### Refine

#### Year of publication

- 2006 (17) (remove)

#### Language

- English (17) (remove)

#### Keywords

#### Faculty / Organisational entity

- Fraunhofer (ITWM) (17) (remove)

In this paper we address the improvement of transfer quality in public mass transit networks. Generally there are several transit operators offering service and our work is motivated by the question how their timetables can be altered to yield optimized transfer possibilities in the overall network. To achieve this, only small changes to the timetables are allowed. The set-up makes it possible to use a quadratic semi-assignment model to solve the optimization problem. We apply this model, equipped with a new way to assess transfer quality, to the solution of four real-world examples. It turns out that improvements in overall transfer quality can be determined by such optimization-based techniques. Therefore they can serve as a first step towards a decision support tool for planners of regional transit networks.

On a multigrid solver for the threedimensional Biot poroelasticity system in multilayered domains
(2006)

In this paper, we present problem–dependent prolongation and problem–dependent restriction for a multigrid solver for the three-dimensional Biot poroelasticity system, which is solved in a multilayered domain. The system is discretized on a staggered grid using the finite volume method. During the discretization, special care is taken of the discontinuous coefficients. For the efficient multigrid solver, a need in operator-dependent restriction and/or prolongation arises. We derive these operators so that they are consistent with the discretization. They account for the discontinuities of the coefficients, as well as for the coupling of the unknowns within the Biot system. A set of numerical experiments shows necessity of use of the operator-dependent restriction and prolongation in the multigrid solver for the considered class of problems.

In this paper we propose a finite volume discretization for the threedimensional Biot poroelasticity system in multilayered domains. For the stability reasons, staggered grids are used. The discretization accounts for discontinuity of the coefficients across the interfaces between layers with different physical properties. Numerical experiments, based on the proposed discretization showed second order convergence in the maximum norm for the primary as well as flux unknowns of the system. A certain application example is presented as well.

Testing a new suspension based on real load data is performed on elaborate multi channel test rigs. Usually wheel forces and moments measured during driving maneuvers are reproduced on the rig. Because of the complicated interaction between rig and suspension each new rig configuration has to prove its efficiency with respect to the requirements and the configuration might be subject to optimization. This paper deals with modeling a new rig concept based on two hexapods. The real physical rig has been designed and meanwhile built by MOOG-FCS for VOLKSWAGEN. The aim of the simulation project reported here was twofold: First the simulation of the rig together with real VOLKSWAGEN suspension models at a time where the design was not yet finalized was used to verify and optimize the desired properties of the rig. Second the simulation environment was set up in a way that it can be used to prepare real tests on the rig. The model contains the geometric configuration as well as the hydraulics and the controller. It is implemented as an ADAMS/Car template and can be combined with different suspension models to get a complete assembly representing the entire test rig. Using this model, all steps required for a real test run such as controller adaptation, drive file iteration and simulation can be performed. Geometric or hydraulic parameters can be modified easily to improve the setup and adapt the system to the suspension and the load data.

This report discusses two approaches for a posteriori error indication in the linear elasticity solver DDFEM: An indicator based on the Richardson extrapolation and Zienkiewicz-Zhu-type indicator. The solver handles 3D linear elasticity steady-state problems. It uses own input language to describe the mesh and the boundary conditions. Finite element discretization over tetrahedral meshes with first or second order shape functions (hierarchical basis) has been used to resolve the model. The parallelization of the numerical method is based on the domain decomposition approach. DDFEM is highly portable over a set of parallel computer architectures supporting the MPI-standard.

The stationary heat equation is solved with periodic boundary conditions in geometrically complex composite materials with high contrast in the thermal conductivities of the individual phases. This is achieved by harmonic averaging and explicitly introducing the jumps across the material interfaces as additional variables. The continuity of the heat flux yields the needed extra equations for these variables. A Schur-complent formulation for the new variables is derived that is solved using the FFT and BiCGStab methods. The EJ-HEAT solver is given as a 3-page Matlab program in the Appendix. The C++ implementation is used for material design studies. It solves 3-dimensional problems with around 190 Mio variables on a 64-bit AMD Opteron desktop system in less than 6 GB memory and in minutes to hours, depending on the contrast and required accuracy. The approach may also be used to compute effective electric conductivities because they are governed by the stationary heat equation.

This paper analyzes and solves a patient transportation problem arising in several large hospitals. The aim is to provide an efficient and timely transport service to patients between several locations on a hospital campus. Transportation requests arrive in a dynamic fashion and the solution methodology must therefore be capable of quickly inserting new requests in the current vehicle routes. Contrary to standard dial-a-ride problems, the problem under study contains several complicating constraints which are specific to a hospital context. The paper provides a detailed description of the problem and proposes a two-phase heuristic procedure capable of handling its many features. In the first phase a simple insertion scheme is used to generate a feasible solution, which is improved in the second phase with a tabu search algorithm. The heuristic procedure was extensively tested on real data provided by a German hospital. Results show that the algorithm is capable of handling the dynamic aspect of the problem and of providing high quality solutions. In particular, it succeeded in reducing waiting times for patients while using fewer vehicles.

The desire to simulate more and more geometrical and physical features of technical structures and the availability of parallel computers and parallel numerical solvers which can exploit the power of these machines have lead to a steady increase in the number of grid elements used. Memory requirements and computational time are too large for usual serial PCs. An a priori partitioning algorithm for the parallel generation of 3D nonoverlapping compatible unstructured meshes based on a CAD surface description is presented in this paper. Emphasis is given to practical issues and implementation rather than to theoretical complexity. To achieve robustness of the algorithm with respect to the geometrical shape of the structure authors propose to have several or many but relatively simple algorithmic steps. The geometrical domain decomposition approach has been applied. It allows us to use classic 2D and 3D high-quality Delaunay mesh generators for independent and simultaneous volume meshing. Different aspects of load balancing methods are also explored in the paper. The MPI library and SPMD model are used for parallel grid generator implementation. Several 3D examples are shown.

In this article, we consider the quasistatic boundary value problems of linear elasticity and nonlinear elastoplasticity, with linear Hooke’s law in the elastic regime for both problems and with the linear kinematic hardening law for the plastic regime in the latter problem. We derive expressions and estimates for the difference of the solutions of both models, i.e. for the stresses, the strains and the displacements. To this end, we use the stop and play operators of nonlinear functional analysis. Further, we give an explicit example of a homotopy between the solutions of both problems.