### Refine

#### Year of publication

- 1994 (70) (remove)

#### Document Type

- Preprint (35)
- Report (28)
- Article (5)
- Doctoral Thesis (1)
- Working Paper (1)

#### Language

- English (70) (remove)

#### Has Fulltext

- yes (70)

#### Is part of the Bibliography

- no (70)

#### Keywords

- AG-RESY (2)
- Boltzmann Equation (2)
- Numerical Simulation (2)
- PARO (2)
- Angular distribution (1)
- CPLD (1)
- Case-Based Classification Algorithms (1)
- Case-Based Representability (1)
- CoMo-Kit (1)
- Domain Decomposition (1)

#### Faculty / Organisational entity

Order-semi-primal lattices
(1994)

A nonequilibrium situation governed by kinetic equations with strongly contrasted Knudsen numbers in different subdomains is discussed. We consider a domain decomposition problem for Boltzmann- and Euler equations, establish the correct coupling conditions and prove the validity of the obtained coupled solution . Moreover numerical examples comparing different types of coupling conditions are presented.

Let (\(a_i)_{i\in \bf{N}}\) be a sequence of identically and independently distributed random vectors drawn from the \(d\)-dimensional unit ball \(B^d\)and let \(X_n\):= convhull \((a_1,\dots,a_n\)) be the random polytope generated by \((a_1,\dots\,a_n)\). Furthermore, let \(\Delta (X_n)\) : = (Vol \(B^d\) \ \(X_n\)) be the deviation of the polytope's volume from the volume of the ball. For uniformly distributed \(a_i\) and \(d\ge2\), we prove that tbe limiting distribution of \(\frac{\Delta (X_n)} {E(\Delta (X_n))}\) for \(n\to\infty\) satisfies a 0-1-law. Especially, we provide precise information about the asymptotic behaviour of the variance of \(\Delta (X_n\)). We deliver analogous results for spherically symmetric distributions in \(B^d\) with regularly varying tail.

Free Form Volumes
(1994)

This report presents a generalization of tensor-product B-spline surfaces. The new scheme permits knots whose endpoints lie in the interior of the domain rectangle of a surface. This allows local refinement of the knot structure for approximation purposes as well as modeling surfaces with local tangent or curvature discontinuities. The surfaces are represented in terms of B-spline basis functions, ensuring affine invariance, local control, the convex hull property, and evaluation by de Boor's algorithm. A dimension formula for a class of generalized tensor-product spline spaces is developed.

The rapid development of any field of knowledge brings with it unavoidable fragmentation and proliferation of new disciplines. The development of computer science is no exception. Software engineering (SE) and human-computer interaction (HCI) are both relatively new disciplines of computer science. Furthermore, as both names suggest, they each have strong connections with other subjects. SE is concerned with methods and tools for general software development based on engineering principles. This discipline has its roots not only in computer science but also in a number of traditional engineering disciplines. HCI is concerned with methods and tools for the development of human-computer interfaces, assessing the usability of computer systems and with broader issues about how people interact with computers. It is based on theories about how humans process information and interact with computers, other objects and other people in the organizational and social contexts in
which computers are used. HCI draws on knowledge and skills from psychology, anthropology and sociology in addition to computer science. Both disciplines need ways of measuring how well their products and development processes fulfil their intended requirements. Traditionally SE has been concerned with 'how software is constructed' and HCI with 'how people use software'. Given the
different histories of the disciplines and their different objectives, it is not surprising that they take different approaches to measurement. Thus, each has its own distinct 'measurement culture.' In this paper we analyse the differences and the commonalties of the two cultures by examining the measurement approaches used by each. We then argue the need for a common measurement taxonomy and framework, which is derived from our analyses of the two disciplines. Next we demonstrate the usefulness of the taxonomy and framework via specific example studies drawn from our own work and that of others and show that, in fact, the two disciplines have many important similarities as well as differences and that there is some evidence to suggest that they are growing closer. Finally, we discuss the role of the taxonomy as a framework to support: reuse, planning future studies, guiding practice and facilitating communication between the two disciplines.