### Refine

#### Year of publication

- 1993 (26) (remove)

#### Document Type

- Preprint (26) (remove)

#### Keywords

#### Faculty / Organisational entity

Based on experiences from an autonomous mobile robot project called MOBOT -III, we found hard realtime-constraints for the operating-system-design. ALBATROSS is "A flexible multi-tasking and realtime network-operatingsystem-kernel", not limited to mobile- robot-projects only, but which might be useful also wherever you have to guarantee a high reliability of a realtime-system. The focus in this article is on a communication-scheme fulfilling the demanded (hard realtime-) assurances although not implying time-delays or jitters on the critical informationchannels. The central chapters discuss a locking-free shared buffer management, without the need for interrupts and a way to arrange the communication architecture in order to produce minimal protocol-overhead and short cycle-times. Most of the remaining communication-capacity (if there is any) is used for redundant transfers, increasing the reliability of the whole system. ALBATROSS is actually implemented on a multi-processor VMEbus-system.

This paper refers to the problem of adaptability over an infinite period of time, regarding dynamic networks. A never ending flow of examples have to be clustered, based on a distance measure. The developed model is based on the self-organizing feature maps of Kohonen [6], [7] and some adaptations by Fritzke [3]. The problem of dynamic surface classification is embedded in the SPIN project, where sub-symbolic abstractions, based on a 3-d scanned environment is being done.

SPIN-NFDS Learning and Preset Knowledge for Surface Fusion - A Neural Fuzzy Decision System -
(1993)

The problem to be discussed in this paper may be characterized in short by the question: "Are these two surface fragments belonging together (i.e. belonging to the same surface)?" The presented techniques try to benefit from some predefined knowledge as well as from the possibility to refine and adapt this knowledge according to a (changing) real environment, resulting in a combination of fuzzy-decision systems and neural networks. The results are encouraging (fast convergence speed, high accuracy), and the model might be used for a wide range of applications. The general frame surrounding the work in this paper is the SPIN- project, where emphasis is on sub-symbolic abstractions, based on a 3-d scanned environment.

Simulation methods like DSMC are an efficient tool to compute rarefied gas flows. Using supercomputers it is possible to include various real gas effects like vibrational energies or chemical reactions in a gas mixture. Nevertheless it is still necessary to improve the accuracy of the current simulation methods in order to reduce the computational effort. To support this task the paper presents a comparison of the classical DSMC method with the so called finite Pointset Method. This new approach was developed during several years in the framework of the European space project HERMES. The comparison given in the paper is based on two different testcases: a spatially homogeneous relaxation problem and a 2-dimensional axisymmetric flow problem at high Mach numbers.

The system of shallow water waves is one of the classical examples for nonlinear, twodimensional conservation laws. The paper investigates a simple kinetic equation depending on a parameter e which leads for e to 0 to the system of shallow water waves. The corresponding equilibrium distribution function has a compact support which depends on the eigenvalues of the hyperbolic system. It is shown that this kind of kinetic approach is restricted to a special class of nonlinear conservation laws. The kinetic model is used to develop a simple particle method for the numerical solution of shallow water waves. The particle method can be implemented in a straightforward way and produces in test examples sufficiently accurate results.

The paper presents a fast implementation of a constructive method to generate a special class of low-discrepancy sequences which are based on Van Neumann-Kakutani tranformations. Such sequences can be used in various simulation codes where it is necessary to generate a certain number of uniformly distributed random numbers on the unit interval.; From a theoretical point of view the uniformity of a sequence is measured in terms of the discrepancy which is a special distance between a finite set of points and the uniform distribution on the unit interval.; Numerical results are given on the cost efficiency of different generators on different hardware architectures as well as on the corresponding uniformity of the sequences. As an example for the efficient use of low-discrepancy sequences in a complex simulation code results are presented for the simulation of a hypersonic rarefied gas flow.

The paper presents the shuffle algorithm proposed by Baganoff, which can be implemented in simulation methods for the Boltzmann equation to simplify the binary collision process. It is shown that the shuffle algborithm is a discrete approximation of an isotropic collision law. The transition probability as well as the scattering cross section of the shuffle algorithm are opposed to the corresponding quantities of a hard-sphere model. The discrepancy between measures on a sphere is introduced in order to quantify the approximation error by using the shuffle algorithm.

This paper considers the numerical solution of a transmission boundary-value problem for the time-harmonic Maxwell equations with the help of a special finite volume discretization. Applying this technique to several three-dimensional test problems, we obtain large, sparse, complex linear systems, which are solved by using BiCG, CGS, BiCGSTAB resp., GMRES. We combine these methods with suitably chosen preconditioning matrices and compare the speed of convergence.