### Refine

#### Keywords

- Automated Reasoning (1)
- Deduction (1)
- Difference Reduction (1)
- Equational Reasoning (1)

Coloring terms (rippling) is a technique developed for inductive theorem proving which uses syntactic differences of terms to guide the proof search. Annotations (colors) to terms are used to maintain this information. This technique has several advantages, e.g. it is highly goal oriented and involves little search. In this paper we give a general formalization of coloring terms in a higher-order setting. We introduce a simply-typed lambda calculus with color annotations and present an appropriate (pre-)unification algorithm. Our work is a formal basis to the implementation of rippling in a higher-order setting which is required e.g. in case of middle-out reasoning. Another application is in the construction of natural language semantics, where the color annotations rule out linguistically invalid readings that are possible using standard higher-order unification.

This report presents a methodology to guide equational reasoningin a goal directed way. Suggested by rippling methods developed inthe field of inductive theorem proving we use attributes of terms andheuristics to determine bridge lemmas, i.e. lemmas which have tobe used during the proof of the theorem. Once we have found sucha bridge lemma we use the techniques of difference unification andrippling to enable its use.