### Refine

#### Year of publication

- 2009 (29) (remove)

#### Document Type

- Report (29) (remove)

#### Keywords

#### Faculty / Organisational entity

- Fraunhofer (ITWM) (29) (remove)

An efficient mathematical model to virtually generate woven metal wire meshes is
presented. The accuracy of this model is verified by the comparison of virtual structures with three-dimensional
images of real meshes, which are produced via computer tomography. Virtual structures
are generated for three types of metal wire meshes using only easy to measure parameters. For these
geometries the velocity-dependent pressure drop is simulated and compared with measurements
performed by the GKD - Gebr. Kufferath AG. The simulation results lie within the tolerances of
the measurements. The generation of the structures and the numerical simulations were done at
GKD using the Fraunhofer GeoDict software.

Bei der Erprobung sicherheitsrelevanter Bauteile von Nutzfahrzeugen steht man vor der Aufgabe, die sehr vielfältige Belastung durch die Kunden abschätzen zu müssen und daraus ein Prüfprogramm für die Bauteile abzuleiten, das mehreren gegenläufigen Anforderungen gerecht werden muss: Das Programm muss scharf genug sein, damit bei erfolgreicher Prüfung ein Ausfall im Feld im Rahmen eines bestimmungsgemäßen Gebrauchs ausgeschlossen werden kann, es soll aber nicht zu einer Überdimensionierung der Bauteile führen, und es soll mit relativ wenigen Bauteilversuchen eine ausreichende Aussagesicherheit erreicht werden. Wegen der hohen Anforderungen bzgl. Sicherheit müssen bei der klassischen statistischen Vorgehensweise – Schätzen der Verteilung der Kundenbeanspruchung aus Messdaten, Schätzen der Verteilung der Bauteilfestigkeit aus Versuchsergebnissen und Ableiten einer Ausfallwahrscheinlichkeit – die Verteilungen in den extremen Rändern bekannt sein. Dazu reicht aber das Datenmaterial in der Regel bei weitem nicht aus. Bei der klassischen „empirischen“ Vorgehensweise werden Kennwerte der Beanspruchung und der Festigkeit verglichen und ein ausreichender Sicherheitsabstand gefordert. Das hier vorgeschlagene Verfahren kombiniert beide Methoden, setzt dabei die Möglichkeiten der statistischen Modellierung soweit aufgrund der Datenlage vertretbar ein und ergänzt die Ergebnisse durch empirisch begründete Sicherheitsfaktoren. Dabei werden bei der Lastfestlegung die im Versuch vorhandenen Möglichkeiten berücksichtigt. Hauptvorteile dieses Verfahrens sind a) die Transparenz bzgl. der mit statistischen Mitteln erreichbaren Aussagen und des Zusammenspiels zwischen Lastermittlung und Versuch und b) die Möglichkeit durch entsprechenden Aufwand bei Messungen und Erprobung die empirischen zugunsten der statistischen Anteile zu reduzieren.

Classical geometrically exact Kirchhoff and Cosserat models are used to study the nonlinear deformation of rods. Extension, bending and torsion of the rod may be represented by the Kirchhoff model. The Cosserat model additionally takes into account shearing effects. Second order finite differences on a staggered grid define discrete viscoelastic versions of these classical models. Since the rotations are parametrised by unit quaternions, the space discretisation results in differential-algebraic equations that are solved numerically by standard techniques like index reduction and projection methods. Using absolute coordinates, the mass and constraint matrices are sparse and this sparsity may be exploited to speed-up time integration. Further improvements are possible in the Cosserat model, because the constraints are just the normalisation conditions for unit quaternions such that the null space of the constraint matrix can be given analytically. The results of the theoretical investigations are illustrated by numerical tests.

This paper discusses the possibility to use and apply the ideas of theWave BasedMethod, which has been developed especially for the steady–state acoustic areas, i.e. to solve the Helmholtz type boundary value problems in a bounded domain, in non–acoustics areas such as steady–state temperature propagation, calculation of the velocity potential function of a liquid flux, calculation of the light irradience in a liver tissue/tumor, etc.

In this paper we investigate the use of the sharp function known from functional analysis in image processing. The sharp function gives a measure of the variations of a function and can be used as an edge detector. We extend the classical notion of the sharp function for measuring anisotropic behaviour and give a fast anisotropic edge detection variant inspired by the sharp function. We show that these edge detection results are useful to steer isotropic and anisotropic nonlinear diffusion filters for image enhancement.

This contribution presents a model reduction method for nonlinear problems in structural mechanics. Emanating from a Finite Element model of the structure, a subspace and a lookup table are generated which do not require a linearisation of the equations. The method is applied to a model created with commercial FEM software. In this case, the terms describing geometrical and material nonlinearities are not explicitly known.

We present a parsimonious multi-asset Heston model. All single-asset submodels follow the well-known Heston dynamics and their parameters are typically calibrated on implied market volatilities. We focus on the calibration of the correlation structure between the single-asset marginals in the absence of sucient liquid cross-asset option price data. The presented model is parsimonious in the sense that d(d􀀀1)=2 asset-asset cross-correlations are required for a d-asset Heston model. In order to calibrate the model, we present two general setups corresponding to relevant practical situations: (1) when the empirical cross-asset correlations in the risk neutral world are given by the user and we need to calibrate the correlations between the driving Brownian motions or (2) when they have to be estimated from the historical time series. The theoretical background, including the ergodicity of the multidimensional CIR process, for the proposed estimators is also studied.

The understanding of the motion of long slender elastic fibers in turbulent flows is of great interest to research, development and production in technical textiles manufacturing. The fiber dynamics depend on the drag forces that are imposed on the fiber by the fluid. Their computation requires in principle a coupling of fiber and flow with no-slip interface conditions. However, theneeded high resolution and adaptive grid refinement make the direct numerical simulation of the three-dimensional fluid-solid-problem for slender fibers and turbulent flows not only extremely costly and complex, but also still impossible for practically relevant applications. Embedded in a slender body theory, an aerodynamic force concept for a general drag model was therefore derived on basis of a stochastic k-o; description for a turbulent flow field in [23]. The turbulence effects on the fiber dynamics were modeled by a correlated random Gaussian force and its asymptotic limit on a macroscopic fiber scale by Gaussian white noise with flow-dependent amplitude. The concept was numerically studied under the conditions of a melt-spinning process for nonwoven materials in [24] – for the specific choice of a non-linear Taylor drag model. Taylor [35] suggested the heuristic model for high Reynolds number flows, Re in [20, 3 · 105], around inclined slender objects under an angle of attack of alpha in (pi/36, pi/2] between flow and object tangent. Since the Reynolds number is considered with respect to the relative velocity between flow and fiber, the numerical results lackaccuracy evidently for small Re that occur in cases of flexible light fibers moving occasionally with the flow velocity. In such a regime (Re << 1), linear Stokes drag forces were successfully applied for the prediction of small particles immersed in turbulent flows, see e.g. [25, 26, 32, 39], a modifiedStokes force taking also into account the particle oscillations was presented in [14]. The linear drag relation was also conferred to longer filaments by imposing free-draining assumptions [29, 8]. Apart from this, the Taylor drag suffers from its non-applicability to tangential incident flow situations (alpha = 0) that often occur in fiber and nonwoven production processes.

In this work we use the Parsimonious Multi–Asset Heston model recently developed in [Dimitroff et al., 2009] at Fraunhofer ITWM, Department Financial Mathematics, Kaiserslautern (Germany) and apply it to Quanto options. We give a summary of the model and its calibration scheme. A suitable transformation of the Quanto option payoff is explained and used to price Quantos within the new framework. Simulated prices are given and compared to market prices and Black–Scholes prices. We find that the new approach underprices the chosen options, but gives better results than the Black–Scholes approach, which is prevailing in the literature on Quanto options.

Home Health Care (HHC) services are becoming increasingly important in Europe’s aging societies. Elderly people have varying degrees of need for assistance and medical treatment. It is advantageous to allow them to live in their own homes as long as possible, since a long-term stay in a nursing home can be much more costly for the social insurance system than a treatment at home providing assistance to the required level. Therefore, HHC services are a cost-effective and flexible instrument in the social system. In Germany, organizations providing HHC services are generally either larger charities with countrywide operations or small private companies offering services only in a city or a rural area. While the former have a hierarchical organizational structure and a large number of employees, the latter typically only have some ten to twenty nurses under contract. The relationship to the patients (“customers”) is often long-term and can last for several years. Therefore acquiring and keeping satisfied customers is crucial for HHC service providers and intensive competition among them is observed.