbers, severely alters cell physiology and is widespread in
cancers and other pathologies. Using model cell lines engineered to carry one or more extra chromosomes, it has
been demonstrated that aneuploidy per se impairs proliferation, leads to proteotoxic as well as replication stress
and triggers conserved transcriptome and proteome changes.
Results: In this study, we analysed for the first time miRNAs and demonstrate that their expression is altered in
response to chromosome gain. The miRNA deregulation is independent of the identity of the extra chromosome
and specific to individual cell lines. By cross-omics analysis we demonstrate that although the deregulated miRNAs
differ among individual aneuploid cell lines, their known targets are predominantly associated with cell development,
growth and proliferation, pathways known to be inhibited in response to chromosome gain. Indeed, we show that up
to 72% of these targets are downregulated and the associated miRNAs are overexpressed in aneuploid cells, suggesting
that the miRNA changes contribute to the global transcription changes triggered by aneuploidy. We identified
hsa-miR-10a-5p to be overexpressed in majority of aneuploid cells. Hsa-miR-10a-5p enhances translation of a
subset of mRNAs that contain so called 5’TOP motif and we show that its upregulation in aneuploids provides
resistance to starvation-induced shut down of ribosomal protein translation.
Conclusions: Our work suggests that the changes of the microRNAome contribute on one hand to the adverse
effects of aneuploidy on cell physiology, and on the other hand to the adaptation to aneuploidy by supporting
translation under adverse conditions.
Keywords: Aneuploidy, Cancer, miRNA, miR-10a-5p, Trisomy
Cyanobacteria are the only prokaryotes with the ability to conduct oxygenic photosynthesis,
therefore having major influence on the evolution of life on earth. Their diverse morphology
was traditionally the basis for taxonomy and classification. For example, the genus
Chroococcidiopsis has been classified within the order Pleurocapsales, based on a unique
reproduction modus by baeocytes. Recent phylogenetic results suggested a closer
relationship of this genus to the order Nostocales. However, these studies were based
mostly on the highly conserved 16S rRNA and a small selection of Chroococcidiopsis
strains. One aim of this present thesis was to investigate the evolutionary relationships of
the genus Chroococcidiopsis, the Pleurocapsales and remaining cyanobacteria using
16S rRNA, rpoC1 and gyrB gene. Including the single gene, as the multigene analyses of
97 strains clearly showed a separation of the genus Chroococcidiopsis from the
Pleurocapsales. Furthermore, a sister relationship between the genus Chroococcidiopsis
and the order Nostocales was confirmed. Consequently, the monogeneric family
Chroococcidiopsidaceae Geitler ex. Büdel, Donner & Kauff familia nova is justified. The
phylogenetic analyses also revealed the polyphyly of the remaining Pleurocapsales, due to
the fact that the strain Pleurocapsa PCC 7327 was always separated from other strains.
This is supported by differences in their metabolism, ecology and physiology.
A second aim of this study was to investigate the thylakoid arrangement of
Chroococcidiopsis and a selection of cyanobacterial strains. The investigation of 13 strains
with Low Temperature Scanning Electron Microscopy revealed two unknown thylakoidal
arrangements within Chroococcidiopsis (parietal and stacked). This result revised the
knowledge of the thylakoid arrangement in this genus. Previously, only a coiled
arrangement was known for three strains. Based on the data of 66 strains, the feature
thylakoid arrangement was tested as a potential feature for morphological identification of
cyanobacteria. The results showed a strong relationship between the group assignment of
cyanobacteria and their thylakoid arrangements. Hence, it is in general possible to
conclude from this certain phenotypic character the affiliation to a particular family, order
or genus.
The third aim of this study was to investigate biogeographical patterns of the worldwide
distributed genus Chroococcidiopsis. The phylogenetic analysis suggested that the genus do not have biogeographical patterns, which is in contrast with a recent study on hypolithic
living Chroococcidiopsis strains and the majority of phylogeographic analysis of
microorganisms. Further analysis showed no separation of different life-strategies within
the genus. These results could be related to the genetic markers utilized, which may not
contain biogeographical information. Hence the present study can neither exclude nor
prove the possibility of biogeographic and life-strategy patterns in the genus
Chroococcidiopsis.
Future research should be focused on finding appropriate genetic markers investigate of
evolutionary relationships and biogeographical patterns within Chroococcidiopsis.