### Refine

#### Year of publication

#### Keywords

- Integer programming (4)
- hub location (3)
- Heuristics (2)
- Logistics (2)
- Supply Chain Management (2)
- facility location (2)
- software development (2)
- supply chain management (2)
- : multiple objective programming (1)
- Assigment (1)

#### Faculty / Organisational entity

- Fraunhofer (ITWM) (24)
- Fachbereich Mathematik (3)

Territory design may be viewed as the problem of grouping small geographic areas into larger geographic clusters called territories in such a way that the latter are acceptable according to relevant planning criteria. In this paper we review the existing literature for applications of territory design problems and solution approaches for solving these types of problems. After identifying features common to all applications we introduce a basic territory design model and present in detail two approaches for solving this model: a classical location–allocation approach combined with optimal split resolution techniques and a newly developed computational geometry based method. We present computational results indicating the efficiency and suitability of the latter method for solving large–scale practical problems in an interactive environment. Furthermore, we discuss extensions to the basic model and its integration into Geographic Information Systems.

In this paper we develop a network location model that combines the characteristics of ordered median and gradual cover models resulting in the Ordered Gradual Covering Location Problem (OGCLP). The Gradual Cover Location Problem (GCLP) was specifically designed to extend the basic cover objective to capture sensitivity with respect to absolute travel distance. Ordered Median Location problems are a generalization of most of the classical locations problems like p-median or p-center problems. They can be modeled by using so-called ordered median functions. These functions multiply a weight to the cost of fulfilling the demand of a customer which depends on the position of that cost relative to the costs of fulfilling the demand of the other customers. We derive Finite Dominating Sets (FDS) for the one facility case of the OGCLP. Moreover, we present efficient algorithms for determining the FDS and also discuss the conditional case where a certain number of facilities are already assumed to exist and one new facility is to be added. For the multi-facility case we are able to identify a finite set of potential facility locations a priori, which essentially converts the network location model into its discrete counterpart. For the multi-facility discrete OGCLP we discuss several Integer Programming formulations and give computational results.

The capacitated single-allocation hub location problem revisited: A note on a classical formulation
(2009)

Denote by G = (N;A) a complete graph where N is the set of nodes and A is the set of edges. Assume that a °ow wij should be sent from each node i to each node j (i; j 2 N). One possibility is to send these °ows directly between the corresponding pairs of nodes. However, in practice this is often neither e±cient nor costly attractive because it would imply that a link was built between each pair of nodes. An alternative is to select some nodes to become hubs and use them as consolidation and redistribution points that altogether process more e±ciently the flow in the network. Accordingly, hubs are nodes in the graph that receive tra±c (mail, phone calls, passengers, etc) from di®erent origins (nodes) and redirect this tra±c directly to the destination nodes (when a link exists) or else to other hubs. The concentration of tra±c in the hubs and its shipment to other hubs lead to a natural decrease in the overall cost due to economies of scale.

In this paper, a multi-period supply chain network design problem is addressed. Several aspects of practical relevance are considered such as those related with the financial decisions that must be accounted for by a company managing a supply chain. The decisions to be made comprise the location of the facilities, the flow of commodities and the investments to make in alternative activities to those directly related with the supply chain design. Uncertainty is assumed for demand and interest rates, which is described by a set of scenarios. Therefore, for the entire planning horizon, a tree of scenarios is built. A target is set for the return on investment and the risk of falling below it is measured and accounted for. The service level is also measured and included in the objective function. The problem is formulated as a multi-stage stochastic mixed-integer linear programming problem. The goal is to maximize the total financial benefit. An alternative formulation which is based upon the paths in the scenario tree is also proposed. A methodology for measuring the value of the stochastic solution in this problem is discussed. Computational tests using randomly generated data are presented showing that the stochastic approach is worth considering in these type of problems.

In this paper we propose a general approach solution method for the single facility ordered median problem in the plane. All types of weights (non-negative, non-positive, and mixed) are considered. The big triangle small triangle approach is used for the solution. Rigorous and heuristic algorithms are proposed and extensively tested on eight different problems with excellent results.

In this paper, an extension to the classical capacitated single-allocation hub location problem is studied in which the size of the hubs is part of the decision making process. For each potential hub a set of capacities is assumed to be available among which one can be chosen. Several formulations are proposed for the problem, which are compared in terms of the bound provided by the linear programming relaxation. Di®erent sets of inequalities are proposed to enhance the models. Several preprocessing tests are also presented with the goal of reducing the size of the models for each particular instance. The results of the computational experiments performed using the proposed models are reported.

In this paper a new trend is introduced into the field of multicriteria location problems. We combine the robustness approach using the minmax regret criterion together with Pareto-optimality. We consider the multicriteria Weber location problem which consists of simultaneously minimizing a number of weighted sum-distance functions and the set of Pareto-optimal locations as its solution concept. For this problem, we characterize the Pareto-optimal solutions within the set of robust locations for the original weighted sum-distance functions. These locations have both the properties of stability and non-domination which are required in robust and multicriteria programming.

Facility location problems in the plane are among the most widely used tools of Mathematical Programming in modeling real-world problems. In many of these problems restrictions have to be considered which correspond to regions in which a placement of new locations is forbidden. We consider center and median problems where the forbidden set is
a union of pairwise disjoint convex sets. As applications we discuss the assembly of printed circuit boards, obnoxious facility location and the location of emergency facilities.

We examine the feasibility polyhedron of the uncapacitated hub location problem (UHL) with multiple allocation, which has applications in the fields of air passenger and cargo transportation, telecommunication and postal delivery services. In particular we determine the dimension and derive some classes of facets of this polyhedron. We develop some general rules about lifting facets from the uncapacitated facility location (UFL) for UHL and projecting facets from UHL to UFL. By applying these rules we get a new class of facets for UHL which dominates the inequalities in the original formulation. Thus we get a new formulation of UHL whose constraints are all facet–defining. We show its superior computational performance by benchmarking it on a well known data set.

Home Health Care (HHC) services are becoming increasingly important in Europe’s aging societies. Elderly people have varying degrees of need for assistance and medical treatment. It is advantageous to allow them to live in their own homes as long as possible, since a long-term stay in a nursing home can be much more costly for the social insurance system than a treatment at home providing assistance to the required level. Therefore, HHC services are a cost-effective and flexible instrument in the social system. In Germany, organizations providing HHC services are generally either larger charities with countrywide operations or small private companies offering services only in a city or a rural area. While the former have a hierarchical organizational structure and a large number of employees, the latter typically only have some ten to twenty nurses under contract. The relationship to the patients (“customers”) is often long-term and can last for several years. Therefore acquiring and keeping satisfied customers is crucial for HHC service providers and intensive competition among them is observed.