### Filtern

#### Erscheinungsjahr

#### Dokumenttyp

- Preprint (1031)
- Dissertation (562)
- Bericht (399)
- Wissenschaftlicher Artikel (166)
- Konferenzveröffentlichung (24)
- Diplomarbeit (22)
- Teil eines Periodikums (21)
- Arbeitspapier (12)
- Masterarbeit (10)
- Vorlesung (7)

#### Sprache

- Englisch (2275) (entfernen)

#### Schlagworte

- AG-RESY (47)
- PARO (25)
- SKALP (15)
- Visualisierung (13)
- Wavelet (13)
- Case-Based Reasoning (11)
- Inverses Problem (11)
- RODEO (11)
- Mehrskalenanalyse (10)
- finite element method (10)

#### Fachbereich / Organisatorische Einheit

- Fachbereich Mathematik (927)
- Fachbereich Informatik (624)
- Fachbereich Physik (231)
- Fraunhofer (ITWM) (203)
- Fachbereich Maschinenbau und Verfahrenstechnik (97)
- Fachbereich Elektrotechnik und Informationstechnik (77)
- Fachbereich Chemie (54)
- Fachbereich Biologie (28)
- Fachbereich Sozialwissenschaften (16)
- Fachbereich Wirtschaftswissenschaften (8)

Neuronal inhibition is mediated by glycine and/or GABA. Inferior colliculus (IC) neurons receive glycinergic and GABAergic
inputs, whereas inhibition in hippocampus (HC) predominantly relies on GABA. Astrocytes heterogeneously
express neurotransmitter transporters and are expected to adapt to the local requirements regarding neurotransmitter
homeostasis. Here we analyzed the expression of inhibitory neurotransmitter transporters in IC and HC astrocytes using
whole-cell patch-clamp and single-cell reverse transcription-PCR. We show that most astrocytes in both regions expressed
functional glycine transporters (GlyTs). Activation of these transporters resulted in an inward current (IGly) that
was sensitive to the competitive GlyT1 agonist sarcosine. Astrocytes exhibited transcripts for GlyT1 but not for
GlyT2. Glycine did not alter the membrane resistance (RM) arguing for the absence of functional glycine receptors (GlyRs).
Thus, IGly was mainly mediated by GlyT1. Similarly, we found expression of functional GABA transporters (GATs) in all IC
astrocytes and about half of the HC astrocytes. These transporters mediated an inward current (IGABA) that was sensitive to
the competitive GAT-1 and GAT-3 antagonists NO711 and SNAP5114, respectively. Accordingly, transcripts for GAT-1 and
GAT-3 were found but not for GAT-2 and BGT-1. Only in hippocampal astrocytes, GABA transiently reduced
RM demonstrating the presence of GABAA receptors (GABAARs). However, IGABA was mainly not contaminated
by GABAAR-mediated currents as RM changes vanished shortly after GABA application. In both regions, IGABA
was stronger than IGly. Furthermore, in HC the IGABA/IGly ratio was larger compared to IC. Taken together, our
results demonstrate that astrocytes are heterogeneous across and within distinct brain areas. Furthermore, we
could show that the capacity for glycine and GABA uptake varies between both brain regions.

Optimal control of partial differential equations is an important task in applied mathematics where it is used in order to optimize, for example, industrial or medical processes. In this thesis we investigate an optimal control problem with tracking type cost functional for the Cattaneo equation with distributed control, that is, \(\tau y_{tt} + y_t - \Delta y = u\). Our focus is on the theoretical and numerical analysis of the limit process \(\tau \to 0\) where we prove the convergence of solutions of the Cattaneo equation to solutions of the heat equation.
We start by deriving both the Cattaneo and the classical heat equation as well as introducing our notation and some functional analytic background. Afterwards, we prove the well-posedness of the Cattaneo equation for homogeneous Dirichlet boundary conditions, that is, we show the existence and uniqueness of a weak solution together with its continuous dependence on the data. We need this in the following, where we investigate the optimal control problem for the Cattaneo equation: We show the existence and uniqueness of a global minimizer for an optimal control problem with tracking type cost functional and the Cattaneo equation as a constraint. Subsequently, we do an asymptotic analysis for \(\tau \to 0\) for both the forward equation and the aforementioned optimal control problem and show that the solutions of these problems for the Cattaneo equation converge strongly to the ones for the heat equation. Finally, we investigate these problems numerically, where we examine the different behaviour of the models and also consider the limit \(\tau \to 0\), suggesting a linear convergence rate.

The aim of this dissertation is to explain processes in recruitment by gaining a better understanding of how perceptions evolve and how recruitment outcomes and perceptions are influenced. To do so, this dissertation takes a closer look at the formation of fit perceptions, the effects of top employer awards on pre-hire recruitment outcomes, and on how perceptions about external sources are influenced.

Fast Internet content delivery relies on two layers of caches on the request path. Firstly, content delivery networks (CDNs) seek to answer user requests before they traverse slow Internet paths. Secondly, aggregation caches in data centers seek to answer user requests before they traverse slow backend systems. The key challenge in managing these caches is the high variability of object sizes, request patterns, and retrieval latencies. Unfortunately, most existing literature focuses on caching with low (or no) variability in object sizes and ignores the intricacies of data center subsystems.
This thesis seeks to fill this gap with three contributions. First, we design a new caching system, called AdaptSize, that is robust under high object size variability. Second, we derive a method (called Flow-Offline Optimum or FOO) to predict the optimal cache hit ratio under variable object sizes. Third, we design a new caching system, called RobinHood, that exploits variances in retrieval latencies to deliver faster responses to user requests in data centers.
The techniques proposed in this thesis significantly improve the performance of CDN and data center caches. On two production traces from one of the world's largest CDN AdaptSize achieves 30-91% higher hit ratios than widely-used production systems, and 33-46% higher hit ratios than state-of-the-art research systems. Further, AdaptSize reduces the latency by more than 30% at the median, 90-percentile and 99-percentile.
We evaluate the accuracy of our FOO analysis technique on eight different production traces spanning four major Internet companies.
We find that FOO's error is at most 0.3%. Further, FOO reveals that the gap between online policies and OPT is much larger than previously thought: 27% on average, and up to 43% on web application traces.
We evaluate RobinHood with production traces from a major Internet company on a 50-server cluster. We find that RobinHood improves the 99-percentile latency by more than 50% over existing caching systems.
As load imbalances grow, RobinHood's latency improvement can be more than 2x. Further, we show that RobinHood is robust against server failures and adapts to automatic scaling of backend systems.
The results of this thesis demonstrate the power of guiding the design of practical caching policies using mathematical performance models and analysis. These models are general enough to find application in other areas of caching design and future challenges in Internet content delivery.

The simulation of cutting process challenges established methods due to large deformations and topological changes. In this work a particle finite element method (PFEM) is presented, which combines the benefits of discrete modeling techniques and methods based on continuum mechanics. A crucial part of the PFEM is the detection of the boundary of a set of particles. The impact of this boundary detection method on the structural integrity is examined and a relation of the key parameter of the method to the eigenvalues of strain tensors is elaborated. The influence of important process parameters on the cutting force is studied and a comparison to an empirical relation is presented.

In modern algebraic geometry solutions of polynomial equations are studied from a qualitative point of view using highly sophisticated tools such as cohomology, \(D\)-modules and Hodge structures. The latter have been unified in Saito’s far-reaching theory of mixed Hodge modules, that has shown striking applications including vanishing theorems for cohomology. A mixed Hodge module can be seen as a special type of filtered \(D\)-module, which is an algebraic counterpart of a system of linear differential equations. We present the first algorithmic approach to Saito’s theory. To this end, we develop a Gröbner basis theory for a new class of algebras generalizing PBW-algebras.
The category of mixed Hodge modules satisfies Grothendieck’s six-functor formalism. In part these functors rely on an additional natural filtration, the so-called \(V\)-filtration. A key result of this thesis is an algorithm to compute the \(V\)-filtration in the filtered setting. We derive from this algorithm methods for the computation of (extraordinary) direct image functors under open embeddings of complements of pure codimension one subvarieties. As side results we show
how to compute vanishing and nearby cycle functors and a quasi-inverse of Kashiwara’s equivalence for mixed Hodge modules.
Describing these functors in terms of local coordinates and taking local sections, we reduce the corresponding computations to algorithms over certain bifiltered algebras. It leads us to introduce the class of so-called PBW-reduction-algebras, a generalization of the class of PBW-algebras. We establish a comprehensive Gröbner basis framework for this generalization representing the involved filtrations by weight vectors.

Analyzing Centrality Indices in Complex Networks: an Approach Using Fuzzy Aggregation Operators
(2018)

The identification of entities that play an important role in a system is one of the fundamental analyses being performed in network studies. This topic is mainly related to centrality indices, which quantify node centrality with respect to several properties in the represented network. The nodes identified in such an analysis are called central nodes. Although centrality indices are very useful for these analyses, there exist several challenges regarding which one fits best
for a network. In addition, if the usage of only one index for determining central
nodes leads to under- or overestimation of the importance of nodes and is
insufficient for finding important nodes, then the question is how multiple indices
can be used in conjunction in such an evaluation. Thus, in this thesis an approach is proposed that includes multiple indices of nodes, each indicating
an aspect of importance, in the respective evaluation and where all the aspects of a node’s centrality are analyzed in an explorative manner. To achieve this
aim, the proposed idea uses fuzzy operators, including a parameter for generating different types of aggregations over multiple indices. In addition, several preprocessing methods for normalization of those values are proposed and discussed. We investigate whether the choice of different decisions regarding the
aggregation of the values changes the ranking of the nodes or not. It is revealed that (1) there are nodes that remain stable among the top-ranking nodes, which
makes them the most central nodes, and there are nodes that remain stable
among the bottom-ranking nodes, which makes them the least central nodes; and (2) there are nodes that show high sensitivity to the choice of normalization
methods and/or aggregations. We explain both cases and the reasons why the nodes’ rankings are stable or sensitive to the corresponding choices in various networks, such as social networks, communication networks, and air transportation networks.

Certain brain tumours are very hard to treat with radiotherapy due to their irregular shape caused by the infiltrative nature of the tumour cells. To enhance the estimation of the tumour extent one may use a mathematical model. As the brain structure plays an important role for the cell migration, it has to be included in such a model. This is done via diffusion-MRI data. We set up a multiscale model class accounting among others for integrin-mediated movement of cancer cells in the brain tissue, and the integrin-mediated proliferation. Moreover, we model a novel chemotherapy in combination with standard radiotherapy.
Thereby, we start on the cellular scale in order to describe migration. Then we deduce mean-field equations on the mesoscopic (cell density) scale on which we also incorporate cell proliferation. To reduce the phase space of the mesoscopic equation, we use parabolic scaling and deduce an effective description in the form of a reaction-convection-diffusion equation on the macroscopic spatio-temporal scale. On this scale we perform three dimensional numerical simulations for the tumour cell density, thereby incorporating real diffusion tensor imaging data. To this aim, we present programmes for the data processing taking the raw medical data and processing it to the form to be included in the numerical simulation. Thanks to the reduction of the phase space, the numerical simulations are fast enough to enable application in clinical practice.

We studied the development of cognitive abilities related to intelligence and creativity
(N = 48, 6–10 years old), using a longitudinal design (over one school year), in order
to evaluate an Enrichment Program for gifted primary school children initiated by
the government of the German federal state of Rhineland-Palatinate (Entdeckertag
Rheinland Pfalz, Germany; ET; Day of Discoverers). A group of German primary school
children (N = 24), identified earlier as intellectually gifted and selected to join the
ET program was compared to a gender-, class- and IQ- matched group of control
children that did not participate in this program. All participants performed the Standard
Progressive Matrices (SPM) test, which measures intelligence in well-defined problem
space; the Creative Reasoning Task (CRT), which measures intelligence in ill-defined
problem space; and the test of creative thinking-drawing production (TCT-DP), which
measures creativity, also in ill-defined problem space. Results revealed that problem
space matters: the ET program is effective only for the improvement of intelligence
operating in well-defined problem space. An effect was found for intelligence as
measured by SPM only, but neither for intelligence operating in ill-defined problem space
(CRT) nor for creativity (TCT-DP). This suggests that, depending on the type of problem
spaces presented, different cognitive abilities are elicited in the same child. Therefore,
enrichment programs for gifted, but also for children attending traditional schools,
should provide opportunities to develop cognitive abilities related to intelligence,
operating in both well- and ill-defined problem spaces, and to creativity in a parallel,
using an interactive approach.

Based on the Lindblad master equation approach we obtain a detailed microscopic model of photons in a dye-filled cavity, which features condensation of light. To this end we generalise a recent non-equilibrium approach of Kirton and Keeling such that the dye-mediated contribution to the photon-photon interaction in the light condensate is accessible due to an interplay of coherent and dissipative dynamics. We describe the steady-state properties of the system by analysing the resulting equations of motion of both photonic and matter degrees of freedom. In particular, we discuss the existence of two limiting cases for steady states: photon Bose-Einstein condensate and laser-like. In the former case, we determine the corresponding dimensionless photon-photon interaction strength by relying on realistic experimental data and find a good agreement with previous theoretical estimates. Furthermore, we investigate how the dimensionless interaction strength depends on the respective system parameters.