### Refine

#### Year of publication

#### Keywords

- Integer programming (4)
- hub location (3)
- Heuristics (2)
- Logistics (2)
- Supply Chain Management (2)
- facility location (2)
- software development (2)
- supply chain management (2)
- : multiple objective programming (1)
- Assigment (1)

#### Faculty / Organisational entity

- Fraunhofer (ITWM) (24)
- Fachbereich Mathematik (3)

This paper analyzes and solves a patient transportation problem arising in several large hospitals. The aim is to provide an efficient and timely transport service to patients between several locations on a hospital campus. Transportation requests arrive in a dynamic fashion and the solution methodology must therefore be capable of quickly inserting new requests in the current vehicle routes. Contrary to standard dial-a-ride problems, the problem under study contains several complicating constraints which are specific to a hospital context. The paper provides a detailed description of the problem and proposes a two-phase heuristic procedure capable of handling its many features. In the first phase a simple insertion scheme is used to generate a feasible solution, which is improved in the second phase with a tabu search algorithm. The heuristic procedure was extensively tested on real data provided by a German hospital. Results show that the algorithm is capable of handling the dynamic aspect of the problem and of providing high quality solutions. In particular, it succeeded in reducing waiting times for patients while using fewer vehicles.

The objective of this paper is to bridge the gap between location theory and practice. To meet this objective focus is given to the development of software capable of addressing the different needs of a wide group of users. There is a very active community on location theory encompassing many research fields such as operations research, computer science, mathematics, engineering, geography, economics and marketing. As a result, people working on facility location problems have a very diverse background and also different needs regarding the software to solve these problems. For those interested in non-commercial applications (e. g. students and researchers), the library of location algorithms (LoLA can be of considerable assistance. LoLA contains a collection of efficient algorithms for solving planar, network and discrete facility location problems. In this paper, a detailed description of the functionality of LoLA is presented. In the fields of geography and marketing, for instance, solving facility location problems requires using large amounts of demographic data. Hence, members of these groups (e. g. urban planners and sales managers) often work with geographical information too s. To address the specific needs of these users, LoLA was inked to a geographical information system (GIS) and the details of the combined functionality are described in the paper. Finally, there is a wide group of practitioners who need to solve large problems and require special purpose software with a good data interface. Many of such users can be found, for example, in the area of supply chain management (SCM). Logistics activities involved in strategic SCM include, among others, facility location planning. In this paper, the development of a commercial location software tool is also described. The too is embedded in the Advanced Planner and Optimizer SCM software developed by SAP AG, Walldorf, Germany. The paper ends with some conclusions and an outlook to future activities.

In this paper we develop a network location model that combines the characteristics of ordered median and gradual cover models resulting in the Ordered Gradual Covering Location Problem (OGCLP). The Gradual Cover Location Problem (GCLP) was specifically designed to extend the basic cover objective to capture sensitivity with respect to absolute travel distance. Ordered Median Location problems are a generalization of most of the classical locations problems like p-median or p-center problems. They can be modeled by using so-called ordered median functions. These functions multiply a weight to the cost of fulfilling the demand of a customer which depends on the position of that cost relative to the costs of fulfilling the demand of the other customers. We derive Finite Dominating Sets (FDS) for the one facility case of the OGCLP. Moreover, we present efficient algorithms for determining the FDS and also discuss the conditional case where a certain number of facilities are already assumed to exist and one new facility is to be added. For the multi-facility case we are able to identify a finite set of potential facility locations a priori, which essentially converts the network location model into its discrete counterpart. For the multi-facility discrete OGCLP we discuss several Integer Programming formulations and give computational results.

The Discrete Ordered Median Problem (DOMP) generalizes classical discrete location problems, such as the N-median, N-center and Uncapacitated Facility Location problems. It was introduced by Nickel [16], who formulated it as both a nonlinear and a linear integer program. We propose an alternative integer linear programming formulation for the DOMP, discuss relationships between both integer linear programming formulations, and show how properties of optimal solutions can be used to strengthen these formulations. Moreover, we present a specific branch and bound procedure to solve the DOMP more efficiently. We test the integer linear programming formulations and this branch and bound method computationally on randomly generated test problems.

The capacitated single-allocation hub location problem revisited: A note on a classical formulation
(2009)

Denote by G = (N;A) a complete graph where N is the set of nodes and A is the set of edges. Assume that a °ow wij should be sent from each node i to each node j (i; j 2 N). One possibility is to send these °ows directly between the corresponding pairs of nodes. However, in practice this is often neither e±cient nor costly attractive because it would imply that a link was built between each pair of nodes. An alternative is to select some nodes to become hubs and use them as consolidation and redistribution points that altogether process more e±ciently the flow in the network. Accordingly, hubs are nodes in the graph that receive tra±c (mail, phone calls, passengers, etc) from di®erent origins (nodes) and redirect this tra±c directly to the destination nodes (when a link exists) or else to other hubs. The concentration of tra±c in the hubs and its shipment to other hubs lead to a natural decrease in the overall cost due to economies of scale.

In this paper, an extension to the classical capacitated single-allocation hub location problem is studied in which the size of the hubs is part of the decision making process. For each potential hub a set of capacities is assumed to be available among which one can be chosen. Several formulations are proposed for the problem, which are compared in terms of the bound provided by the linear programming relaxation. Di®erent sets of inequalities are proposed to enhance the models. Several preprocessing tests are also presented with the goal of reducing the size of the models for each particular instance. The results of the computational experiments performed using the proposed models are reported.

We present two heuristic methods for solving the Discrete Ordered Median Problem (DOMP), for which no such approaches have been developed so far. The DOMP generalizes classical discrete facility location problems, such as the p-median, p-center and Uncapacitated Facility Location problems. The first procedure proposed in this paper is based on a genetic algorithm developed by Moreno Vega [MV96] for p-median and p-center problems. Additionally, a second heuristic approach based on the Variable Neighborhood Search metaheuristic (VNS) proposed by Hansen & Mladenovic [HM97] for the p-median problem is described. An extensive numerical study is presented to show the efficiency of both heuristics and compare them.

In this paper we propose a general approach solution method for the single facility ordered median problem in the plane. All types of weights (non-negative, non-positive, and mixed) are considered. The big triangle small triangle approach is used for the solution. Rigorous and heuristic algorithms are proposed and extensively tested on eight different problems with excellent results.

In this paper a new trend is introduced into the field of multicriteria location problems. We combine the robustness approach using the minmax regret criterion together with Pareto-optimality. We consider the multicriteria Weber location problem which consists of simultaneously minimizing a number of weighted sum-distance functions and the set of Pareto-optimal locations as its solution concept. For this problem, we characterize the Pareto-optimal solutions within the set of robust locations for the original weighted sum-distance functions. These locations have both the properties of stability and non-domination which are required in robust and multicriteria programming.

The problem discussed in this paper is motivated by the new recycling directiveWEEE of the EC. The core of this law is, that each company which sells electrical or electronic equipment in a European country has the obligation to recollect and recycle an amount of returned items which is proportional to its market share. To assign collection stations to companies, in Germany for one product type a territory design approach is planned. However, in contrast to classical territory design, the territories should be geographically as dispersed as possible to avoid that a company, resp. its logistics provider responsible for the recollection, gains a monopoly in some region. First, we identify an appropriate measure for the dispersion of a territory. Afterwards, we present a first mathematical programming model for this new problem as well as a solution method based on the GRASP methodology. Extensive computational results illustrate the suitability of the model and assess the effectiveness of the heuristic.