### Refine

#### Year of publication

#### Document Type

- Preprint (1180) (remove)

#### Keywords

- AG-RESY (17)
- Case-Based Reasoning (16)
- Mehrskalenanalyse (10)
- RODEO (10)
- Approximation (9)
- Fallbasiertes Schliessen (9)
- Wavelet (9)
- Boltzmann Equation (7)
- Inverses Problem (7)
- Location Theory (7)

#### Faculty / Organisational entity

- Fachbereich Mathematik (604)
- Fachbereich Informatik (346)
- Fachbereich Physik (159)
- Fraunhofer (ITWM) (19)
- Fachbereich Elektrotechnik und Informationstechnik (17)
- Fachbereich Maschinenbau und Verfahrenstechnik (17)
- Fachbereich Wirtschaftswissenschaften (15)
- Universitätsbibliothek (2)
- Fachbereich Sozialwissenschaften (1)

2D quantum dilaton gravitational Hamiltonian, boundary terms and new definition for total energy
(1995)

The ADM and Bondi mass for the RST model have been first discussed from Hawking and Horowitz's argument. Since there is a nonlocal term in the RST model, the RST lagrangian has to be localized so that Hawking and Horowitz's proposal can be carried out. Expressing the localized RST action in terms of the ADM formulation, the RST Hamiltonian can be derived, meanwhile keeping track of all boundary terms. Then the total boundary terms can be taken as the total energy for the RST model. Our result shows that the previous expression for the ADM and Bondi mass actually needs to be modified at quantum level, but at classical level, our mass formula can be reduced to that given by Bilal and Kogan [5] and de Alwis [6]. It has been found that there is a new contribution to the ADM and Bondi mass from the RST boundary due to the existence of the hidden dynamical field. The ADM and Bondi mass with and without the RST boundary for the static and dynamical solutions have been discussed respectively in detail, and some new properties have been found. The thunderpop of the RST model has also been encountered in our new Bondi mass formula.

This paper considers the numerical solution of a transmission boundary-value problem for the time-harmonic Maxwell equations with the help of a special finite volume discretization. Applying this technique to several three-dimensional test problems, we obtain large, sparse, complex linear systems, which are solved by using BiCG, CGS, BiCGSTAB resp., GMRES. We combine these methods with suitably chosen preconditioning matrices and compare the speed of convergence.

Vorgestellt wird ein System basierend auf einem 3D-Scanner nach dem Licht- schnitt-Prinzip mit dem es möglich ist, einen Menschen innerhalb von 1,5 Sekun- den dreidimensional zu erfassen. Mit Hilfe von Evolutionären Algorithmen wird über eine modellbasierte Dateninterpretation die Auswertung der Meßdaten betrie- ben, so daß beliebige Körpermaße ermittelt werden können. Das Ergebnis ist ein individualisiertes CAD-Modells der Person im Rechner. Ein derartiges Modell kann als virtuelle Kleiderpuppe zur Produktion von Maßbekleidung dienen.

We have presented here a two-dimensional kinetical scheme for equations governing the motion of a compressible flow of an ideal gas (air) based on the Kaniel method. The basic flux functions are computed analytically and have been used in the organization of the flux computation. The algorithm is implemented and tested for the 1D shock and 2D shock-obstacle interaction problems.

The classic approach in robust optimization is to optimize the solution with respect to the worst case scenario. This pessimistic approach yields solutions that perform best if the worst scenario happens, but also usually perform bad on average. A solution that optimizes the average performance on the other hand lacks in worst-case performance guarantee.
In practice it is important to find a good compromise between these two solutions. We propose to deal with this problem by considering it from a bicriteria perspective. The Pareto curve of the bicriteria problem visualizes exactly how costly it is to ensure robustness and helps to choose the solution with the best balance between expected and guaranteed performance.
Building upon a theoretical observation on the structure of Pareto solutions for problems with polyhedral feasible sets, we present a column generation approach that requires no direct solution of the computationally expensive worst-case problem. In computational experiments we demonstrate the effectivity of both the proposed algorithm, and the bicriteria perspective in general.

We consider the problem of evacuating a region with the help of buses. For a given set of possible collection points where evacuees gather, and possible shelter locations where evacuees are brought to, we need to determine both collection points and shelters we would like to use, and bus routes that evacuate the region in minimum time.
We model this integrated problem using an integer linear program, and present a branch-cut-and-price algorithm that generates bus tours in its pricing step. In computational experiments we show that our approach is able to solve instances of realistic size in sufficient time for practical application, and considerably outperforms the usage of a generic ILP solver.

Contrary to symbolic learning approaches, which represent a learned concept explicitly, case-based approaches describe concepts implicitly by a pair (CB; sim), i.e. by a measure of similarity sim and a set CB of cases. This poses the question if there are any differences concerning the learning power of the two approaches. In this article we will study the relationship between the case base, the measure of similarity, and the target concept of the learning process. To do so, we transform a simple symbolic learning algorithm (the version space algorithm) into an equivalent case- based variant. The achieved results strengthen the hypothesis of the equivalence of the learning power of symbolic and case-based methods and show the interdependency between the measure used by a case-based algorithm and the target concept.

Retrieving multiple cases is supposed to be an adequate retrieval strategy for guiding partial-order planners because of the recognized flexibility of these planners to interleave steps in the plans. Cases are combined by merging them. In this paper, we will examine two different kinds of merging cases in the context of partial-order planning. We will see that merging cases can be very difficult if the cases are merged eagerly. On the other hand, if cases are merged by avoiding redundant steps, the guidance of the additional cases tends to decrease with the number of covered goals and retrieved cases in domains having a certain kind of interactions. Thus, to retrieve a single case covering many of the goals of the problem or to retrieve fewer cases covering many of the goals is at least equally effective as to retrieve several cases covering all goals in these domains.

A Case Study on Specifikation,Detection and Resolution of IN Feature Interactions with Estelle
(1994)

We present an approach for the treatment of Feature Interactions in Intelligent Networks. The approach is based on the formal description technique Estelle and consists of three steps. For the first step, a specification style supporting the integration of additional features into a basic service is introduced . As a result, feature integration is achieved by adding specification text, i.e . on a purely syntactical level. The second step is the detection of feature interactions resulting from the integration of additional features. A formal criterion is given that can be used for the automatic detection of a particular class of feature interactions. In the third step, previously detected feature interactions are resolved. An algorithm has been devised that allows the automatical incorporation of high-level design decisions into the formal specification. The presented approach is applied to the Basic Call Service and several supplementary interacting features.