### Refine

#### Language

- English (18) (remove)

#### Has Fulltext

- no (18) (remove)

#### Keywords

- Panel clustering (1)
- compact operator equation (1)
- da (1)
- exact fully discrete vectorial wavelet transform (1)
- mutiresolution (1)
- numerical integration (1)
- pyramid scheme (1)
- regularization wavelets (1)
- scale discrete spherical vector wavelets (1)
- spline and wavelet based determination of the geoid and the gravitational potential (1)

Wavelets on closed surfaces in Euclidean space R3 are introduced starting from a scale discrete wavelet transform for potentials harmonic down to a spherical boundary. Essential tools for approximation are integration formulas relating an integral over the sphere to suitable linear combinations of functional values (resp. normal derivatives) on the closed surface under consideration. A scale discrete version of multiresolution is described for potential functions harmonic outside the closed surface and regular at infinity. Furthermore, an exact fully discrete wavelet approximation is developed in case of band-limited wavelets. Finally, the role of wavelets is discussed in three problems, namely (i) the representation of a function on a closed surface from discretely given data, (ii) the (discrete) solution of the exterior Dirichlet problem, and (iii) the (discrete) solution of the exterior Neumann problem.

In this paper, we deal with the problem of spherical interpolation of discretely given data of tensorial type. To this end, spherical tensor fields are investigated and a decomposition formula is described. Tensor spherical harmonics are introduced as eigenfunctions of a tensorial analogon to the Beltrami operator and discussed in detail. Based on these preliminaries, a spline interpolation process is described and error estimates are presented. Furthermore, some relations between the spline basis functions and the theory of radial basis functions are developed.

A continuous version of spherical multiresolution is described, starting from continuous wavelet transform on the sphere. Scale discretization enables us to construct spherical counterparts to Daubechies wavelets and wavelet packets (known from Euclidean theory). Essential tool is the theory of singular integrals on the sphere. It is shown that singular integral operators forming a semigroup of contraction operators of class (Co) (like Abel-Poisson or Gauß-Weierstraß operators) lead in canonical way to (pyramidal) algorithms.

In modern approximation methods linear combinations in terms of (space localizing) radial basis functions play an essential role. Areas of application are numerical integration formulas on the uni sphere omega corresponding to prescribed nodes, spherical spline interpolation, and spherical wavelet approximation. the evaluation of such a linear combination is a time consuming task, since a certain number of summations, multiplications and the calculation of scalar products are required. This paper presents a generalization of the panel clustering method in a spherical setup. The economy and efficiency of panel clustering is demonstrated for three fields of interest, namely upward continuation of the earth's gravitational potential, geoid computation by spherical splines and wavelet reconstruction of the gravitational potential.

Metaharmonic wavelets are introduced for constructing the solution of theHelmholtz equation (reduced wave equation) corresponding to Dirichlet's orNeumann's boundary values on a closed surface approach leading to exactreconstruction formulas is considered in more detail. A scale discrete version ofmultiresolution is described for potential functions metaharmonic outside theclosed surface and satisfying the radiation condition at infinity. Moreover, wediscuss fully discrete wavelet representations of band-limited metaharmonicpotentials. Finally, a decomposition and reconstruction (pyramid) scheme foreconomical numerical implementation is presented for Runge-Walsh waveletapproximation.

Many problems arising in (geo)physics and technology can be formulated as compact operator equations of the first kind \(A F = G\). Due to the ill-posedness of the equation a variety of regularization methods are in discussion for an approximate solution, where particular emphasize must be put on balancing the data and the approximation error. In doing so one is interested in optimal parameter choice strategies. In this paper our interest lies in an efficient algorithmic realization of a special class of regularization methods. More precisely, we implement regularization methods based on filtered singular value decomposition as a wavelet analysis. This enables us to perform, e.g., Tikhonov-Philips regularization as multiresolution. In other words, we are able to pass over from one regularized solution to another one by adding or subtracting so-called detail information in terms of wavelets. It is shown that regularization wavelets as proposed here are efficiently applicable to a future problem in satellite geodesy, viz. satellite gravity gradiometry.

Based on a new definition of delation a scale discrete version of spherical multiresolution is described, starting from a scale discrete wavelet transform on the sphere. Depending on the type of application, different families of wavelets are chosen. In particular, spherical Shannon wavelets are constructed that form an orthogonal multiresolution analysis. Finally fully discrete wavelet approximation is discussed in case of band-limited wavelets.

Discrete families of functions with the property that every function in a certain space can be represented by its formal Fourier series expansion are developed on the sphere. A Fourier series type expansion is obviously true if the family is an orthonormal basis of a Hilbert space, but it also can hold in situations where the family is not orthogonal and is overcomplete. Furthermore, all functions in our approach are axisymmetric (depending only on the spherical distance) so that they can be used adequately in (rotation) invariant pseudodifferential equations on the frames (ii) Gauss- Weierstrass frames, and (iii) frames consisting of locally supported kernel functions. Abel-Poisson frames form families of harmonic functions and provide us with powerful approximation tools in potential theory. Gauss-Weierstrass frames are intimately related to the diffusion equation on the sphere and play an important role in multiscale descriptions of image processing on the sphere. The third class enables us to discuss spherical Fourier expansions by means of axisymmetric finite elements.

Satellite gradiometry and its instrumentation is an ultra-sensitive detection technique of the space gravitational gradient (i.e. the Hesse tensor of the gravitational potential). Gradeometry will be of great significance in inertial navigation, gravity survey, geodynamics and earthquake prediction research. In this paper, satellite gradiometry formulated as an inverse problem of satellite geodesy is discussed from two mathematical aspects: Firstly, satellite gradiometry is considered as a continuous problem of harmonic downward continuation. The space-borne gravity gradients are assumed to be known continuously over the satellite (orbit) surface. Our purpose is to specify sufficient conditions under which uniqueness and existence can be guaranteed. It is shown that, in a spherical context, uniqueness results are obtainable by decomposition of the Hesse matrix in terms of tensor spherical harmonics. In particular, the gravitational potential is proved to be uniquely determined if second order radial derivatives are prescribed at satellite height. This information leads us to a reformulation of satellite gradiometry as a (Fredholm) pseudodifferential equation of first kind. Secondly, for a numerical realization, we assume the gravitational gradients to be known for a finite number of discrete points. The discrete problem is dealt with classical regularization methods, based on filtering techniques by means of spherical wavelets. A spherical singular integral-like approach to regularization methods is established, regularization wavelets are developed which allow the regularization in form of a multiresolution analysis. Moreover, a combined spherical harmonic and spherical regularization wavelet solution is derived as an appropriate tool in future (global and local) high-presision resolution of the earth" s gravitational potential.

Wavelet transform originated in 1980's for the analysis of seismic signals has seen an explosion of applications in geophysics. However, almost all of the material is based on wavelets over Euclidean spaces. This paper deals with the generalization of the theory and algorithmic aspects of wavelets to a spherical earth's model and geophysically relevant vector fields such as the gravitational, magnetic, elastic field of the earth.A scale discrete wavelet approach is considered on the sphere thereby avoiding any type of tensor-valued 'basis (kernel) function'. The generators of the vector wavelets used for the fast evaluation are assumed to have compact supports. Thus the scale and detail spaces are finite-dimensional. As an important consequence, detail information of the vector field under consideration can be obtained only by a finite number of wavelet coefficients for each scale. Using integration formulas that are exact up to a prescribed polynomial degree, wavelet decomposition and reconstruction are investigated for bandlimited vector fields. A pyramid scheme for the recursive computation of the wavelet coefficients from level to level is described in detail. Finally, data compression is discussed for the EGM96 model of the earth's gravitational field.