### Refine

#### Year of publication

#### Document Type

- Report (179) (remove)

#### Language

- English (179) (remove)

#### Keywords

- numerical upscaling (7)
- Integer programming (4)
- hub location (4)
- Darcy’s law (3)
- Heston model (3)
- Lagrangian mechanics (3)
- effective heat conductivity (3)
- facility location (3)
- non-Newtonian flow in porous media (3)
- poroelasticity (3)

#### Faculty / Organisational entity

- Fraunhofer (ITWM) (179) (remove)

We consider a highly-qualified individual with respect to her choice between two distinct career paths. She can choose between a mid-level management position in a large company and an executive position within a smaller listed company with the possibility to directly affect the company’s share price. She invests in the financial market includ- ing the share of the smaller listed company. The utility maximizing strategy from consumption, investment, and work effort is derived in closed form for logarithmic utility. The power utility case is discussed as well. Conditions for the individual to pursue her career with the smaller listed company are obtained. The participation constraint is formulated in terms of the salary differential between the two posi- tions. The smaller listed company can offer less salary. The salary shortfall is offset by the possibility to benefit from her work effort by acquiring own-company shares. This gives insight into aspects of optimal contract design. Our framework is applicable to the pharma- ceutical and financial industry, and the IT sector.

In this expository article, we give an introduction into the basics of bootstrap tests in general. We discuss the residual-based and the wild bootstrap for regression models suitable for applications in signal and image analysis. As an illustration of the general idea, we consider a particular test for detecting differences between two noisy signals or images which also works for noise with variable variance. The test statistic is essentially the integrated squared difference between the signals after denoising them by local smoothing. Determining its quantile, which marks the boundary between accepting and rejecting the hypothesis of equal signals, is hardly possible by standard asymptotic methods whereas the bootstrap works well. Applied to the rows and columns of images, the resulting algorithm not only allows for the detection of defects but also for the characterization of their location and shape in surface inspection problems.

We present a two-scale finite element method for solving Brinkman’s and Darcy’s equations. These systems of equations model fluid flows in highly porous and porous media, respectively. The method uses a recently proposed discontinuous Galerkin FEM for Stokes’ equations byWang and Ye and the concept of subgrid approximation developed by Arbogast for Darcy’s equations. In order to reduce the “resonance error” and to ensure convergence to the global fine solution the algorithm is put in the framework of alternating Schwarz iterations using subdomains around the coarse-grid boundaries. The discussed algorithms are implemented using the Deal.II finite element library and are tested on a number of model problems.

In the ground vehicle industry it is often an important task to simulate full vehicle models based on the wheel forces and moments, which have been measured during driving over certain roads with a prototype vehicle. The models are described by a system of differential algebraic equations (DAE) or ordinary differential equations (ODE). The goal of the simulation is to derive section forces at certain components for a durability assessment. In contrast to handling simulations, which are performed including more or less complex tyre models, a driver model, and a digital road profile, the models we use here usually do not contain the tyres or a driver model. Instead, the measured wheel forces are used for excitation of the unconstrained model. This can be difficult due to noise in the input data, which leads to an undesired drift of the vehicle model in the simulation.

One approach to multi-criteria IMRT planning is to automatically calculate a data set of Pareto-optimal plans for a given planning problem in a first phase, and then interactively explore the solution space and decide for the clinically best treatment plan in a second phase. The challenge of computing the plan data set is to assure that all clinically meaningful plans are covered and that as many as possible clinically irrelevant plans are excluded to keep computation times within reasonable limits. In this work, we focus on the approximation of the clinically relevant part of the Pareto surface, the process that consititutes the first phase. It is possible that two plans on the Parteto surface have a very small, clinically insignificant difference in one criterion and a significant difference in one other criterion. For such cases, only the plan that is clinically clearly superior should be included into the data set. To achieve this during the Pareto surface approximation, we propose to introduce bounds that restrict the relative quality between plans, so called tradeoff bounds. We show how to integrate these trade-off bounds into the approximation scheme and study their effects.

Territory design may be viewed as the problem of grouping small geographic areas into larger geographic clusters called territories in such a way that the latter are acceptable according to relevant planning criteria. In this paper we review the existing literature for applications of territory design problems and solution approaches for solving these types of problems. After identifying features common to all applications we introduce a basic territory design model and present in detail two approaches for solving this model: a classical location–allocation approach combined with optimal split resolution techniques and a newly developed computational geometry based method. We present computational results indicating the efficiency and suitability of the latter method for solving large–scale practical problems in an interactive environment. Furthermore, we discuss extensions to the basic model and its integration into Geographic Information Systems.

We will present a rigorous derivation of the equations and interface conditions for ion, charge and heat transport in Li-ion insertion batteries. The derivation is based exclusively on universally accepted principles of nonequilibrium thermodynamics and the assumption of a one step intercalation reaction at the interface of electrolyte and active particles. Without loss of generality the transport in the active particle is assumed to be isotropic. The electrolyte is described as a fully dissociated salt in a neutral solvent. The presented theory is valid for transport on a spatial scale for which local charge neutrality holds i.e. beyond the scale of the diffuse double layer. Charge neutrality is explicitely used to determine the correct set of thermodynamically independent variables. The theory guarantees strictly positive entropy production. The various contributions to the Peltier coeficients for the interface between the active particles and the electrolyte as well as the contributions to the heat of mixing are obtained as a result of the theory.

In this paper we develop a network location model that combines the characteristics of ordered median and gradual cover models resulting in the Ordered Gradual Covering Location Problem (OGCLP). The Gradual Cover Location Problem (GCLP) was specifically designed to extend the basic cover objective to capture sensitivity with respect to absolute travel distance. Ordered Median Location problems are a generalization of most of the classical locations problems like p-median or p-center problems. They can be modeled by using so-called ordered median functions. These functions multiply a weight to the cost of fulfilling the demand of a customer which depends on the position of that cost relative to the costs of fulfilling the demand of the other customers. We derive Finite Dominating Sets (FDS) for the one facility case of the OGCLP. Moreover, we present efficient algorithms for determining the FDS and also discuss the conditional case where a certain number of facilities are already assumed to exist and one new facility is to be added. For the multi-facility case we are able to identify a finite set of potential facility locations a priori, which essentially converts the network location model into its discrete counterpart. For the multi-facility discrete OGCLP we discuss several Integer Programming formulations and give computational results.

The Folgar-Tucker equation (FTE) is the model most frequently used for the prediction of fiber orientation (FO) in simulations of the injection molding process for short-fiber reinforced thermoplasts. In contrast to its widespread use in injection molding simulations, little is known about the mathematical properties of the FTE: an investigation of e.g. its phase spaceMFT has been presented only recently. The restriction of the dependent variable of the FTE to the setMFT turns the FTE into a differential algebraic system (DAS), a fact which is commonly neglected when devising numerical schemes for the integration of the FTE. In this article1 we present some recent results on the problem of trace stability as well as some introductory material which complements our recent paper.

In the Finite-Volume-Particle Method (FVPM), the weak formulation of a hyperbolic conservation law is discretized by restricting it to a discrete set of test functions. In contrast to the usual Finite-Volume approach, the test functions are not taken as characteristic functions of the control volumes in a spatial grid, but are chosen from a partition of unity with smooth and overlapping partition functions (the particles), which can even move along prescribed velocity fields. The information exchange between particles is based on standard numerical flux functions. Geometrical information, similar to the surface area of the cell faces in the Finite-Volume Method and the corresponding normal directions are given as integral quantities of the partition functions. After a brief derivation of the Finite-Volume-Particle Method, this work focuses on the role of the geometric coefficients in the scheme.