### Refine

#### Year of publication

- 2010 (20) (remove)

#### Keywords

- Lagrangian mechanics (2)
- numerical upscaling (2)
- optimal control (2)
- portfolio choice (2)
- work effort (2)
- Brinkman equations (1)
- Darcy’s law (1)
- Filtering (1)
- Fokker-Planck equations (1)
- Hedge funds (1)

#### Faculty / Organisational entity

- Fraunhofer (ITWM) (20) (remove)

The modelling of hedge funds poses a difficult problem since the available reported data sets are often small and incomplete. We propose a switching regression model for hedge funds, in which the coefficients are able to switch between different regimes. The coefficients are governed by a Markov chain in discrete time. The different states of the Markov chain represent different states of the economy, which influence the performance of the independent variables. Hedge fund indices are chosen as regressors. The parameter estimation for the switching parameter as well as for the switching error term is done through a filtering technique for hidden Markov models developed by Elliott (1994). Recursive parameter estimates are calculated through a filter-based EM-algorithm, which uses the hidden information of the underlying Markov chain. Our switching regression model is applied on hedge fund series and hedge fund indices from the HFR database.

In this paper a three dimensional stochastic model for the lay-down of fibers on a moving conveyor belt in the production process of nonwoven materials is derived. The model is based on stochastic diferential equations describing the resulting position of the fiber on the belt under the influence of turbulent air ows. The model presented here is an extension of an existing surrogate model, see [6, 3].

The optimal design of rotational production processes for glass wool manufacturing poses severe computational challenges to mathematicians, natural scientists and engineers. In this paper we focus exclusively on the spinning regime where thousands of viscous thermal glass jets are formed by fast air streams. Homogeneity and slenderness of the spun fibers are the quality features of the final fabric. Their prediction requires the computation of the fuidber-interactions which involves the solving of a complex three-dimensional multiphase problem with appropriate interface conditions. But this is practically impossible due to the needed high resolution and adaptive grid refinement. Therefore, we propose an asymptotic coupling concept. Treating the glass jets as viscous thermal Cosserat rods, we tackle the multiscale problem by help of momentum (drag) and heat exchange models that are derived on basis of slender-body theory and homogenization. A weak iterative coupling algorithm that is based on the combination of commercial software and self-implemented code for ow and rod solvers, respectively, makes then the simulation of the industrial process possible. For the boundary value problem of the rod we particularly suggest an adapted collocation-continuation method. Consequently, this work establishes a promising basis for future optimization strategies.

The scope of this paper is to enhance the model for the own-company stockholder (given in Desmettre, Gould and Szimayer (2010)), who can voluntarily performance-link his personal wealth to his management success by acquiring stocks in the own-company whose value he can directly influence via spending work effort. The executive is thereby characterized by a parameter of risk aversion and the two work effectiveness parameters inverse work productivity and disutility stress. We extend the model to a constant absolute risk aversion framework using an exponential utility/disutility set-up. A closed-form solution is given for the optimal work effort an executive will apply and we derive the optimal investment strategies of the executive. Furthermore, we determine an up-front fair cash compensation applying an indifference utility rationale. Our study shows to a large extent that the results previously obtained are robust under the choice of the utility/disutility set-up.

We will present a rigorous derivation of the equations and interface conditions for ion, charge and heat transport in Li-ion insertion batteries. The derivation is based exclusively on universally accepted principles of nonequilibrium thermodynamics and the assumption of a one step intercalation reaction at the interface of electrolyte and active particles. Without loss of generality the transport in the active particle is assumed to be isotropic. The electrolyte is described as a fully dissociated salt in a neutral solvent. The presented theory is valid for transport on a spatial scale for which local charge neutrality holds i.e. beyond the scale of the diffuse double layer. Charge neutrality is explicitely used to determine the correct set of thermodynamically independent variables. The theory guarantees strictly positive entropy production. The various contributions to the Peltier coeficients for the interface between the active particles and the electrolyte as well as the contributions to the heat of mixing are obtained as a result of the theory.

Optimal control methods for the calculation of invariant excitation signals for multibody systems
(2010)

Input signals are needed for the numerical simulation of vehicle multibody systems. With these input data, the equations of motion can be integrated numerically and some output quantities can be calculated from the simulation results. In this work we consider the corresponding inverse problem: We assume that some reference output signals are available, typically gained by measurement and focus on the task to derive the input signals that produce the desired reference output in a suitable sense. If the input data is invariant, i.e., independent of the specific system, it can be transferred and used to excite other system variants. This problem can be formulated as optimal control problem. We discuss solution approaches from optimal control theory, their applicability to this special problem class and give some simulation results.

Simulation of multibody systems (mbs) is an inherent part in developing and design of complex mechanical systems. Moreover, simulation during operation gained in importance in the recent years, e.g. for HIL-, MIL- or monitoring applications. In this paper we discuss the numerical simulation of multibody systems on different platforms. The main section of this paper deals with the simulation of an established truck model [9] on different platforms, one microcontroller and two real-time processor boards. Additional to numerical C-code the latter platforms provide the possibility to build the model with a commercial mbs tool, which is also investigated. A survey of different ways of generating code and equations of mbs models is given and discussed concerning handling, possible limitations as well as performance. The presented benchmarks are processed under terms of on-board real time applications. A further important restriction, caused by the real-time requirement, is a fixed integration step size. Whence, carefully chosen numerical integration algorithms are necessary, especially in the case of closed loops in the model. We investigate linearly-implicit time integration methods with fixed step size, so-called Rosenbrock methods, and compare them with respect to their accuracy and performance on the tested processors.

This work deals with the modeling and simulation of slender viscous jets exposed to gravity and rotation, as they occur in rotational spinning processes. In terms of slender-body theory we show the asymptotic reduction of a viscous Cosserat rod to a string system for vanishing slenderness parameter. We propose two string models, i.e. inertial and viscous-inertial string models, that differ in the closure conditions and hence yield a boundary value problem and an interface problem, respectively. We investigate the existence regimes of the string models in the four-parametric space of Froude, Rossby, Reynolds numbers and jet length. The convergence regimes where the respective string solution is the asymptotic limit to the rod turn out to be disjoint and to cover nearly the whole parameter space. We explore the transition hyperplane and derive analytically low and high Reynolds number limits. Numerical studies of the stationary jet behavior for different parameter ranges complete the work.

Numerical modeling of electrochemical process in Li-Ion battery is an emerging topic of great practical interest. In this work we present a Finite Volume discretization of electrochemical diffusive processes occurring during the operation of Li-Ion batteries. The system of equations is a nonlinear, time-dependent diffusive system, coupling the Li concentration and the electric potential. The system is formulated at length-scale at which two different types of domains are distinguished, one for the electrolyte and one for the active solid particles in the electrode. The domains can be of highly irregular shape, with electrolyte occupying the pore space of a porous electrode. The material parameters in each domain differ by several orders of magnitude and can be non-linear functions of Li ions concentration and/or the electrical potential. Moreover, special interface conditions are imposed at the boundary separating the electrolyte from the active solid particles. The field variables are discontinuous across such an interface and the coupling is highly non- linear, rendering direct iteration methods ineffective for such problems. We formulate a Newton iteration for an purely implicit Finite Volume discretization of the coupled system. A series of numerical examples are presented for different type of electrolyte/electrode configurations and material parameters. The convergence of the Newton method is characterized both as function of nonlinear material parameters as well as the nonlinearity in the interface conditions.

Modeling of species and charge transport in Li-Ion Batteries based on non-equilibrium thermodynamics
(2010)

In order to improve the design of Li ion batteries the complex interplay of various physical phenomena in the active particles of the electrodes and in the electrolyte has to be balanced. The separate transport phenomena in the electrolyte and in the active particle as well as their coupling due to the electrochemical reactions at the interfaces between the electrode particles and the electrolyte will inuence the performance and the lifetime of a battery. Any modeling of the complex phenomena during the usage of a battery has therefore to be based on sound physical and chemical principles in order to allow for reliable predictions for the response of the battery to changing load conditions. We will present a modeling approach for the transport processes in the electrolyte and the electrodesbased on non-equilibrium thermodynamics and transport theory. The assumption of local charge neutrality, which is known to be valid in concentrated electrolytes, is explicitly used to identify the independent thermodynamic variables and uxes. The theory guarantees strictly positive entropy production. Dierences to other theories will be discussed.