### Refine

#### Year of publication

- 2019 (13) (remove)

#### Document Type

- Doctoral Thesis (9)
- Article (3)
- Preprint (1)

#### Keywords

- Mathematische Modellierung (3)
- Schule (3)
- Simulation (3)
- MINT (2)
- 3D image analysis (1)
- Analysis (1)
- Angewandte Mathematik (1)
- Coupled PDEs (1)
- Evakuierung (1)
- Geo-referenced data (1)

#### Faculty / Organisational entity

- Fachbereich Mathematik (13) (remove)

Many loads acting on a vehicle depend on the condition and quality of roads
traveled as well as on the driving style of the motorist. Thus, during vehicle development,
good knowledge on these further operations conditions is advantageous.
For that purpose, usage models for different kinds of vehicles are considered. Based
on these mathematical descriptions, representative routes for multiple user
types can be simulated in a predefined geographical region. The obtained individual
driving schedules consist of coordinates of starting and target points and can
thus be routed on the true road network. Additionally, different factors, like the
topography, can be evaluated along the track.
Available statistics resulting from travel survey are integrated to guarantee reasonable
trip length. Population figures are used to estimate the number of vehicles in
contained administrative units. The creation of thousands of those geo-referenced
trips then allows the determination of realistic measures of the durability loads.
Private as well as commercial use of vehicles is modeled. For the former, commuters
are modeled as the main user group conducting daily drives to work and
additional leisure time a shopping trip during workweek. For the latter, taxis as
example for users of passenger cars are considered. The model of light-duty commercial
vehicles is split into two types of driving patterns, stars and tours, and in
the common traffic classes of long-distance, local and city traffic.
Algorithms to simulate reasonable target points based on geographical and statistical
data are presented in detail. Examples for the evaluation of routes based
on topographical factors and speed profiles comparing the influence of the driving
style are included.

A distributional solution framework is developed for systems consisting of linear hyperbolic partial differential equations (PDEs) and switched differential algebraic equations (DAEs) which are coupled via boundary conditions. The unique solvability is then characterize in terms of a switched delay DAE. The theory is illustrated with an example of electric power lines modeled by the telegraph equations which are coupled via a switching transformer where simulations confirm the predicted impulsive solutions.

Wir zeigen an einigen Beispielen, wie man numerische Simulationen in Tabellenkalkulationsprogrammen (hier speziell in Excel) erzeugen kann. Diese können beispielsweise im Kontext von mathematischer Modellierung verwendet werden.
Die Beispiele umfassen ein Modell zur Ausbreitung von Krankheiten, die Flugkurve eines Fußballs unter Berücksichtigung von Luftreibung, eine Monte-Carlo-Simulation zur experimentellen Bestimmung von pi, eine Monte-Carlo-Simulation eines gemischten Kartenstapels und die Modellierung von Benzinpreisen mit einem Preistrend und Rauschen

In this thesis, we deal with the worst-case portfolio optimization problem occuring in discrete-time markets.
First, we consider the discrete-time market model in the presence of crash threats. We construct the discrete worst-case optimal portfolio strategy by the indifference principle in the case of the logarithmic utility. After that we extend this problem to general utility functions and derive the discrete worst-case optimal portfolio processes, which are characterized by a dynamic programming equation. Furthermore, the convergence of the discrete worst-case optimal portfolio processes are investigated when we deal with the explicit utility functions.
In order to further study the relation of the worst-case optimal value function in discrete-time models to continuous-time models we establish the finite-difference approach. By deriving the discrete HJB equation we verify the worst-case optimal value function in discrete-time models, which satisfies a system of dynamic programming inequalities. With increasing degree of fineness of the time discretization, the convergence of the worst-case value function in discrete-time models to that in continuous-time models are proved by using a viscosity solution method.

Destructive diseases of the lung like lung cancer or fibrosis are still often lethal. Also in case of fibrosis in the liver, the only possible cure is transplantation.
In this thesis, we investigate 3D micro computed synchrotron radiation (SR\( \mu \)CT) images of capillary blood vessels in mouse lungs and livers. The specimen show so-called compensatory lung growth as well as different states of pulmonary and hepatic fibrosis.
During compensatory lung growth, after resecting part of the lung, the remaining part compensates for this loss by extending into the empty space. This process is accompanied by an active vessel growing.
In general, the human lung can not compensate for such a loss. Thus, understanding this process in mice is important to improve treatment options in case of diseases like lung cancer.
In case of fibrosis, the formation of scars within the organ's tissue forces the capillary vessels to grow to ensure blood supply.
Thus, the process of fibrosis as well as compensatory lung growth can be accessed by considering the capillary architecture.
As preparation of 2D microscopic images is faster, easier, and cheaper compared to SR\( \mu \)CT images, they currently form the basis of medical investigation. Yet, characteristics like direction and shape of objects can only properly be analyzed using 3D imaging techniques. Hence, analyzing SR\( \mu \)CT data provides valuable additional information.
For the fibrotic specimen, we apply image analysis methods well-known from material science. We measure the vessel diameter using the granulometry distribution function and describe the inter-vessel distance by the spherical contact distribution. Moreover, we estimate the directional distribution of the capillary structure. All features turn out to be useful to characterize fibrosis based on the deformation of capillary vessels.
It is already known that the most efficient mechanism of vessel growing forms small torus-shaped holes within the capillary structure, so-called intussusceptive pillars. Analyzing their location and number strongly contributes to the characterization of vessel growing. Hence, for all three applications, this is of great interest. This thesis provides the first algorithm to detect intussusceptive pillars in SR\( \mu \)CT images. After segmentation of raw image data, our algorithm works automatically and allows for a quantitative evaluation of a large amount of data.
The analysis of SR\( \mu \)CT data using our pillar algorithm as well as the granulometry, spherical contact distribution, and directional analysis extends the current state-of-the-art in medical studies. Although it is not possible to replace certain 3D features by 2D features without losing information, our results could be used to examine 2D features approximating the 3D findings reasonably well.

Magnetoelastic coupling describes the mutual dependence of the elastic and magnetic fields and can be observed in certain types of materials, among which are the so-called "magnetostrictive materials". They belong to the large class of "smart materials", which change their shape, dimensions or material properties under the influence of an external field. The mechanical strain or deformation a material experiences due to an externally applied magnetic field is referred to as magnetostriction; the reciprocal effect, i.e. the change of the magnetization of a body subjected to mechanical stress is called inverse magnetostriction. The coupling of mechanical and electromagnetic fields is particularly observed in "giant magnetostrictive materials", alloys of ferromagnetic materials that can exhibit several thousand times greater magnitudes of magnetostriction (measured as the ratio of the change in length of the material to its original length) than the common magnetostrictive materials. These materials have wide applications areas: They are used as variable-stiffness devices, as sensors and actuators in mechanical systems or as artificial muscles. Possible application fields also include robotics, vibration control, hydraulics and sonar systems.
Although the computational treatment of coupled problems has seen great advances over the last decade, the underlying problem structure is often not fully understood nor taken into account when using black box simulation codes. A thorough analysis of the properties of coupled systems is thus an important task.
The thesis focuses on the mathematical modeling and analysis of the coupling effects in magnetostrictive materials. Under the assumption of linear and reversible material behavior with no magnetic hysteresis effects, a coupled magnetoelastic problem is set up using two different approaches: the magnetic scalar potential and vector potential formulations. On the basis of a minimum energy principle, a system of partial differential equations is derived and analyzed for both approaches. While the scalar potential model involves only stationary elastic and magnetic fields, the model using the magnetic vector potential accounts for different settings such as the eddy current approximation or the full Maxwell system in the frequency domain.
The distinctive feature of this work is the analysis of the obtained coupled magnetoelastic problems with regard to their structure, strong and weak formulations, the corresponding function spaces and the existence and uniqueness of the solutions. We show that the model based on the magnetic scalar potential constitutes a coupled saddle point problem with a penalty term. The main focus in proving the unique solvability of this problem lies on the verification of an inf-sup condition in the continuous and discrete cases. Furthermore, we discuss the impact of the reformulation of the coupled constitutive equations on the structure of the coupled problem and show that in contrast to the scalar potential approach, the vector potential formulation yields a symmetric system of PDEs. The dependence of the problem structure on the chosen formulation of the constitutive equations arises from the distinction of the energy and coenergy terms in the Lagrangian of the system. While certain combinations of the elastic and magnetic variables lead to a coupled magnetoelastic energy function yielding a symmetric problem, the use of their dual variables results in a coupled coenergy function for which a mixed problem is obtained.
The presented models are supplemented with numerical simulations carried out with MATLAB for different examples including a 1D Euler-Bernoulli beam under magnetic influence and a 2D magnetostrictive plate in the state of plane stress. The simulations are based on material data of Terfenol-D, a giant magnetostrictive materials used in many industrial applications.

In this dissertation we apply financial mathematical modelling to electricity markets. Electricity is different from any other underlying of financial contracts: it is not storable. This means that electrical energy in one time point cannot be transferred to another. As a consequence, power contracts with disjoint delivery time spans basically have a different underlying. The main idea throughout this thesis is exactly this two-dimensionality of time: every electricity contract is not only characterized by its trading time but also by its delivery time.
The basis of this dissertation are four scientific papers corresponding to the Chapters 3 to 6, two of which have already been published in peer-reviewed journals. Throughout this thesis two model classes play a significant role: factor models and structural models. All ideas are applied to or supported by these two model classes. All empirical studies in this dissertation are conducted on electricity price data from the German market and Chapter 4 in particular studies an intraday derivative unique to the German market. Therefore, electricity market design is introduced by the example of Germany in Chapter 1. Subsequently, Chapter 2 introduces the general mathematical theory necessary for modelling electricity prices, such as Lévy processes and the Esscher transform. This chapter is the mathematical basis of the Chapters 3 to 6.
Chapter 3 studies factor models applied to the German day-ahead spot prices. We introduce a qualitative measure for seasonality functions based on three requirements. Furthermore, we introduce a relation of factor models to ARMA processes, which induces a new method to estimate the mean reversion speed.
Chapter 4 conducts a theoretical and empirical study of a pricing method for a new electricity derivative: the German intraday cap and floor futures. We introduce the general theory of derivative pricing and propose a method based on the Hull-White model of interest rate modelling, which is a one-factor model. We include week futures prices to generate a price forward curve (PFC), which is then used instead of a fixed deterministic seasonality function. The idea that we can combine all market prices, and in particular futures prices, to improve the model quality also plays the major role in Chapter 5 and Chapter 6.
In Chapter 5 we develop a Heath-Jarrow-Morton (HJM) framework that models intraday, day-ahead, and futures prices. This approach is based on two stochastic processes motivated by economic interpretations and separates the stochastic dynamics in trading and delivery time. Furthermore, this framework allows for the use of classical day-ahead spot price models such as the ones of Schwartz and Smith (2000), Lucia and Schwartz (2002) and includes many model classes such as structural models and factor models.
Chapter 6 unifies the classical theory of storage and the concept of a risk premium through the introduction of an unobservable intrinsic electricity price. Since all tradable electricity contracts are derivatives of this actual intrinsic price, their prices should all be derived as conditional expectation under the risk-neutral measure. Through the intrinsic electricity price we develop a framework, which also includes many existing modelling approaches, such as the HJM framework of Chapter 5.

Various physical phenomenons with sudden transients that results into structrual changes can be modeled via
switched nonlinear differential algebraic equations (DAEs) of the type
\[
E_{\sigma}\dot{x}=A_{\sigma}x+f_{\sigma}+g_{\sigma}(x). \tag{DAE}
\]
where \(E_p,A_p \in \mathbb{R}^{n\times n}, x\mapsto g_p(x),\) is a mapping, \(p \in \{1,\cdots,P\}, P\in \mathbb{N}
f \in \mathbb{R} \rightarrow \mathbb{R}^n , \sigma: \mathbb{R} \rightarrow \{1,\cdots, P\}\).
Two related common tasks are:
Task 1: Investigate if above (DAE) has a solution and if it is unique.
Task 2: Find a connection among a solution of above (DAE) and solutions of related
partial differential equations.
In the linear case \(g(x) \equiv 0\) the task 1 has been tackeled already in a
distributional solution framework.
A main goal of the dissertation is to give contribution to task 1 for the
nonlinear case \(g(x) \not \equiv 0\) ; also contributions to the task 2 are given for
switched nonlinear DAEs arising while modeling sudden transients in water
distribution networks. In addition, this thesis contains the following further
contributions:
The notion of structured switched nonlinear DAEs has been introduced,
allowing also non regular distributions as solutions. This extend a previous
framework that allowed only piecewise smooth functions as solutions. Further six mild conditions were given to ensure existence and uniqueness of the solution within the space of piecewise smooth distribution. The main
condition, namely the regularity of the matrix pair \((E,A)\), is interpreted geometrically for those switched nonlinear DAEs arising from water network graphs.
Another contribution is the introduction of these switched nonlinear DAEs
as a simplication of the PDE model used classically for modeling water networks. Finally, with the support of numerical simulations of the PDE model it has been illustrated that this switched nonlinear DAE model is a good approximation for the PDE model in case of a small compressibility coefficient.

Die MINT-EC-Girls-Camp: Math-Talent-School ist eine vom Fraunhofer Institut für Techno- und Wirtschaftsmathematik (ITWM) initiierte Veranstaltung, die regelmäßig als Kooperation zwischen dem Felix-Klein-Zentrum für Mathematik und dem Verein mathematisch-naturwissenschaftlicher Excellence-Center an Schulen e.V. (Verein MINT-EC) durchgeführt wird. Die methodisch-didaktische Konzeption der Math-Talent-Schools erfolgt durch das Kompetenzzentrum für Mathematische Modellierung in MINT-Projekten in der Schule (KOMMS), einer wissenschaftlichen Einrichtung des Fachbereichs Mathematik der Technischen Universität Kaiserslautern. Die inhaltlich-organisatorische Ausführung übernimmt das Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM in enger Abstimmung und Kooperation von Wissenschaftlern der Technischen Universität und des Fraunhofer ITWM. Die MINT-EC-Girls-Camp: Math-Talent-School hat zum Ziel, Mathematik-interessierten Schülerinnen einen Einblick in die Arbeitswelt von Mathematikerinnen und Mathematikern zu geben. In diesem Artikel stellen wir die Math-Talent-School vor. Hierfür werden die fachlichen und fachdidaktischen Hintergründe der Projekte beleuchtet, der Ablauf der Veranstaltung erläutert und ein Fazit gezogen.

Dieser Beitrag beschreibt eine Lernumgebung für Schülerinnen und Schüler der Unter- und Mittelstufe mit einem Schwerpunkt im Fach Mathematik. Das Thema dieser Lernumgebung ist die Simulation von Entfluchtungsprozessen im Rahmen von Gebäudeevakuierungen. Dabei wird das Konzept eines zellulären Automaten vermittelt, ohne dabei Programmierkenntnisse vorauszusetzen oder anzuwenden. Anhand dieses speziellen Simulationswerkzeugs des zellulären Automaten werden Eigenschaften, Kenngrößen sowie Vor- und Nachteile von Simulationen im Allgemeinen thematisiert. Dazu gehören unter anderem die experimentelle Datengewinnung, die Festlegung von Modellparametern, die Diskretisierung des zeitlichen und räumlichen Betrachtungshorizonts sowie die zwangsläufig auftretenden (Diskretisierungs-)Fehler, die algorithmischen Abläufe einer Simulation in Form elementarer Handlungsanweisungen, die Speicherung und Visualisierung von Daten aus einer Simulation sowie die Interpretation und kritische Diskussion von Simulationsergebnissen. Die vorgestellte Lernumgebung ermöglicht etliche Variationen zu weiteren Aspekten des Themas „Evakuierungssimulation“ und bietet dadurch auch vielfältige Differenzierungsmöglichkeiten.