### Refine

#### Year of publication

- 2001 (37) (remove)

#### Document Type

- Preprint (37) (remove)

#### Keywords

- AG-RESY (7)
- RODEO (6)
- vibration (3)
- Mathematikunterricht (2)
- Modellierung (2)
- genetic algorithms (2)
- heat equation (2)
- praxisorientiert (2)
- semiconductor superlattice (2)
- stationary radiative transfer equation (2)

#### Faculty / Organisational entity

Point-to-Point Trajectory Planning of Flexible Redundant Robot Manipulators Using Genetic Algorithms
(2001)

The paper focuses on the problem of point-to-point trajectory planning for flexible redundant robot manipulators (FRM) in joint space. Compared with irredundant flexible manipulators, a FRM possesses additional possibilities during point-to-point trajectory planning due to its kinematics redundancy. A trajectory planning method to minimize vibration and/or executing time of a point-to-point motion is presented for FRM based on Genetic Algorithms (GAs). Kinematics redundancy is integrated into the presented method as planning variables. Quadrinomial and quintic polynomial are used to describe the segments that connect the initial, intermediate, and final points in joint space. The trajectory planning of FRM is formulated as a problem of optimization with constraints. A planar FRM with three flexible links is used in simulation. Case studies show that the method is applicable.

The paper focuses on the problem of trajectory planning of flexible redundant robot manipulators (FRM) in joint space. Compared to irredundant flexible manipulators, FRMs present additional possibilities in trajectory planning due to their kinematics redundancy. A trajectory planning method to minimize vibration of FRMs is presented based on Genetic Algorithms (GAs). Kinematics redundancy is integrated into the presented method as a planning variable. Quadrinomial and quintic polynomials are used to describe the segments which connect the initial, intermediate, and final points in joint space. The trajectory planning of FRMs is formulated as a problem of optimization with constraints. A planar FRM with three flexible links is used in simulation. A case study shows that the method is applicable.

The vibration induced in a deformable object upon automatic handling by robot manipulators can often be bothersome. This paper presents a force/torque sensor-based method for handling deformable linear objects (DLOs) in a manner suitable to eliminate acute vibration. An adjustment-motion that can be attached to the end of an arbitrary end-effector's trajectory is employed to eliminate vibration of deformable objects. Differently from model-based methods, the presented sensor-based method does not employ any information from previous motions. The adjustment-motion is generated automatically by analyzing data from a force/torque sensor mounted on the robot wrist. Template matching technique is used to find out the matching point between the vibrational signal of the DLO and a template. Experiments are conducted to test the new method under various conditions. Results demonstrate the effectiveness of the sensor-based adjustment-motion.

Manipulating Deformable Linear Objects: Attachable Adjustment-Motions for Vibration Reduction
(2001)

This paper addresses the problem of handling deformable linear objects (DLOs) in a suitable way to avoid acute vibration. Different types of adjustment-motions that eliminate vibration of deformable objects and can be attached to the end of an arbitrary end-effector trajectory are presented. For describing the dynamics of deformable linear objects, the finite element method is used to derive the dynamic differential equations. Genetic algorithm is used to find the optimal adjustment motion for each simulation example. Experiments are conducted to verify the presented manipulating method.

Manipulating Deformable Linear Objects: Model-Based Adjustment-Motion for Vibration Reduction
(2001)

This paper addresses the problem of handling deformable linear objects (DLOs) in a suitable way to avoid acute vibration. An adjustment-motion that eliminates vibration of DLOs and can be attached to the end of any arbitrary end-effector's trajectory is presented, based on the concept of open-loop control. The presented adjustment-motion is a kind of agile end-effector motion with limited scope. To describe the dynamics of deformable linear objects, the finite element method is used to derive the dynamic differential equations. Genetic algorithm is used to find the optimal adjustment-motion for each simulation example. In contrast to previous approaches, the presented method can be treated as one of the manipulation skills and can be applied to different cases without major changes to the method.

This article presents contributions in the field of path planning for industrial robots with 6 degrees of freedom. This work presents the results of our research in the last 4 years at the Institute for Process Control and Robotics at the University of Karlsruhe. The path planning approach we present works in an implicit and discretized C-space. Collisions are detected in the Cartesian workspace by a hierarchical distance computation. The method is based on the A* search algorithm and needs no essential off-line computation. A new optimal discretization method leads to smaller search spaces, thus speeding up the planning. For a further acceleration, the search was parallelized. With a static load distribution good speedups can be achieved. By extending the algorithm to a bidirectional search, the planner is able to automatically select the easier search direction. The new dynamic switching of start and goal leads finally to the multi-goal path planning, which is able to compute a collision-free path between a set of goal poses (e.g., spot welding points) while minimizing the total path length.

Abstract: Evacuation problems can be modeled as flow problems in dynamic networks. A dynamic network is defined by a directed graph G = (N,A) with sources, sinks and non-negative integral travel times and capacities for every arc (i,j) e A. The earliest arrival flow problem is to send a maximum amount of dynamic flow reaching the sink not only for the given time horizon T, but also for any time T' < T . This problem mimics the evacuation problem of public buildings where occupancies may not known. For the buildings where the number of occupancies is known and concentrated only in one source, the quickest flow model is used to find the minimum egress time. We propose in this paper a solution procedure for evacuation problems with a single source of the building where the occupancy number is either known or unknown. The possibility that the flow capacity may change due to the increasing of smoke density or fire obstructions can be mirrored in our model. The solution procedure looks iteratively for the shortest conditional augmenting path (SCAP) from source to sink and compute the time intervals in which flow reaches the sink via this path.

The anchored hyperplane location problem is to locate a hyperplane passing through some given points P IR^n and minimizing either the sum of weighted distances (median problem), or the maximum weighted distance (center problem) to some other points Q IR^n . If the distances are measured by a norm, it will be shown that in the median case there exists an optimal hyperplane that passes through at least n - k affinely independent points of Q, if k is the maximum number of affinely independent points of P. In the center case, there exists an optimal hyperplane which isatmaximum distance to at least n - k + 1 affinely independent points of Q. Furthermore, if the norm is a smooth norm, all optimal hyperplanes satisfy these criteria. These new results generalize known results about unrestricted hyperplane location problems.

The task of handling non-rigid one-dimensional objects by a robot manipulation system is investigated. Especially, approaches to calculate motions with specific behavior in point contacts between the object and environment are regarded. For single point contacts, motions based on generalized rotations solving the direct and inverse manipulation problem are investigated. The latter problem is additionally tackled by simple rotation and translation motions. For double and multiple point contacts, motions based on Splines are suggested. In experimental results with steel springs, the predicted and measured effect for each approach are compared.