### Refine

#### Year of publication

- 2005 (126) (remove)

#### Document Type

- Doctoral Thesis (58)
- Report (23)
- Periodical Part (15)
- Preprint (14)
- Working Paper (5)
- Diploma Thesis (4)
- Master's Thesis (3)
- Conference Proceeding (2)
- Habilitation (1)
- Lecture (1)

#### Keywords

- Mobilfunk (4)
- Mehrskalenanalyse (3)
- Wavelet (3)
- mobile radio (3)
- Ambient Intelligence (2)
- Approximation (2)
- Computeralgebra (2)
- Elastoplastizität (2)
- Empfängerorientierung (2)
- Flüssig-Flüssig-Extraktion (2)

#### Faculty / Organisational entity

- Fachbereich Mathematik (38)
- Fachbereich Maschinenbau und Verfahrenstechnik (17)
- Fachbereich Sozialwissenschaften (13)
- Fraunhofer (ITWM) (13)
- Fachbereich Chemie (12)
- Fachbereich Elektrotechnik und Informationstechnik (10)
- Fachbereich Informatik (8)
- Fachbereich Biologie (4)
- Fachbereich Wirtschaftswissenschaften (4)
- Fachbereich ARUBI (3)

A method to correct the elastic stress tensor at a fixed point of an elastoplastic body, which is subject to exterior loads, is presented and analysed. In contrast to uniaxial corrections (Neuber or ESED), our method takes multiaxial phenomena like ratchetting or cyclic hardening/softening into account by use of Jiang's model. Our numerical algorithm is designed for the case that the scalar load functions are piecewise linear and can be used in connection with critical plane/multiaxial rainflow methods in high cycle fatigue analysis. In addition, a local existence and uniqueness result of Jiang's equations is given.

The level-set method has been recently introduced in the field of shape optimization, enabling a smooth representation of the boundaries on a fixed mesh and therefore leading to fast numerical algorithms. However, most of these algorithms use a Hamilton-Jacobi equation to connect the evolution of the level-set function with the deformation of the contours, and consequently they cannot create any new holes in the domain (at least in 2D). In this work, we propose an evolution equation for the level-set function based on a generalization of the concept of topological gradient. This results in a new algorithm allowing for all kinds of topology changes.

By means of the limit and jump relations of classical potential theory with respect to the vectorial Helmholtz equation a wavelet approach is established on a regular surface. The multiscale procedure is constructed in such a way that the emerging scalar, vectorial and tensorial potential kernels act as scaling functions. Corresponding wavelets are defined via a canonical refinement equation. A tree algorithm for fast decomposition of a complex-valued vector field given on a regular surface is developed based on numerical integration rules. By virtue of this tree algorithm, an effcient numerical method for the solution of vectorial Fredholm integral equations on regular surfaces is discussed in more detail. The resulting multiscale formulation is used to solve boundary-value problems for the time harmonic Maxwell's equations corresponding to regular surfaces.

This document introduces the extension of Katja to support position structures and explains the subtleties of their application as well as the design decisions made and problems solved with respect to their implementation. The Katja system was first introduced by Jan Schäfer in the context of his project work and is based on the MAX system developed by Arnd Poetzsch-Heffter.

Automated theorem proving is a search problem and, by its undecidability, a very difficult one. The challenge in the development of a practically successful prover is the mapping of the extensively developed theory into a program that runs efficiently on a computer. Starting from a level-based system model for automated theorem provers, in this work we present different techniques that are important for the development of powerful equational theorem provers. The contributions can be divided into three areas: Architecture. We present a novel prover architecture that is based on a set-based compression scheme. With moderate additional computational costs we achieve a substantial reduction of the memory requirements. Further wins are architectural clarity, the easy provision of proof objects, and a new way to parallelize a prover which shows respectable speed-ups in practice. The compact representation paves the way to new applications of automated equational provers in the area of verification systems. Algorithms. To improve the speed of a prover we need efficient solutions for the most time-consuming sub-tasks. We demonstrate improvements of several orders of magnitude for two of the most widely used term orderings, LPO and KBO. Other important contributions are a novel generic unsatisfiability test for ordering constraints and, based on that, a sufficient ground reducibility criterion with an excellent cost-benefit ratio. Redundancy avoidance. The notion of redundancy is of central importance to justify simplifying inferences which are used to prune the search space. In our experience with unfailing completion, the usual notion of redundancy is not strong enough. In the presence of associativity and commutativity, the provers often get stuck enumerating equations that are permutations of each other. By extending and refining the proof ordering, many more equations can be shown redundant. Furthermore, our refinement of the unfailing completion approach allows us to use redundant equations for simplification without the need to consider them for generating inferences. We describe the efficient implementation of several redundancy criteria and experimentally investigate their influence on the proof search. The combination of these techniques results in a considerable improvement of the practical performance of a prover, which we demonstrate with extensive experiments for the automated theorem prover Waldmeister. The progress achieved allows the prover to solve problems that were previously out of reach. This considerably enhances the potential of the prover and opens up the way for new applications.

Aggregation of Large-Scale Network Flow Problems with Application to Evacuation Planning at SAP
(2005)

Our initial situation is as follows: The blueprint of the ground floor of SAP’s main building the EVZ is given and the open question on how mathematic can support the evacuation’s planning process ? To model evacuation processes in advance as well as for existing buildings two models can be considered: macro- and microscopic models. Microscopic models emphasize the individual movement of evacuees. These models consider individual parameters such as walking speed, reaction time or physical abilities as well as the interaction of evacuees during the evacuation process. Because of the fact that the microscopic model requires lots of data, simulations are taken for implementation. Most of the current approaches concerning simulation are based on cellular automats. In contrast to microscopic models, macroscopic models do not consider individual parameters such as the physical abilities of the evacuees. This means that the evacuees are treated as a homogenous group for which only common characteristics are considered; an average human being is assumed. We do not have that much data as in the case of the microscopic models. Therefore, the macroscopic models are mainly based on optimization approaches. In most cases, a building or any other evacuation object is represented through a static network. A time horizon T is added, in order to be able to describe the evolution of the evacuation process over time. Connecting these two components we finally get a dynamic network. Based on this network, dynamic network flow problems are formulated, which can map evacuation processes. We focused on the macroscopic model in our thesis. Our main focus concerning the transfer from the real world problem (e.g. supporting the evacuation planning) will be the modeling of the blueprint as a dynamic network. After modeling the blueprint as a dynamic network, it will be no problem to give a formulation of a dynamic network flow problem, the so-called evacuation problem, which seeks for an optimal evacuation time. However, we have to solve a static large-scale network flow problem to derive a solution for this formulation. In order to reduce the network size, we will examine the possibility of applying aggregation to the evacuation problem. Aggregation (lat. aggregare = piling, affiliate; lat. aggregatio = accumulation, union; the act of gathering something together) was basically used to reduce the size of general large-scale linear or integer programs. The results gained for the general problem definitions were then applied to the transportation problem and the minimum cost network flow problem. We review this theory in detail and look on how results derived there can be used for the evacuation problem, too.

This thesis contains the mathematical treatment of a special class of analog microelectronic circuits called translinear circuits. The goal is to provide foundations of a new coherent synthesis approach for this class of circuits. The mathematical methods of the suggested synthesis approach come from graph theory, combinatorics, and from algebraic geometry, in particular symbolic methods from computer algebra. Translinear circuits form a very special class of analog circuits, because they rely on nonlinear device models, but still allow a very structured approach to network analysis and synthesis. Thus, translinear circuits play the role of a bridge between the "unknown space" of nonlinear circuit theory and the very well exploited domain of linear circuit theory. The nonlinear equations describing the behavior of translinear circuits possess a strong algebraic structure that is nonetheless flexible enough for a wide range of nonlinear functionality. Furthermore, translinear circuits offer several technical advantages like high functional density, low supply voltage and insensitivity to temperature. This unique profile is the reason that several authors consider translinear networks as the key to systematic synthesis methods for nonlinear circuits. The thesis proposes the usage of a computer-generated catalog of translinear network topologies as a synthesis tool. The idea to compile such a catalog has grown from the observation that on the one hand, the topology of a translinear network must satisfy strong constraints which severely limit the number of "admissible" topologies, in particular for networks with few transistors, and on the other hand, the topology of a translinear network already fixes its essential behavior, at least for static networks, because the so-called translinear principle requires the continuous parameters of all transistors to be the same. Even though the admissible topologies are heavily restricted, it is a highly nontrivial task to compile such a catalog. Combinatorial techniques have been adapted to undertake this task. In a catalog of translinear network topologies, prototype network equations can be stored along with each topology. When a circuit with a specified behavior is to be designed, one can search the catalog for a network whose equations can be matched with the desired behavior. In this context, two algebraic problems arise: To set up a meaningful equation for a network in the catalog, an elimination of variables must be performed, and to test whether a prototype equation from the catalog and a specified equation of desired behavior can be "matched", a complex system of polynomial equations must be solved, where the solutions are restricted to a finite set of integers. Sophisticated algorithms from computer algebra are applied in both cases to perform the symbolic computations. All mentioned algorithms have been implemented using C++, Singular, and Mathematica, and are successfully applied to actual design problems of humidity sensor circuitry at Analog Microelectronics GmbH, Mainz. As result of the research conducted, an exhaustive catalog of all static formal translinear networks with at most eight transistors is available. The application for the humidity sensor system proves the applicability of the developed synthesis approach. The details and implementations of the algorithms are worked out only for static networks, but can easily be adopted for dynamic networks as well. While the implementation of the combinatorial algorithms is stand-alone software written "from scratch" in C++, the implementation of the algebraic algorithms, namely the symbolic treatment of the network equations and the match finding, heavily rely on the sophisticated Gröbner basis engine of Singular and thus on more than a decade of experience contained in a special-purpose computer algebra system. It should be pointed out that the thesis contains the new observation that the translinear loop equations of a translinear network are precisely represented by the toric ideal of the network's translinear digraph. Altogether, this thesis confirms and strengthenes the key role of translinear circuits as systematically designable nonlinear circuits.

Ultraschall ist eines der am häufigsten genutzen, bildgebenden Verfahren in der Kardiologie. Dies ist durch die günstige Erzeugung, die Nicht-Invasivität und die Unschädlichkeit für die Patienten begründet. Nachteilig an den existierenden Geräten ist der Umstand, daß lediglich zwei-dimensionale Bilder generiert werden können. Zusätzlich können diese Bilder aufgrund anatomischer Gegebenheiten nicht aus einer wahlfreien Position akquiriert werden. Dies erschwert die Analyse der Daten und folglich die Diagnose. Mit dieser Arbeit wurden neue, algorithmische Aspekte des vier-dimensionalen, kardiologischen Ultraschalls ausgehend von der Akquisition der Rohdaten, deren Synchronisation und Rekonstruktion bis hin zur Visualisierung bearbeitet. In einem zusätzlichen Kapitel wurde eine neue Technik zur weiteren Aufwertung der Visualisierung, sowie zur visuellen Bearbeitung der Ultraschalldaten entwickelt. Durch die hier entwickelten Verfahren ist es möglich bestimmte Einschränkungen des kardiologischen Ultraschalls aufzuheben oder zumindest zu mildern. Hierunter zählen vor allem die Einschränkung auf zwei-dimensionale Schnittbilder, sowie die eingeschränkte Sichtwahl.

We give an analytical and geometrical treatment of what it means to sepa rate a Gaussian kernel along arbitrary axes in Rn, and we present a separation scheme that allows to efficiently implement anisotropic Gaussian convolution filters in arbitrary dimension. Based on our previous analysis we show that this scheme is optimal with regard to the number of memory accesses and nterpolation operations needed. Our method relies on non-orthogonal convolution axes and works com- pletely in image space. Thus, it avoids the need for an FFT-subroutine. Depending on the accuracy and speed requirements, different interpolation schemes and methods to implement the one-dimensional Gaussian (FIR, IIR) can be integrated. The algorithm is also feasible for hardware that does not contain a floating-point unit. Special emphasis is laid on analyzing the performance and accuracy of our method. In particular, we show that withot any special optimization of the source code, our method can perform anisotropic Gaussian filtering faster than methods relyin on the Fast Fourier Transform.