### Refine

#### Faculty / Organisational entity

- Fachbereich Informatik (20) (remove)

Virtual Reality (VR) is to be seen as the superset of simulation and animation. Visualization is done by rendering. The fundamental model of VR accounts for all phenomenons to be modelled with help of a computer. Examples range from simple dragging actions with a mouse device to the complex simulation of physically based animation.

The calculation of form factors is an important problem in computing the global illumination in the radiosity setting. Closed form solutions often are only available for objects without obstruction and are very hard to calculate. Using Monte Carlo integration and ray tracing provides a fast and elegant tool for the estimation of the form factors. In this paper we show, that using deterministic low discrepancy sample points is superior to random sampling, resulting in an acceleration of more than half an order of magnitude.

Many rendering problems can only be solved using Monte Carlo integration. The noise and variance inherent with the statistical method efficiently can be reduced by stratification. So far only uncorrelated stratification methods were used that in addition depend on the dimension of the integration domain. Based on rank-1-lattices we present a new stratification technique that removes this dependency on dimension, is much more efficient by correlation, is trivial to implement, and robust to use. The superiority of the new scheme is demonstrated for standard rendering algorithms.

The simulation of random fields has many applications in computer graphics such as e.g. ocean wave or turbulent wind field modeling. We present a new and strikingly simple synthesis algorithm for random fields on rank-1 lattices that requires only one Fourier transform independent of the dimension of the support of the random field. The underlying mathematical principle of discrete Fourier transforms on rank-1 lattices breaks the curse of dimension of the standard tensor product Fourier transform, i.e. the number of function values does not exponentially depend on the dimension, but can be chosen linearly.

Quasi-Monte Carlo Radiosity
(1996)

The problem of global illumination in computer graphics is described by a second kind Fredholm integral equation. Due to the complexity of this equation, Monte Carlo methods provide an interesting tool for approximating
solutions to this transport equation. For the case of the radiosity equation, we present the deterministic method of quasi-rondom walks. This method very efficiently uses low discrepancy sequences for integrating the Neumann series and consistently outperforms stochastic techniques. The method of quasi-random walks also is applicable to transport problems in settings other
than computer graphics.

The radiance equation, which describes the global illumination problem in computer graphics, is a high dimensional integral equation. Estimates of the solution are usually computed on the basis of Monte Carlo methods. In this paper we propose and investigate quasi-Monte Carlo methods, which means that we replace (pseudo-) random samples by low discrepancy sequences, yielding deterministic algorithms. We carry out a comparative numerical study between Monte Carlo and quasi-Monte Carlo methods. Our results show that quasi-Monte Carlo converges considerably faster.

Monte Carlo integration is often used for antialiasing in rendering processes.
Due to low sampling rates only expected error estimates can be stated, and the variance can be high. In this article quasi-Monte Carlo methods are presented, achieving a guaranteed upper error bound and a convergence rate essentially as fast as usual Monte Carlo.

Monte Carlo & Beyond
(2002)

In this paper we show how Metropolis Light Transport can be extended both in the underlying theoretical framework and the algorithmic implementation to incorporate volumetric scattering.
We present a generalization of the path integral formulation thathandles anisotropic scattering in non-homogeneous media. Based on this framework we introduce a new mutation strategy that is
specifically designed for participating media. It exploits the locality of light propagation by perturbing certain interaction points within the medium. To efficiently sample inhomogeneous media a new ray marching method has been developed that avoids aliasing artefacts and is significantly faster than stratified sampling. The resulting global illumination algorithm provides a physically correct simulation of light transport in the presence of participating media that includes effects such as volume caustics and multiple volume scattering. It is not restricted to certain classes of geometry and scattering models and has minimal memory requirements. Furthermore, it is unbiased and robust, in the sense that it produces satisfactory results for a wide range of input scenes and lighting situations within acceptable time bounds. In particular, we found that it is weil suited for complex scenes with many light sources.