### Refine

#### Year of publication

- 1998 (90) (remove)

#### Document Type

- Preprint (90) (remove)

#### Language

- English (90) (remove)

#### Keywords

- Case Based Reasoning (4)
- CIM-OSA (2)
- Kalman filtering (2)
- TOVE (2)
- coset enumeration (2)
- particle methods (2)
- subgroup problem (2)
- Boltzmann Equation (1)
- Complexity (1)
- Correspondence with other notations (1)

#### Faculty / Organisational entity

Wavelets on closed surfaces in Euclidean space R3 are introduced starting from a scale discrete wavelet transform for potentials harmonic down to a spherical boundary. Essential tools for approximation are integration formulas relating an integral over the sphere to suitable linear combinations of functional values (resp. normal derivatives) on the closed surface under consideration. A scale discrete version of multiresolution is described for potential functions harmonic outside the closed surface and regular at infinity. Furthermore, an exact fully discrete wavelet approximation is developed in case of band-limited wavelets. Finally, the role of wavelets is discussed in three problems, namely (i) the representation of a function on a closed surface from discretely given data, (ii) the (discrete) solution of the exterior Dirichlet problem, and (iii) the (discrete) solution of the exterior Neumann problem.

We have computed ensembles of complete spectra of the staggered Dirac operator using four-dimensional SU(2) gauge fields, both in the quenched approximation and with dynamical fermions. To identify universal features in the Dirac spectrum, we compare the lattice data with predictions from chiral random matrix theory for the distribution of the low-lying eigenvalues. Good agreement is found up to some limiting energy, the so-called Thouless energy, above which random matrix theory no longer applies. We determine the dependence of the Thouless energy on the simulation parameters using the scalar susceptibility and the number variance.

Although several systematic analyses of existing approaches to adaptation have been published recently, a general formal adaptation framework is still missing. This paper presents a step into the direction of developing such a formal model of transformational adaptation. The model is based on the notion of the quality of a solution to a problem, while quality is meant in a more general sense and can also denote some kind of appropriateness, utility, or degree of correctness. Adaptation knowledge is then defined in terms of functions transforming one case into a successor case. The notion of quality provides us with a semantics for adaptation knowledge and allows us to define terms like soundness, correctness and completeness. In this view, adaptation (and even the whole CBR process) appears to be a special instance of an optimization problem.

For the numerical simulation of 3D radiative heat transfer in glasses and glass melts, practically applicable mathematical methods are needed to handle such problems optimal using workstation class computers. Since the exact solution would require super-computer capabilities we concentrate on approximate solutions with a high degree of accuracy. The following approaches are studied: 3D diffusion approximations and 3D ray-tracing methods.

Thermal Properties of Interacting Bose Fields and Imaginary-Time Stochastic Differential Equations
(1998)

Abstract: Matsubara Green's functions for interacting bosons are expressed as classical statistical averages corresponding to a linear imaginary-time stochastic differential equation. This makes direct numerical simulations applicable to the study of equilibrium quantum properties of bosons in the non-perturbative regime. To verify our results we discuss an oscillator with quartic anharmonicity as a prototype model for an interacting Bose gas. An analytic expression for the characteristic function in a thermal state is derived and a Higgs-type phase transition discussed, which occurs when the oscillator frequency becomes negative.

In the present paper we investigate the Rayleigh-Benard convection in rarefied gases and demonstrate by numerical experiments the transition from purely thermal conduction to a natural convective flow for a large range of Knudsen numbers from 0.02 downto 0.001. We address to the problem how the critical value for the Rayleigh number defined for incompressible vsicous flows may be translated to rarefied gas flows. Moreover, the simulations obtained for a Knudsen number Kn=0.001 and Froude number Fr=1 show a further transition from regular Rayleigh-Benard cells to a pure unsteady behavious with moving vortices.

This paper presents a brief overview of the INRECA-II methodology for building and maintaining CBR applications. It is based on the experience factory and the software process modeling approach from software engineering. CBR development and maintenance experience is documented using software process models and stored in a three-layered experience packet.

The critical points of the continuous series are characterized by two complex numbers l_1,l_2 (Re(l_1,l_2)< 0), and a natural number n (n>=3) which enters the string susceptibility constant through gamma = -2/(n-1). The critical potentials are analytic functions with a convergence radius depending on l_1 or l_2. We use the orthogonal polynomial method and solve the Schwinger-Dyson equations with a technique borrowed from conformal field theory.

In system theory, state is a key concept. Here, the word state refers to condition, as in the example Since he went into the hospital, his state of health worsened daily. This colloquial meaning was the starting point for defining the concept of state in system theory. System theory describes the relationship between input X and output Y, that is, between influence and reaction. In system theory, a system is something that shows an observable behavior that may be influenced. Therefore, apart from the system, there must be something else influencing and observing the reaction of the system. This is called the environment of the system.